handbook of lasers phần 3 pot

119 368 0
handbook of lasers phần 3 pot

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

©2001 CRC Press LLC 1.4.3 Table of Color Center Lasers Color center lasers and their properties are listed by host crystal in Table 1.4.2. If the host contained dopants, they are included following the colon. The other columns in the table list the active center, laser wavelength, pump source and wavelength, operating temperature, and primary references. For lasers that have been tuned over a range of wavelengths, the tuning range given is that for the configuration and conditions used and may not represent the extremes possible. The lasing wavelength and output power of color center lasers depend on the characteristics of the optical cavity, the temperature, the optical pump source, and other operating conditions. The original references should therefore be consulted for this information and its effect on the lasing wavelength. The original references should also be consulted for the method used to create the color centers and the operating lifetime of the laser. Abbreviations used in Table 1.4.2: Pump source Mode of operation alex — alexandrite (BeAl 2 O 4 :Cr) laser AML — actively mode-locked Ar — argon ion laser cw — continuous wave CCL — color center laser p — pulsed D — frequency doubled qcw — quasi-continuous wave DL — dye laser PML — passively mode-locked Er:YLF — Er:LiYF 4 laser SML — synchronously mode-locked Kr — krypton ion laser NdYAG — Nd:Y 3 Al 5 O 12 laser RL — ruby (Al 2 O 3 :Cr) laser RS — Raman shifted TiS — Ti sapphire (Al 2 O 3 ) laser Table 1.4.2 Color Center Lasers Arranged by Host Crystal Host crystal Active center Laser wavelength ( m) Pump source (wavelength- m) Mode Temp. (K) Ref. Al 2 O 3 unknown* 0.54–0.62 CCL (0.46) p RT 4 Al 2 O 3 unknown* 0.75–0.95 ruby laser (0.694) p RT 5 Al 2 O 3 unknown* 0.96–1.15 dye laser (0.83) p RT 5 Al 2 O 3 unknown* 0.95–1.1 DL (0.825), RL(0.694) p RT 6 Al 2 O 3 :Mg unknown* 0.51–0.59 dye laser (0.440) p RT 7 ©2001 CRC Press LLC Table 1.4.2—continued Color Center Lasers Arranged by Host Crystal Host crystal Active center Laser wavelength ( m) Pump source (wavelength- m) Mode Temp. (K) Ref. C(diamond) H 3 0.53 (a) Ar ion laser (0.488) cw RT 3 CaF 2 :Na + (F 2 ) A 0.76 dye laser (0.610) p RT 8–10 CaO F + 0.357–0.420 (a) Ar (0.351)/ N 2 (337) p, cw 77 1 CsCl F H (CN - ) 4.88–5.00 Kr ion laser (0.647) cw 77 49 KBr CN - 4.86 DCO 2 laser (4.81) p 1.7 47 KBr CN - 4.86 CCL (2.42) cw 1.7 48 KBr:O 2- F 2 + 1.86–2.16 NdYAG laser (1.34) cw 77 38, 41 KBr:O 2- (F 2 + ) H 1.86–2.10 CCL (1.6) cw, ML 77 42 KBr:Na + :O 2- (F 2 + ) AH 1.96—2.35 CCL (1.6) cw, ML 77 42 KBr:Tl + Tl o (1) 1.55–1.70 NdYAG laser (1.064) cw 77 28, 76 KCl N 2 1.23–1.35 NdYAG laser (1.064) p 77 24 KCl F 2 + 1.61–1.77 NdYAG (1.318/1.340) cw 77 65 KCl F 2 + :O 2- 1.66–1.97 NdYAG laser (1.34) cw 77 38 KCl:Li + F A 2.72 xenon flashlamp p 77 74 KCl:Li + (F 2 + ) A 2.00–2.50 NdYAG laser (1.34) cw 77 43 KCl:Li + F A (II) 2.6–2.8 Kr laser (0.6471) cw 77–200 75 KCl:Li + F A (II) 2.30–3.10 dye laser (0.610) cw 77 45 KCl:Li + F A (II) 2.5–2.9 Ar (0.514), Kr (0.647) cw 77 72 KCl:Na + F B (II) 2.25–2.65 Ar (0.514), Kr (0.647) cw 77 72 KCl:Li + :Na + F A (II)–F B (II) 2.27–2.88 Ar (0.514), Kr (0.647) cw 77 72 KCl:Na + (F 2 + ) A 1.62–1.91 NdYAG laser (1.34) cw 77 37 KCl:Na + F 2 + :O 2- ~1.71–2.15 NdYAG (1.32/1.34) cw 77 39 KCl:Na + F 2 + :O 2- 1.77–1.94 NdYAG laser (1.32) p 77 66 KCl:Na + (F 2 + ) AH 1.73–2.10 NdYAG (1.32) AML 77 40 KCl:Na + F B (II) 2.22–2.75 dye laser (0.595) cw 77 44, 45 KCl:Tl + F A :Tl o (1) 1.40–1.60 NdYAG laser (1.064) qcw, SML 77 27, 29 ©2001 CRC Press LLC KCl:Tl + F A :Tl o (1) 1.40–1.60 NdYAG laser (1.064) cw 77 28 KCl:Tl + Tl o (1) 1.488–1.538 laser diode (0.96) cw 84 36 KF F 2 + 1.24–1.45 NdYAG laser (1.064) SML 77 25 KF F 2 + 1.26–1.48 NdYAG laser (1.064) cw, SML 77 26 KF:Tl + Tl o (1) 1.2–1.4 TiS laser (0.844) cw 77 76 KI:Li + (F 2 + ) A 2.38–3.99 ErYLF laser (1.73) p 77 46 KMgF 3 :Cu + unknown 0.945–1.065 Kr ion laser (0.647) cw 77 17 KMgF 3 :Pb 2+ unknown 0.855–0.965 Kr ion laser (0.647) cw 77 16, 17 LiF F 3 + 0.51–0.58 dye laser (0.460) p RT 2, 60 LiF F 3 + , F 2 , unknown 0.519–0.722 dye laser (0.460) p RT 58 LiF F 3 + 0.52–0.56 dye laser (0.432/0.44) p RT 50 LiF F 3 + 0.543 dye laser (~0.460) p RT 56 LiF F 2 0.64–0.71 dye laser (0.460) p RT 60 LiF F 2 0.67 dye laser (0.436) p RT 11 LiF F 2 0.67–0.74 — p RT 55 LiF F 2 + 0.82–1.07 Kr ion laser (0.647) cw 77 26 LiF F 2 + 0.82–1.340 — p RT 70 LiF F 2 + ** 0.7961.210 alex laser (0.740), RS D- NdYAG (0.683/0.633) p RT 68 LiF F 2 + ** 0.830–1.060 DNdYAG laser (0.532) p RT 57 LiF F 2 –F 2 + 0.84–1.10 DNdYAG laser (0.532) p RT 15 LiF F 3 - 0.86–1.02 Ti sapphire laser p RT 18 LiF F 2 + 0.88–0.995 laser diode (0.680) P RT 69 LiF F 2 + 0.88–1.12 ruby laser (0.694) P RT 14 LiF (b) F 2 + 0.936 DNdYAG laser (0.532) p RT 62 LiF F 2 - 1.09–1.24 NdYAG laser (1.064) p RT 12, 53 LiF F 2 - 1.1–1.2 NdYAG laser (1.064) cw 313 67 LiF F 2 - 1.122–1.201 laser diode (0.976) p RT 71 LiF F 2 - 1.13–1.250 ruby laser (0.694) P RT 14 ©2001 CRC Press LLC Table 1.4.2—continued Color Center Lasers Arranged by Host Crystal Host crystal Active center Laser wavelength ( m) Pump source (wavelength- m) Mode Temp. (K) Ref. LiF F 2 - 1.15 Nd glass laser SML RT 13 LiF F 2 - 1.150–1.172 NdYAG laser (1.064) p RT 59 LiF:OH - F 2 + 0.84–1.13 ruby laser (0.694) p RT 52 LiF:OH - ,Mg 2+ F 2 + 0.85–1.040 DNdYAG laser (0.532) p RT 51 MgF 2 :Na + (F 2 ) A 0.66 DNdYAG laser (0.532) p RT 9, 10 NaCl F 2 + 1.40–1.56 NdYAG laser (1.064) cw 77 65 NaCl F 2 + :S 2- 1.43–2.00 NdYAG laser (1.064) cw, ML 77 33 NaCl:K + (C) F 2 + :O 2- 1.42–1.76 NdYAG laser (1.064) cw 77 64 NaCl:OH - F 2 + 1.37–1.77 NdYAG laser (1.064) p RT 63 NaCl:OH - F 2 + 1.4–1.72 NdYAG laser (1.064) p, qcw RT 61 NaCl:OH - F 2 + :O 2- (d) 1.41–1.81 NdYAG laser (1.064) cw 77 30, 31 NaCl:OH - F 2 + :O 2- (d) 1.41–1.81 NdYAG laser (1.064) PML 77 32 NaCl:OH - (F 2 + ) H 1.450–1.600 (e) NdYAG laser (1.064) cw 30 34 NaCl:OH - (F 2 + ) H 1.482–1.680 laser diode (0.99) cw < 140 35 NaCl:OH - (F 2 + ) H 1.479–1.705 NdYAG laser (1.064) cw < 185 35 NaCl:OH - (F 2 + ) H ~1.575 NdYAG laser (1.064) PML 77 54 NaCl:Tl + Tl o (1) 1.464–1.590 NdYAG laser (1.064) cw 77 35 NaCl:Tl + Tl o (1) 1.493–1.540 laser diode (0.993) cw 77 35 NaF F 2 + 0.99–1.22 CCL (0.870) cw 77 20 NaF:Li + (F 2 + ) A 0.95–1.3 ruby laser (0.694) p RT 19 NaF:Mg 2+ (F 2 + )* 1.03–1.12 laser diode (0.82) cw 77 21 NaF:Mg 2+ (F 2 + )* 1.07 laser diode (0.82) AML 77 22 NaF:OH - F 2 + 1.10–1.30 CCL (0.90) cw 77 23 ©2001 CRC Press LLC RbCl:Li + F A (II) 2.48–3.64 Kr ion (0.647, 0.676) cw 77 45 RbCl:Li + F A (II) 2.6–3.33 Kr ion (0.647, 0.752) cw 77 72 RbCl:Na + F B (II) 2.5–2.9 Kr ion (0.647, 0.752) cw 77 72 RbCl:Li + :Na + F A (II)–F B (II) 2.5–3.15 Kr ion (0.647, 0.752) cw 77 72 RbI:Li + (F 2 + ) A 2.84–3.68 Er:YLF (1.73) p 77 77 SrF 2 :Na + (F 2 ) A 0.890 ruby laser (0.694) p RT 8 * Color centers produced by neutron irradiation. (a) Laser action requires further verification. (b) LiF powder sample. (c) Misidentified; the host crystal was actually NaCl:OH - . (d) The NaCl:OH - F 2 + :O 2- laser and the NaCl:OH - (F 2 + ) H laser are the same; there is no standard nomenclature for these centers. (e) Emission of the (a) variety of (F 2 + ) H center. ©2001 CRC Press LLC 1.4.4 Commercial Color Center Lasers Examples of commercial color center lasers are given in Table 1.4.3. General output properties are included. These data are taken from recent (1997–1999) buyers guides and manufacturers' literature and are representative rather than exhaustive. Performance figures may be expected to change due to changes and advances in technology. Table 1.4.3 Commercial Color Center Lasers Laser Type Operation Principal wavelengths ( m) Output LiF (F 2 + ) pulsed 1.09–1.27 £ 50 mJ NaCl:OH (F 2 - ) cw 1.45–1.85 0.35 W pulsed 1.48–1.72 0.1 J KCl:Na (F B ) cw 2.30–2.55 1–100 mW KCl:Li (F A ) cw 2.45–2.80 100 mW pulsed 2.52–2.90 15 mJ RbCl:Li(F A ) cw 2.70–3.30 10 mW pulsed 2.73–3.18 15 mJ 1.4.5 References 1. Henderson, B., Tunable visible laser using F + centers in oxides, Opt. Lett. 6, 437 (1981). 2. Voytovich, A. P., Kalinov, V. S., Michonov, S. A., and Ovseichuk, S. I., Investigation of spectral and energy characteristics of green radiation generated in LiF with radiation color centers, Kvant. Elektron. 14, 1225 (1987); Sov. J. Quantum Electron. 17, 780 (1987). 3. Rand, S. C. and DeShazer, L. G., Visible color-center laser in diamond, Opt. Lett. 10, 481 (1985). 4. Martynovich, E. F., Baryshnikov, V. I., and Grigorov, V. A., Lasing in Al 2 O 3 color centers at room temperature in thc visible, Opt. Comm. 53, 257 (1985); Sov. Tech. Phys. Lett. 11, 81 (1985). 5. Martynovich, E. F., Tokarev, A. G., and Grigorov, V. A., Al 2 O 3 color center lasing in near infrared at 300 K. Opt. Commun. 53, 254 (1985); Sov. Phys. Tech. Phys. 30, 243 (1985). 6. Voytovich, A. P., Grinkevich, V. A., Kalinov, V. S., Kononov, V. A., and Mikhnov, S. A., Spectroscopic and lasing characteristics of sapphire crystals containing color centers in the 1.0 µm range, Sov. J. Quantum Electron. 18, 202 (1988). 7. Boiko, B. B., Shakadarevich, A. P., Zdanov, E. A., Kalosha, I.I., Koptev, V. G., and Demidovich, A. A., Laser action of color centers in the Al 2 O 3 :Mg crystal, Kvant. Electron. 14, 914 (1987); Sov. J. Quantum Electron. 17, 581 (1987). 8. Arkhangel'skaya, V. A., Fedorov, A. A., and Feofilov, P. P., Spontaneous and stimulated emission of color centers in MeF 2 -Na crystals, Optica i Spectroskopiya 44, 409 (1978); Sov. Opt. Spectroscopy 44, 240 (1978). 9. Arkhangel'skaya, V. A., Fedorov, A. A., and Feofilov, P. P., Luminescence and stimulated emission of M color centers in fluoride type crystals, Izv. Akad. Nauk SSR, Ser Fiz. 43, 1119 (1979); Bull. Acad. Sci. USSR. Phys. Ser. 43, 14 (1979). ©2001 CRC Press LLC 10. Shkadarevich, A. P. and Yarmolkeich, A. P., New laser media in color centers of compound fluorides, Inst. Phys. An BSSR, Minsk, USSR (1985). 11. Gusev, Yu. L., Konoplin, S. N., and Marennikov, S. I., Laser radiation in F 2 color centers in an LiF single crystal, Sov. J. Quantum Electron. 7, 1157 (1977). 12. Basiev, T. T., Ershov, B. V., Kratstev, S. B., Mirov, Spiridonov, V. A., and Fedorov, V. B., Color center LiF laser with the oput energy of 100 J, Sov. J. Quantum Electron. 15, 745 (1985). 13. Babushkin, A. V., Basiev, T. T., Vorob'ev, N. S. et al., Generation and recording of high-power smoothly tunable ps radiation from LiF:F 2 - laser, Sov. J. Quantum Electron. 16, 1492 (1986). 14. Gusev, Yu. L., Marennikov, S. I., and Chebotayev, V. P., Tunable laser via F 2 + and F 2 - colour centers in the spectral region 0.88–1.25 µm, Appl. Phys. 14, 121 (1977). 15. Basiev, T. T., Karpushko, F. V., Kulaschik, S. M., Mirov, S. B., Morozov, V. P., Motkin, V. S., Saskevich, N. A., and Sinitsin, G. V., Automatic tunable MASLAN-201 laser, Kvant. Elektron. 14, 1726 (1987); Sov. J. Quantum Electron. 17, 1102 (1987). 16. Horsch, G. and Paus, H. J., A new color center laser on the basis of lead-doped KMgF 3 , Opt. Comm. 60, 69 (1986). 17. Flassak, W., Goth, A., Horsch, G., and Paus, H. J., Tunable color center lasers with lead- and copper-doped KMgF 3 , IEEE J. Quantum Electron. QE-24, 1070 (1988). 18. Shkadarevich, A. P., Demidovich, A. A., and Protassenya, A. L., Tunable lasers on F 3 - -colour centers in LiF Crystals, OSA Proc. Adv. Solid State Lasers, Dubé, G. and Chase, L., Eds., 10, 153 (1991). 19. Gusev, Y. L., Kirpichnikov, S. N., Konoplin, S. N., and Marennikov, S. I., Laser operation in (F 2 + ) A color centers in NaF crystal, Sov. J. Quantum Electron. 11, 833 (1981). 20. Mollenauer, L. F., Room-temperature-stable, F 2 -like center yields cw laser tunable over the 0.9-1.22 µm range, Opt. Lett. 5, 188 (1980). 21. Doualan, J. L., Colour centre laser pumped by a laser diode, Opt. Commun. 70, 232 (1991). 22. Mazighi, K., Doualan, J. L., Hamel, J., Margerie, J., Mounier, D., and Ostrovsky, A., Active mode-locked operation of a diode pumped colour-centre laser, Opt. Commun. 85, 234 (1997). 23. Mollenauer, L. F., Laser-active defect stabilized F 2 + center in NaF:OH and dynamics of defect-stabilized center formation, Opt. Lett. 6, 342 (1981). 24. Georgiou, E., Carrig, T. J., and Pollock, C. R., Stable, pulsed, color-center laser in pure KCl tunable from 1.23 to 1.35 µm, Opt. Lett. 13, 978 (1988). 25. Mollenauer, L. F. and Bloom, D. M., Color center laser generates picosecond pulses and several watts cw over the 1.24–1.45 µm range, Opt. Lett. 4, 247 (1979). 26. Mollenauer, L. F., Bloom, D. M., and DelGaudio, A. M., Broadly tunable cw lasers using F 2 + centers for the 1.26–1.48 and 0.82–1.07 µm bands, Opt. Lett. 3, 48 (1978). 27. Pinto, J. F., Yakymshyn, C. P., and Pollock, C. R., Acosto-optic mode-locked soliton laser, Optics Lett. 13, 383 (1988). 28. Gellerman, W., Luty, F., and Pollock, C. R., Optical properties and stable broadly tunable cw laser operation of new F A -type centers in Tl + -doped alkali-halides, Opt. Commun. 39, 391 (1981). 29. Mollenauer, L. F., Vieira, N. D., and Szeto, L., Mode locking by synchronous pumping using a gain medium with microsecond decay times, Opt. Lett. 7, 414 (1982). 30. Pinto, J. F., Georgiou, E., and Pollock, C. R., Stable color-center in OH - doped NaCl operating in the 1.41—1.81-µm region, Opt. Lett. 11, 519 (1986). 31. Georgiou, E., Pinto, J. F., and Pollock, C. R., Optical properties and formation of oxygen- perturbed F 2 + color center in NaCl, Phys. Rev. B 35, 7636 (1987). 32. Islam, M. N., Sunderman, E. R., Bar-Joseph, I., Sauer, N., and Chang, T. Y., Multiple quantum well passive mode locking of a NaCl color center laser, Appl. Phys. Lett. 54, 1203 (1989). 33. Möllmann, K. and Gellermann, W., Optical and laser properties of (F 2 + ) H centers in sulfur- doped NaCl, Opt. Lett. 19, 804 (1994). 34. Konaté,, A., Doualan, J. L., Girard, S., and Margerie, J., Tunable cw laser emission of the (a) variety of (F 2 + ) H centres in NaCl:OH - , Opt. Commun. 133, 234 (1997). 35. Konaté, A., Donalan, J. I., Girard, S., Margerie, J., and Vicquelin, R., Diode-pumped colour- centre lasers tunable in the 1.5 µm range, Appl. Phys. B 62, 437 (1996). ©2001 CRC Press LLC 36. Konaté, A., Doualan, J. I., and Margerie, J., Laser diode pumping of a colour centre laser with emission in the 1.5 µm wavelength domain, Rad. Effects Def. Solids 136, 61 (1995). 37. Schneider, I. and Marrone, M. J., Continuous-wave laser action of (F 2 + ) A centers in sodium- doped KCl crystals, Opt. Lett. 4, 390 (1979). 38. Wandt, D., Gellerman, W., Luty, F., and Welling, H., Tunable cw laser action in the 1.45— 2.16 µm range based on F 2 + -like center in O 2 - - doped NaCl, KCl, and KBr crystals, J. Appl. Phys. 61, 864 (1987). 39. Wandt, D. and Gellerman, W., Efficient cw color center laser operation in the 1.7 to 2.2 µm range based on F 2 + -like centers in KCl:Na + :O 2 - crystals, Opt. Commun. 61, 405 (1987). 40. Möllmann, K., Mitachke, F., and Gellermann, W., Optical properties and synchronously pumped mode locked 1.73-2.10 µm tunable laser operation of (F 2 + ) AH centers in KCl:Na + :O 2 - , Opt. Commun. 83, 177 (1991). 41. Doualan, J. L. and Gellerman, 4-W continuous-wave color-center laser pumps a KBr:O 2 - (F A + ) H center laser, in Advanced Solid-State Lasers, Jenssen, H. P. and Dubé, G., Eds., Proceedings Vol. 6 (Optical Society of America, Washington, DC (1990), p. 276. 42. Möllmann, K. Schrempel, M., Yu, B-K., and Gellermann, W., Subpicosecond and continuous- wave laser operation of (F A + ) H and (F A + ) AH color-center lasers in the 2-µm range, Opt. Lett. 19, 960 (1994). 43. Schneider, I. and Marquardt, C. L., Tunable, cw laser action using (F 2 + ) centers in Li-doped KCl, Opt. Lett. 5, 214 (1980). 44. Litfin, G., Beigang, R., and Welling, H., Tunable cw laser operation in F B (II) type color center crystals, Appl. Phys. Lett. 31, 381 (1977). 45. German, K., Optimization of F A (II) and F B (II) color-center lasers, J. Opt. Soc. Am. B3, 149 (1986). 46. Schneider, I., Continuous tuning of a color-center laser between 2 and 4 µm, Opt. Lett. 7, 271 (1982). 47. Tkach, R. W., Gosnell, T. R., and Sievers, A. J., Solid-state vibrational laser—KBr :CN - , Opt. Lett. 9, 122, 1984). 48. Gosnell, T. R., Sievers, A. J., and Pollock, C. R., Continuous-wave operation of the KBr:CN - solid-state vibration laser in the 5-µm region, Opt. Lett. 10, 125 (1985). 49. Gellerman, W., Yang, Y., and Luty, F., Laser operation near 5-µm of vibrationally excited F- center CN molecule defect pairs in CsCl crystals, pumped in the visible, Opt. Commun. 57, 196 (1986). 50. Tsuboi, T. and Ter-Mikirtychev, V. V., Characteristics of the LiF:F 3 + color center laser, Opt. Commun. 116, 389 (1995). 51. Ter-Mikirtychev, V. V. and Tsuboi, T., Ultrabroadband LiF:F 2 + color center laser using two- prism spatially-dispersive resonator, Opt. Commun. 137, 74 (1997). 52. Khulugurov, V. M. and Lobanov, B. D., Color-center lasing at 0.84–1.13 µm in a LiF–OH crystal at 300 K, Sov. Tech. Phys. Lett. 4, 595 (1978). 53. Basiev, T. T., Zverov, P. G., Fedorov, V. V., and Mirov, S. B., Multiline, superbroadband and sun-color oscillation of a LiF:F 2 - color-center laser, Appl. Opt. 36, 2515 (1997). 54. Kennedy, G. T., Grant, R. S., and Sibbett, W., Self-mode-locked NaCl:OH - color-center laser, Opt. Lett. 18, 1736 (1993). 55. Basiev, T. T., Mirov, S. B., and Osiko, V. V., Room-temperature color center lasers, IEEE J. Quantum Electron. 24, 1052 (1988). 56. Tsuboi, T. and Gu, H. E., Room-temperature-stable LiF:F 3 + color-center laser with a two- mirror cavity, Appl. Opt. 33, 982 (1994). 57. Ter-Mikirtychev, V. V., Stable room-temperature LiF:F 2 + * tunable color-center laser for the 830-1060-nm spectral range pumped by second-harmonic radiation from a neodymium laser, Appl. Opt. 34, 6114 (1995). 58. Gu, H E., Qi, L., and Wan, L F., Broadly tunable laser using some mixed centers in an LiF crystal for the 520-720 band, Opt. Commun. 67, 237 (1988). 59. Ter-Mikirtychau, V. V., Arestova, E. L., and Tsuboi, T., Tunable LiF:F 2 - color center laser with an intracavity integrated-optic output coupler, J. Lightwave Technol. 14, 2353 (1996). ©2001 CRC Press LLC 60. Gu, H E., Qi, L., Guo, S., and Wan, L F., A LiF crystal F 3 + –F 2 mixed color-center laser, Chin. Phys. 11, 148 (1991). 61. Matts, R. É, Stable laser based on color centers in the OH:NaCl crystal tunable in the range 1.4 to 1.7 µm and operating at room temperature, Quantum Electron. 23, 44 (1993). 62. Noginov, M. A., Noginova, N. E., Egarievwe, S. U., Caulfield, H. J., Venkateswarlu, P., Williams, A., and Mirov, S. B., Color-center powder laser: the effect of pulverization on color- center characteristics, J. Opt. Soc. Am. B 14, 2153 (1997). 63. Culpepper, C. F., Carrig, T. J., Pinto, J. F., Georgiou, E., and Pollock, C. R., Pulsed, room- temperature operation of a tunable NaCl color-center laser, Opt. Lett. 12, 882 (1987). 64. Pinto, J. F., Stratton, L. W., and Pollock, C. R, Stable color-center laser in K-doped NaCl tunable from 1.42 to 1.76 µm, Opt. Lett. 10, 384 (1985). 65. Gellermann, W., Lutz, F., Koch, K. P., and Littin, M., F 2 + center stabilization and tunable laser operation in OH - doped alkali halide, Phys. Stat. Sol. (a) 57, 411 (1980). 66. Steinmeyer, G., Morgner, U., Ostermeyer, M., Mitschke, F., and Welling, H., Subpicosecond pulses near 1.9 µm from a synchronously pumped color-center laser, Optics Lett. 18, 1544 (1993). 67. Basiev, T. T., Gusev, A. A., Kruzhalov, S. V., Mirov, S. B., and Petrun'kin, V. Yu., Continuous-wave ring LiF:F 2 - laser, Sov. J. Quantum Electron. 18, 315 (1988). 68. Dergachev, A. Yu. and Mirov, S. B., Efficient room temperature LiF:F 2 + ** color center laser tunable in 820–1210 nm range, Optics Commun. 147, 107 (1998). 69. Ter-Mikirtychev, V. V., Diode-pumped LiF:F 2 +* color center laser tunable in 880–995-nm region at room temperature, IEEE Phot. Techn. Lett. 10, 1395 (1998). 70. Ter-Mikirtychev, V. V. and Tsuboi, T., Stable room-temperature tunable color center lasers and passive Q-switches, Progr. Quantum Electron. 20, 219 (1996). 71. Ter-Mikirtychev, V. V., Diode-pumped tunable room-temperature LiF:F 2 - color center laser, Appl. Opt. 37, 6442 (1998). 72. Koch, K P., Litfin, G., and Welling, H., Continuous-wave laser oscillation with extended tuning range in F A (II)-F B (II) color-center crystals, Optics Lett. 4, 387 (1979). 73. Baldacchini, G, New luminescent phenomena in color centers, Physics and Chemistry of Luminescent Materials, Struck, C. W., Mishra, K. C., and Di Bartolo, B., Eds., Electrochemical Society, Pennington, NJ (1999), p. 319. 74. Fritz, B. and Menke, E., Laser effect in KCl with F A (Li) centers, Solid State Commun. 3, 61 (1965). 75. Mollenauer, L. F. and Olson, D. H., A broadly tunable cw laser using color centers, Appl. Phys. Lett. 24, 386 (1974). 76. Gellermann, W., Color center lasers, J. Phys. Chem. Solids 52, 249 (1991). 77. Foster, D. R. and Schneider, I., Recent progress in the development of (F 2 + ) A color center lasers, in Tunable Solid-State Lasers II, Budgor, A. B., Esterowitz, L., and DeShazer, L. G., Eds., Springer-Verlag, New York (1986), p. 266. ©2001 CRC Press LLC Section 1.5 SEMICONDUCTOR LASERS 1.5.1 Introduction Laser action in semiconductor diode lasers, in contrast to other solid state lasers, is associated with radiative recombination of electrons and holes at the junction of a n-type material (excess electrons) and a p-type material (excess holes). Excess charge is injected into the active region via an external electric field applied across a simple p-n junction (homojunction) or in a heterostructure consisting of several layers of semiconductor materials that have different band gap energies but are lattice matched. The ability to grow special structures one atomic layer at a time by liquid phase epitaxy (LPE), molecular bean epitaxy (MBE), and metal-organic chemical vapor deposition (MOCVD) has led to an explosive growth of activity and numerous new laser structures and configurations. When the dimensions of the semiconductor material become <100 nm, quantum effects enter that modify the band gap. Quantum wells result from confinement in one dimension, quantum wires from confinement in two dimensions, and quantum dots or boxes from confinement in three dimensions. The wavelength of quantum well lasers can be changed by varying the quantum well thickness or the composition of the active material. By using materials of different lattice constants, thereby effectively straining the materials, one can further engineer the band gap. The lasing material may be elemental, but more generally is a binary, ternary, or quaternary compound semiconductor. The latter includes II-VI, III-V, IV-VI, and other compounds. Figure 1.5.1 shows the elements that have been used as constituents to achieve laser action in elemental and compound semiconductor materials. Figure 1.5.1 Periodic table of the elements showing the elements (shaded) that have been components of semiconductor laser materials. [...]... 32 2 InGaAs 0.9191–0.9507 MQW p, cw 30 0 32 5 InGaAs/GaAs ~0.9 43 0.971 MQW cw 30 0 32 8 InGaAs/GaAs 0.940–0.9 83 (a) SQW p, cw 30 0 32 9 InGaAsP 1.542 QW p, cw 30 0 38 1 InGaAsP 1.55 QW p 30 0 155 InGaAsP 1 .3 DH p 30 0 33 1 InGaAsP 1 .3 — cw 2 73 34 3 37 9 InGaAsP/InP 1.18 DH p 77 33 2 InGaN 0 .38 1 3l cavity p 77 34 6 InGaN 0 .39 9 MQW p 30 0 34 7 InSb ~5.2 J p ~10 33 3 Optically Pumped Lasers InGaAs/GaAs 0.918–0.966 0.940–0.978... 13, 14 GaN 0 .37 8 film p 30 0 15 GaN 0 .37 8 MD WGM p 30 0 38 7 GaN ~0 .38 5 ML p 30 0 2 93 GaN layer p 77–450 33 4 GaN — powder p 30 0 35 2 GaN/AlGaN ~0 .36 15 SCH p 30 0 6 ©2001 CRC Press LLC 0 .36 4–0 .38 6 Table 1.5.5—continued Nitride Lasers Material Wavelength ( m) Structure Mode Temp (K) Ref GaN/AlGaN 0 .36 35 VCSEL p 30 0 GaN/AlGaN 0 .38 7 H p 34 294 DH p 77, 295 2 43 film p 1.8 33 5 film p 30 0 33 6 0.406 ML VC p 30 0 296 InGaN/GaN... 0.575–0.602 SLS QW cw 8 31 0 59 ZnMgSSe/ZnSSe/ZnCdSe 0.470–5 23 SCH QW p 30 0 ZnO 0 .37 5–0.400 crystal p 80 30 0 11 ZnO 0 .37 75–0 .37 80 crystal layer p 80–180 35 1 ZnO 0 .37 47 powder p 80–180 35 1 35 3 ZnO ≈0 .38 5 powder p 30 0 35 2 ZnO ~0 .38 film p 30 0 16 ZnS 0 .34 97 crystal p 30 0 3 ZnSe 0. 430 crystal p < 200 23 ZnSe 0.469 crystal p 30 0 31 ZnSe 0.469–0.475 crystal p 30 0 ZnSe/ZnMgBeSe 0.444 SQW p 30 0–4 73 ~0.4 53 MQW p 5.5–80... SCH p 30 0 199 InGaN 0 .39 9–0.402 MQW p, cw 30 0 291 InGaN 0.405 83 MQW cw 30 0 20 InGaN 0.407–0.411 MQW p 30 0 297 InGaN 0.417 MQW p 30 0 22 InGaN 0.419 MQW p 30 0 44 AlGaN/GaInN 0 .38 9–0 .39 9 DFB DH p 30 0 295 AlGaN/GaInN 0.4025 DH p 30 0 19 Optically Pumped Lasers GaN ~0 .35 6 SCH QD p 20 4 GaN 0 .35 9 crystal p 2 5 GaN 0 .36 2–0 .38 1 crystal p 10 37 5 7 GaN 0 .36 96 layer p 30 0 10 GaN 0 .37 6–0 .37 8 layer VC p 30 0 13, 14... 77 268 30 0 35 3 p 30 2 73 SQW p 77 38 QW cw 80 39 QW cw 30 0 39 p < 30 0 43 p < 250 MQW p cw 34 (Zn,Cd)Se/ZnSe 0.480–0.500 MQW ZnCdSe/ZnSSe/ZnMgSSe 0.496 SCH cw 85 269 ZnCdSe/ZnSSe/ZnMgSSe 0.5147 SQW SCH cw 30 0 38 0 ZnCdSe/ZnSSe/ZnMgSSe 0.516 SCH p 30 0 39 4 269 ZnCdSe/ZnSSe/ZnMgSSe 0.520 SCH p 30 0 54 ZnCdSe/ZnSSe/ZnMgSSe 0.5 235 SCH p 30 0 270 ZnSe/ZnMgSSe 0.4 63 SCH p 30 0 267 CdS 0.49 43 crystal p 88 43 CdS... "W" cw 78–160 32 4 CdHgTe/HgTe 3. 06 DH p 10 30 32 1 InAs/GaSb/InAs/AlSb 2.9 type II "W" p ≤280 32 3 ©2001 CRC Press LLC 30 0 33 0 Table 1.5.10—continued Vertical Cavity Lasers Material Wavelength ( m) Structure Mode Temp (K) Ref CdHgTe/HgTe 3. 06 DH p 10 30 32 1 InAs/GaSb/InAs/AlSb 2.9 type II "W" p ≤280 32 3 GaN 0 .37 6–0 .37 8 epilayer p 30 0 13, 14 GaN/AlGaN 0 .36 3 layer p 30 0 8 InGaN 0.406 ML p 30 0 296 InGaN/GaN... InAsSb ~3. 17 InAsSb InAsSb 3. 5 3. 6 layer p 77 184 InAsSb/InAs 3. 8 3. 9 MQW H p 210 195 InGaAsSb/AlGaSb 2.0 23, 2.2 DH p 140, 30 0 162 InGaAsSb/InPSb 3. 06 DH p 35 181 GaInAsSb/AlGaAsSb 2.1 DH p, cw 30 0, 190 1 63 GaInAsSb/AlGaAsSb 2.02, 2.04 QW p, cw 30 0 34 2 DH p, cw 30 3 165 GaInAsSb/AlGaSb ~3. 6 ~2.2 InAsSb/AlAsSb 3. 97 3. 985 DH p, cw 155, 80 202 InAsSb/InAlAsSb 3. 9 SQW p, cw 165, 1 23 197 InAsSb/InAlAsSb 3. 2 3. 55... p 30 0 144 InGaAlP 0.625 MQW cw 30 0 73 InGaAlP 0. 63 0.65 H cw 295 32 3 76 InGaAlP 0. 637 8 SBR cw 298 78 InGaAs 0.911 QD p 80 130 InGaAs 0.979 SQW cw 30 0 137 InGaAs 1.77, 2.07 J cw 1.9 160 InGaAsPN 1.2–1 .3 SQW p 30 0 37 3 0.956, 0.985 SCH (b) p 30 0 38 2 SQW SCH cw 30 0 37 4 InGaAs/AlGaAs InGaAs/AlGaAs ~0.955 InGaAs/GaAs 0.99 SL QW cw 30 0 140 InGaAs/GaAs 1.028 SL SCH QD cw 30 0 146 1.14, 1.19 QD cw 80–250 34 1... p, 10 30 0, 36 5 cw 10–140 AlInAs/GaInAs 9.75–10.15 MQW RW p ≤ 30 0 36 9 AlInAs/GaInAs 10.04–10.18 MQW DFB p 80 30 0 36 7 AlInAs/GaInAs 8 .3 SQW RW p ≤220 36 1 AlInAs/GaInAs 8.47–8.54 MQW DFB p, cw 30 0, 120 36 0 AlInAs/GaInAs ~10 DQW RW p ≤220 36 1 AlInAs/GaInAs ~11.1 MQW RW p, cw 10–200, 10 30 87, 233 GaAs/AlGaAs 9.4 MQW RW p 10–140 36 3 GaAs/AlGaAs 10 MQW MD p 10–165 37 3 GaAs/AlGaAs 13 SL RW p 10–50 36 6 GaAs/AlGaAs... Injection Lasers AlGaAs 0.770 SL cw 30 0 104 AlGaInAs/AlGaAs ~0.850 SL-MQW cw 230 –410 32 0 AlGaInAs 1 .3 MQW cw 30 0 149 AlGaInP/AlGaAs 0.670–0.690 QW cw 30 0 81 GaAs 0.845 crystal cw 30 0 125 GaAs ~0.900–0.962 layer cw 30 0 127 InAlGaAs 0.9604 QD cw 30 0 134 InGaAs 0.951–0.957 QW cw 95–175 37 8 InGaAs 0.969, 0.986 MQW cw 30 0 32 6 InGaAs 0.979 SQW cw 30 0 32 7 InAsAs 0.958 MQW p 30 0 32 2 InGaAs 0.9191–0.9507 MQW p, cw 30 0 . 8 31 0 59 ZnMgSSe/ZnSSe/ZnCdSe 0.470–5 23 SCH QW p 30 0 35 3 ZnO 0 .37 5–0.400 crystal p 80 30 0 11 ZnO 0 .37 75–0 .37 80 crystal layer p 80–180 35 1 ZnO 0 .37 47 powder p 80–180 35 1 ZnO ≈0 .38 5 powder p 30 0. 30 0 35 2 ZnO ~0 .38 film p 30 0 16 ZnS 0 .34 97 crystal p 30 0 3 ZnSe 0. 430 crystal p < 200 23 ZnSe 0.469 crystal p 30 0 31 ZnSe 0.469–0.475 crystal p 30 0 32 ZnSe/ZnMgBeSe 0.444 SQW p 30 0–4 73. MQW cw 30 0 73 InGaAlP 0. 63 0.65 H cw 295 32 3 76 InGaAlP 0. 637 8 SBR cw 298 78 InGaAs 0.911 QD p 80 130 InGaAs 0.979 SQW cw 30 0 137 InGaAs 1.77, 2.07 J cw 1.9 160 InGaAsPN 1.2–1 .3 SQW p 30 0 37 3 InGaAs/AlGaAs

Ngày đăng: 14/08/2014, 04:21

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan