1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Ôn tập lí thuyết vật lý 12 pps

18 472 7

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 1,31 MB

Nội dung

1 Công thức giải nhanh vật lí 12 nâng cao CHƯƠNG I: ĐỘNG LỰC HỌC VẬT RẮN 1. Toạ độ góc Là toạ độ xác định vị trí của một vật rắn quay quanh một trục cố định bởi góc ϕ (rad) hợp giữa mặt phẳng động gắn với vật và mặt phẳng cố định chọn làm mốc (hai mặt phẳng này đều chứa trục quay) Lưu ý: Ta chỉ xét vật quay theo một chiều và chọn chiều dương là chiều quay của vật ⇒ ϕ ≥ 0 2. Tốc độ góc Là đại lượng đặc trưng cho mức độ nhanh hay chậm của chuyển động quay của một vật rắn quanh một trục * Tốc độ góc trung bình: ( / ) tb rad s t ϕ ω ∆ = ∆ * Tốc độ góc tức thời: '( ) d t dt ϕ ω ϕ = = Lưu ý: Liên hệ giữa tốc độ góc và tốc độ dài v = ωr 3. Gia tốc góc Là đại lượng đặc trưng cho sự biến thiên của tốc độ góc * Gia tốc góc trung bình: 2 ( / ) tb rad s t ω γ ∆ = ∆ * Gia tốc góc tức thời: 2 2 '( ) ''( ) d d t t dt dt ω ω γ ω ϕ = = = = Lưu ý: + Vật rắn quay đều thì 0const ω γ = ⇒ = + Vật rắn quay nhanh dần đều γ > 0 + Vật rắn quay chậm dần đều γ < 0 4. Phương trình động học của chuyển động quay * Vật rắn quay đều (γ = 0) ϕ = ϕ 0 + ωt * Vật rắn quay biến đổi đều (γ ≠ 0) ω = ω 0 + γt 2 0 1 2 t t ϕ ϕ ω γ = + + 2 2 0 0 2 ( ) ω ω γ ϕ ϕ − = − 5. Gia tốc của chuyển động quay * Gia tốc pháp tuyến (gia tốc hướng tâm) n a uur Đặc trưng cho sự thay đổi về hướng của vận tốc dài v r ( n a v⊥ uur r ) 2 2 n v a r r ω = = * Gia tốc tiếp tuyến t a ur Đặc trưng cho sự thay đổi về độ lớn của v r ( t a ur và v r cùng phương) '( ) '( ) t dv a v t r t r dt ω γ = = = = * Gia tốc tồn phần n t a a a= + r uur ur 2 2 n t a a a= + Góc α hợp giữa a r và n a uur : 2 tan t n a a γ α ω = = Lưu ý: Vật rắn quay đều thì a t = 0 ⇒ a r = n a uur 6. Phương trình động lực học của vật rắn quay quanh một trục cố định M M I hay I γ γ = = Trong đó: + M = Fd (Nm)là mơmen lực đối với trục quay (d là tay đòn của lực) + 2 i i i I m r= ∑ (kgm 2 )là mơmen qn tính của vật rắn đối với trục quay Mơmen qn tính I của một số vật rắn đồng chất khối lượng m có trục quay là trục đối xứng - Vật rắn là thanh có chiều dài l, tiết diện nhỏ: 2 1 12 I ml= - Vật rắn là vành tròn hoặc trụ rỗng bán kính R: I = mR 2 - Vật rắn là đĩa tròn mỏng hoặc hình trụ đặc bán kính R: 2 1 2 I mR= - Vật rắn là khối cầu đặc bán kính R: 2 2 5 I mR= 7. Mơmen động lượng Là đại lượng động học đặc trưng cho chuyển động quay của vật rắn quanh một trục L = Iω (kgm 2 /s) Lưu ý: Với chất điểm thì mơmen động lượng L = mr 2 ω = mvr (r là k/c từ v r đến trục quay) 8. Dạng khác của phương trình động lực học của vật rắn quay quanh một trục cố định Giáo viên: Đặng Thanh Phú 1 2 Công thức giải nhanh vật lí 12 nâng cao dL M dt = 9. Định luật bảo tồn mơmen động lượng Trường hợp M = 0 thì L = const Nếu I = const ⇒ γ = 0 vật rắn khơng quay hoặc quay đều quanh trục Nếu I thay đổi thì I 1 ω 1 = I 2 ω 2 10. Động năng của vật rắn quay quanh một trục cố định 2 đ 1 W ( ) 2 I J ω = 11. Sự tương tự giữa các đại lượng góc và đại lượng dài trong chuyển động quay và chuyển động thẳng Chuyển động quay (trục quay cố định, chiều quay khơng đổi) Chuyển động thẳng (chiều chuyển động khơng đổi) Toạ độ góc ϕ Tốc độ góc ω Gia tốc góc γ Mơmen lực M Mơmen qn tính I Mơmen động lượng L = Iω Động năng quay 2 đ 1 W 2 I ω = (rad) Toạ độ x Tốc độ v Gia tốc a Lực F Khối lượng m Động lượng P = mv Động năng 2 đ 1 W 2 mv= (m) (rad/s) (m/s) (Rad/s 2 ) (m/s 2 ) (Nm) (N) (Kgm 2) (kg) (kgm 2 /s) (kgm/s) (J) (J) Chuyển động quay đều: ω = const; γ = 0; ϕ = ϕ 0 + ωt Chuyển động quay biến đổi đều: γ = const ω = ω 0 + γt 2 0 1 2 t t ϕ ϕ ω γ = + + 2 2 0 0 2 ( ) ω ω γ ϕ ϕ − = − Chuyển động thẳng đều: v = cónt; a = 0; x = x 0 + at Chuyển động thẳng biến đổi đều: a = const v = v 0 + at x = x 0 + v 0 t + 2 1 2 at 2 2 0 0 2 ( )v v a x x− = − Phương trình động lực học M I γ = Dạng khác dL M dt = Định luật bảo tồn mơmen động lượng 1 1 2 2 i I I hay L const ω ω = = ∑ Phương trình động lực học F a m = Dạng khác dp F dt = Định luật bảo tồn động lượng i i i p m v const= = ∑ ∑ Định lý về động 2 2 đ 1 2 1 1 W 2 2 I I A ω ω ∆ = − = (cơng của ngoại lực) Định lý về động năng 2 2 đ 1 2 1 1 W 2 2 I I A ω ω ∆ = − = (cơng của ngoại lực) Cơng thức liên hệ giữa đại lượng góc và đại lượng dài s = rϕ; v =ωr; a t = γr; a n = ω 2 r Lưu ý: Cũng như v, a, F, P các đại lượng ω; γ; M; L cũng là các đại lượng véctơ CHƯƠNG II: DAO ĐỘNG CƠ I. DAO ĐỘNG ĐIỀU HỒ 1. Phương trình dao động: x = Acos(ωt + ϕ) 2. Vận tốc tức thời: v = -ωAsin(ωt + ϕ) v r ln cùng chiều với chiều chuyển động (vật chuyển động theo chiều dương thì v > 0, theo chiều âm thì v < 0) 3. Gia tốc tức thời: a = -ω 2 Acos(ωt + ϕ) hay a = -ω 2 x a r ln hướng về vị trí cân bằng 4. Vật ở VTCB: x = 0; |v| Max = ωA; |a| Min = 0 Vật ở biên: x = ±A; |v| Min = 0; |a| Max = ω 2 A * Chú ý: + Vận tốc nhanh pha π/2 so với li độ. + Gia tốc nhanh pha π/2 so với vận tốc. + Gia tốc ngược pha so với li độ. 5. Hệ thức độc lập: 2 2 2 ( ) v A x ω = + 6. Cơ năng: 2 2 đ 1 W W W 2 t m A ω = + = Với 2 2 2 2 2 đ 1 1 W sin ( ) Wsin ( ) 2 2 mv m A t t ω ω ϕ ω ϕ = = + = + 2 2 2 2 2 2 1 1 W ( ) W s ( ) 2 2 t m x m A cos t co t ω ω ω ϕ ω ϕ = = + = + 7. Dao động điều hồ có tần số góc là ω, tần số f, chu kỳ T. Thì động năng và thế năng biến thiên với tần số góc 2ω, tần số 2f, chu kỳ T/2 8. Động năng và thế năng trung bình trong thời gian nT/2 ( n∈N * , T là chu kỳ dao động) là: 2 2 W 1 2 4 m A ω = 9. Khoảng thời gian ngắn nhất để vật đi từ vị trí có li độ x 1 đến x 2 Giáo viên: Đặng Thanh Phú 2 3 Công thức giải nhanh vật lí 12 nâng cao 2 1 t ϕ ϕ ϕ ω ω − ∆ ∆ = = với 1 1 2 2 s s x co A x co A ϕ ϕ  =     =   và ( 1 2 0 , ϕ ϕ π ≤ ≤ ) 10. Chiều dài quỹ đạo: 2A 11. Qng đường đi trong 1 chu kỳ ln là 4A; trong 1/2 chu kỳ ln là 2A Qng đường đi trong l/4 chu kỳ là A khi vật đi từ VTCB đến vị trí biên hoặc ngược lại 12. Qng đường vật đi được từ thời điểm t 1 đến t 2 . Phân tích: t 2 – t 1 = nT + 2 T + ∆t (n ∈N; 0 ≤ ∆t < 2 T ) Xác định: * 2 2 1 1 2 2 1 1 Acos( ) Acos( ) à sin( ) sin( ) x t x t v v A t v A t ω ϕ ω ϕ ω ω ϕ ω ω ϕ = +  = +    = − + = − +   (v 1 và v 2 chỉ cần xác định dấu) Với t* = t 1 + nT + 2 T Qng đường đi được trong thời gian nT là S 1 = 4nA, trong thời gian ∆t là S 2 . Qng đường tổng cộng là S = S 1 + S 2 Lưu ý: + Nếu v 1 và v 2 cùng dấu thì S 2 = 2 1 x x− + Nếu v 1 và v 2 trái dấu thì vẽ sơ đồ trục Ox để tìm S 2 . + Nếu ∆t = T/4, vật xuất phát từ vị trí biên hoặc VTCB thì S 2 = A + Có thể tìm S 2 bằng cách sử dụng mối liên hệ giữa dao động điều hồ và chuyển động tròn đều sẽ đơn giản hơn. + Tốc độ trung bình của vật đi từ thời điểm t 1 đến t 2 : 2 1 tb S v t t = − với S là qng đường tính như trên. 13. Bài tốn tính qng đường lớn nhất và nhỏ nhất vật đi được trong khoảng thời gian 0 < ∆t < T/2. Vật có vận tốc lớn nhất khi qua VTCB, nhỏ nhất khi qua vị trí biên nên trong cùng một khoảng thời gian qng đường đi được càng lớn khi vật ở càng gần VTCB và càng nhỏ khi càng gần vị trí biên. Sử dụng mối liên hệ giữa dao động điều hồ và chuyển đường tròn đều. Góc qt ∆ϕ = ω∆t. Qng đường lớn nhất khi vật đi từ M 1 đến M 2 đối xứng qua trục sin (hình 1) ax 2Asin 2 M S ϕ ∆ = Qng đường nhỏ nhất khi vật đi từ M 1 đến M 2 đối xứng qua trục cos (hình 2) 2 (1 os ) 2 Min S A c ϕ ∆ = − Lưu ý: + Trong trường hợp ∆t > T/2 Tách ' 2 T t n t∆ = + ∆ trong đó * ;0 ' 2 T n N t∈ < ∆ < Trong thời gian 2 T n qng đường ln là 2nA Trong thời gian ∆t’ thì qng đường lớn nhất, nhỏ nhất tính như trên. + Tốc độ trung bình lớn nhất và nhỏ nhất của trong khoảng thời gian ∆t: ax ax M tbM S v t = ∆ và Min tbMin S v t = ∆ với S Max ; S Min tính như trên. 13. Các bước lập phương trình dao động dao động điều hồ: * Tính ω * Tính A * Tính ϕ dựa vào điều kiện đầu: lúc t = t 0 (thường t 0 = 0) 0 0 Acos( ) sin( ) x t v A t ω ϕ ϕ ω ω ϕ = +  ⇒  = − +  Lưu ý: + Vật chuyển động theo chiều dương thì v > 0, ngược lại v < 0 + Trước khi tính ϕ cần xác định rõ ϕ thuộc góc phần tư thứ mấy của đường tròn lượng giác (thường lấy -π < ϕ ≤ π) 14. Các bước giải bài tốn tính thời điểm vật đi qua vị trí đã biết x (hoặc v, a, W t , W đ , F) lần thứ n * Giải phương trình lượng giác lấy các nghiệm của t (Với t > 0 ⇒ phạm vi giá trị của k ) * Liệt kê n nghiệm đầu tiên (thường n nhỏ) * Thời điểm thứ n chính là giá trị lớn thứ n Lưu ý:+ Đề ra thường cho giá trị n nhỏ, còn nếu n lớn thì tìm quy luật để suy ra nghiệm thứ n Giáo viên: Đặng Thanh Phú 3 A -A M M 1 2 O P x x O 2 1 M M -A A P 2 1 P P 2 ϕ ∆ 2 ϕ ∆ ∆ϕ ∆ϕ -A A x 1 x 1 O M 2 M 1 M’ 2 M’ 1 4 Công thức giải nhanh vật lí 12 nâng cao + Có thể giải bài tốn bằng cách sử dụng mối liên hệ giữa dao động điều hồ và chuyển động tròn đều 15. Các bước giải bài tốn tìm số lần vật đi qua vị trí đã biết x (hoặc v, a, W t , W đ , F) từ thời điểm t 1 đến t 2 . * Giải phương trình lượng giác được các nghiệm * Từ t 1 < t ≤ t 2 ⇒ Phạm vi giá trị của (Với k ∈ Z) * Tổng số giá trị của k chính là số lần vật đi qua vị trí đó. Lưu ý: + Có thể giải bài tốn bằng cách sử dụng mối liên hệ giữa dao động điều hồ và chuyển động tròn đều. + Trong mỗi chu kỳ (mỗi dao động) vật qua mỗi vị trí biên 1 lần còn các vị trí khác 2 lần. 16. Các bước giải bài tốn tìm li độ, vận tốc dao động sau (trước) thời điểm t một khoảng thời gian ∆t. Biết tại thời điểm t vật có li độ x = x 0 . * Từ phương trình dao động điều hồ: x = Acos(ωt + ϕ) cho x = x 0 Lấy nghiệm ωt + ϕ = α với 0 α π ≤ ≤ ứng với x đang giảm (vật chuyển động theo chiều âm vì v < 0) hoặc ωt + ϕ = - α ứng với x đang tăng (vật chuyển động theo chiều dương) * Li độ và vận tốc dao động sau (trước) thời điểm đó ∆t giây là x Acos( ) Asin( ) t v t ω α ω ω α = ± ∆ +   = − ± ∆ +  hoặc x Acos( ) Asin( ) t v t ω α ω ω α = ± ∆ −   = − ± ∆ −  17. Dao động có phương trình đặc biệt: * x = a ± Acos(ωt + ϕ) với a = const Biên độ là A, tần số góc là ω, pha ban đầu ϕ x là toạ độ, x 0 = Acos(ωt + ϕ) là li độ. Toạ độ vị trí cân bằng x = a, toạ độ vị trí biên x = a ± A Vận tốc v = x’ = x 0 ’, gia tốc a = v’ = x” = x 0 ” Hệ thức độc lập: a = -ω 2 x 0 2 2 2 0 ( ) v A x ω = + * x = a ± Acos 2 (ωt + ϕ) (ta hạ bậc) Biên độ A/2; tần số góc 2ω, pha ban đầu 2ϕ. II. CON LẮC LỊ XO 1. Tần số góc: k m ω = ; chu kỳ: 2 2 m T k π π ω = = ; tần số: 1 1 2 2 k f T m ω π π = = = Điều kiện dao động điều hồ: Bỏ qua ma sát, lực cản và vật dao động trong giới hạn đàn hồi 2. Cơ năng: 2 2 2 1 1 W 2 2 m A kA ω = = 3. * Độ biến dạng của lò xo thẳng đứng khi vật ở VTCB: mg l k ∆ = ⇒ 2 l T g π ∆ = * Độ biến dạng của lò xo khi vật ở VTCB với con lắc lò xo nằm trên mặt phẳng nghiêng có góc nghiêng α: sinmg l k α ∆ = ⇒ 2 sin l T g π α ∆ = + Chiều dài lò xo tại VTCB: l CB = l 0 + ∆ l (l 0 là chiều dài tự nhiên) + Chiều dài cực tiểu (khi vật ở vị trí cao nhất): l Min = l 0 + ∆ l – A + Chiều dài cực đại (khi vật ở vị trí thấp nhất): l Max = l 0 + ∆ l + A ⇒ l CB = (l Min + l Max )/2 + Khi A >∆l (Với Ox hướng xuống): - Thời gian lò xo nén 1 lần là thời gian ngắn nhất để vật đi từ vị trí x 1 = - ∆ l đến x 2 = -A. - Thời gian lò xo giãn 1 lần là thời gian ngắn nhất để vật đi từ vị trí x 1 = - ∆ l đến x 2 = A, Lưu ý: Trong một dao động (một chu kỳ) lò xo nén 2 lần và giãn 2 lần 4. Lực kéo về hay lực hồi phục F = -kx = -mω 2 x Đặc điểm: * Là lực gây dao động cho vật. * Ln hướng về VTCB * Biến thiên điều hồ cùng tần số với li độ 5. Lực đàn hồi là lực đưa vật về vị trí lò xo khơng biến dạng. Có độ lớn F đh = kx * (x * là độ biến dạng của lò xo) * Với con lắc lò xo nằm ngang thì lực kéo về và lực đàn hồi là một (vì tại VTCB lò xo khơng biến dạng) * Với con lắc lò xo thẳng đứng hoặc đặt trên mặt phẳng nghiêng + Độ lớn lực đàn hồi có biểu thức: * F đh = k|∆l + x| với chiều dương hướng xuống Giáo viên: Đặng Thanh Phú 4 ∆l giãn O x A -A nén ∆l giãn O x A -A Hình a (A < ∆l) Hình b (A > ∆l) x A -A −∆ l Nén 0 Giãn Hình vẽ thể hiện thời gian lò xo nén và giãn trong 1 chu kỳ (Ox hướng xuống) 5 Công thức giải nhanh vật lí 12 nâng cao * F đh = k|∆l - x| với chiều dương hướng lên + Lực đàn hồi cực đại (lực kéo): F Max = k(∆l + A) = F Kmax (lúc vật ở vị trí thấp nhất) + Lực đàn hồi cực tiểu: * Nếu A < ∆l ⇒ F Min = k(∆l - A) = F KMin * Nếu A ≥ ∆l ⇒ F Min = 0 (lúc vật đi qua vị trí lò xo khơng biến dạng) Lực đẩy (lực nén) đàn hồi cực đại: F Nmax = k(A - ∆l) (lúc vật ở vị trí cao nhất) 6. Một lò xo có độ cứng k, chiều dài l được cắt thành các lò xo có độ cứng k 1 , k 2 , … và chiều dài tương ứng là l 1 , l 2 , … thì có: kl = k 1 l 1 = k 2 l 2 = … 7. Ghép lò xo: * Nối tiếp 1 2 1 1 1 k k k = + + ⇒ cùng treo một vật khối lượng như nhau thì: T 2 = T 1 2 + T 2 2 * Song song: k = k 1 + k 2 + … ⇒ cùng treo một vật khối lượng như nhau thì: 2 2 2 1 2 1 1 1 T T T = + + 8. Gắn lò xo k vào vật khối lượng m 1 được chu kỳ T 1 , vào vật khối lượng m 2 được T 2 , vào vật khối lượng m 1 +m 2 được chu kỳ T 3 , vào vật khối lượng m 1 – m 2 (m 1 > m 2 ) được chu kỳ T 4 . Thì ta có: 2 2 2 3 1 2 T T T= + và 2 2 2 4 1 2 T T T= − 9. Đo chu kỳ bằng phương pháp trùng phùng Để xác định chu kỳ T của một con lắc lò xo (con lắc đơn) người ta so sánh với chu kỳ T 0 (đã biết) của một con lắc khác (T ≈ T 0 ). Hai con lắc gọi là trùng phùng khi chúng đồng thời đi qua một vị trí xác định theo cùng một chiều. Thời gian giữa hai lần trùng phùng 0 0 TT T T θ = − Nếu T > T 0 ⇒ θ = (n+1)T = nT 0 . Nếu T < T 0 ⇒ θ = nT = (n+1)T 0 . với n ∈ N* III. CON LẮC ĐƠN 1. Tần số góc: g l ω = ; chu kỳ: 2 2 l T g π π ω = = ; tần số: 1 1 2 2 g f T l ω π π = = = Điều kiện dao động điều hồ: Bỏ qua ma sát, lực cản và α 0 << 1 rad hay S 0 << l 2. Lực hồi phục 2 sin s F mg mg mg m s l α α ω = − = − = − = − Lưu ý: + Với con lắc đơn lực hồi phục tỉ lệ thuận với khối lượng. + Với con lắc lò xo lực hồi phục khơng phụ thuộc vào khối lượng. 3. Phương trình dao động: s = S 0 cos(ωt + ϕ) hoặc α = α 0 cos(ωt + ϕ) với s = αl, S 0 = α 0 l ⇒ v = s’ = -ωS 0 sin(ωt + ϕ) = -ωlα 0 sin(ωt + ϕ) ⇒ a = v’ = -ω 2 S 0 cos(ωt + ϕ) = -ω 2 lα 0 cos(ωt + ϕ) = -ω 2 s = -ω 2 αl Lưu ý: S 0 đóng vai trò như A còn s đóng vai trò như x 4. Hệ thức độc lập: * a = -ω 2 s = -ω 2 αl * 2 2 2 0 ( ) v S s ω = + * 2 2 2 0 v gl α α = + 5. Cơ năng: 2 2 2 2 2 2 2 0 0 0 0 1 1 1 1 W 2 2 2 2 ω α ω α = = = = mg m S S mgl m l l 6. Tại cùng một nơi con lắc đơn chiều dài l 1 có chu kỳ T 1 , con lắc đơn chiều dài l 2 có chu kỳ T 2 , con lắc đơn chiều dài l 1 + l 2 có chu kỳ T 2 ,con lắc đơn chiều dài l 1 - l 2 (l 1 >l 2 ) có chu kỳ T 4 . Thì ta có: 2 2 2 3 1 2 T T T= + và 2 2 2 4 1 2 T T T= − 7. Khi con lắc đơn dao động với α 0 bất kỳ. Cơ năng, vận tốc và lực căng của sợi dây con lắc đơn W = mgl(1-cosα 0 ); v 2 = 2gl(cosα – cosα 0 ) và T C = mg(3cosα – 2cosα 0 ) Lưu ý: - Các cơng thức này áp dụng đúng cho cả khi α 0 có giá trị lớn - Khi con lắc đơn dao động điều hồ (α 0 << 1rad) thì: 2 2 2 2 0 0 1 W= ; ( ) 2 mgl v gl α α α = − (đã có ở trên) 2 2 0 (1 1,5 ) C T mg α α = − + 8. Con lắc trùng phùng Chu kì dao động của hai con lắc là T 1 và T 2 ( T 1 < T 2 ). Gọi ∆t là khoảng thời gian giữa hai lần trùng phùng liên tiếp. Giả sử khi xãy ra trùng phùng thì con lắc T 2 thực hiện n dao động khi đó con lắc T 1 thực hiện được (n + 1) dao động. Vậy ∆t = n T 2 = (n + 1)T 1 Suy ra n = 1 2 1 T T T− từ đó tính được ∆t = n T 2 9. Con lắc đơn có chu kỳ đúng T ở độ cao h 1 , nhiệt độ t 1 . Khi đưa tới độ cao h 2 , nhiệt độ t 2 thì ta có: 2 T h t T R λ ∆ ∆ ∆ = + Với R = 6400km là bán kính Trái Đât, còn λ là hệ số nở dài của thanh con lắc. 10. Con lắc đơn có chu kỳ đúng T ở độ sâu d 1 , nhiệt độ t 1 . Khi đưa tới độ sâu d 2 , nhiệt độ t 2 thì ta có: Giáo viên: Đặng Thanh Phú 5 6 Công thức giải nhanh vật lí 12 nâng cao 2 2 T d t T R λ ∆ ∆ ∆ = + Lưu ý: * Nếu ∆T > 0 thì đồng hồ chạy chậm (đồng hồ đếm giây sử dụng con lắc đơn) * Nếu ∆T < 0 thì đồng hồ chạy nhanh * Nếu ∆T = 0 thì đồng hồ chạy đúng * Thời gian chạy sai mỗi ngày (24h = 86400s): 86400( ) T s T ∆ θ = 11. Khi con lắc đơn chịu thêm tác dụng của lực phụ khơng đổi: Lực phụ khơng đổi thường là: * Lực qn tính: F ma= − ur r , độ lớn F = ma ( F a↑↓ ur r ) Lưu ý: + Chuyển động nhanh dần đều a v↑↑ r r ( v r có hướng chuyển động) + Chuyển động chậm dần đều a v↑↓ r r * Lực điện trường: F qE= ur ur , độ lớn F = |q|E (Nếu q > 0 ⇒ F E↑↑ ur ur ; còn nếu q < 0 ⇒ F E↑↓ ur ur ) * Lực đẩy Ácsimét: F = DgV ( F ur lng thẳng đứng hướng lên) Trong đó: D là khối lượng riêng của chất lỏng hay chất khí. g là gia tốc rơi tự do. V là thể tích của phần vật chìm trong chất lỏng hay chất khí đó. Khi đó: 'P P F= + uur ur ur gọi là trọng lực hiệu dụng hay trong lực biểu kiến (có vai trò như trọng lực P ur ) ' F g g m = + ur uur ur gọi là gia tốc trọng trường hiệu dụng hay gia tốc trọng trường biểu kiến. Chu kỳ dao động của con lắc đơn khi đó: ' 2 ' l T g π = Các trường hợp đặc biệt: * F ur có phương ngang: + Tại VTCB dây treo lệch với phương thẳng đứng một góc có: tan F P α = + 2 2 ' ( ) F g g m = + * F ur có phương thẳng đứng thì ' F g g m = ± + Nếu F ur hướng xuống thì ' F g g m = + + Nếu F ur hướng lên thì ' F g g m = − IV. CON LẮC VẬT LÝ 1. Tần số góc: mgd I ω = ; chu kỳ: 2 I T mgd π = ; tần số 1 2 mgd f I π = Trong đó: m (kg) là khối lượng vật rắn d (m) là khoảng cách từ trọng tâm đến trục quay I (kgm 2 ) là mơmen qn tính của vật rắn đối với trục quay 2. Phương trình dao động α = α 0 cos(ωt + ϕ) Điều kiện dao động điều hồ: Bỏ qua ma sát, lực cản và α 0 << 1rad V. TỔNG HỢP DAO ĐỘNG 1. Tổng hợp hai dao động điều hồ cùng phương cùng tần số x 1 = A 1 cos(ωt + ϕ 1 ) và x 2 = A 2 cos(ωt + ϕ 2 ) được một dao động điều hồ cùng phương cùng tần số x = Acos(ωt + ϕ). Trong đó: 2 2 2 1 2 1 2 2 1 2 os( )A A A A A c ϕ ϕ = + + − 1 1 2 2 1 1 2 2 sin sin tan os os A A A c A c ϕ ϕ ϕ ϕ ϕ + = + với ϕ 1 ≤ ϕ ≤ ϕ 2 (nếu ϕ 1 ≤ ϕ 2 ) * Nếu ∆ϕ = 2kπ (x 1 , x 2 cùng pha) ⇒ A Max = A 1 + A 2 ` * Nếu ∆ϕ = (2k+1)π (x 1 , x 2 ngược pha) ⇒ A Min = |A 1 - A 2 | ⇒ |A 1 - A 2 | ≤ A ≤ A 1 + A 2 2. Khi biết một dao động thành phần x 1 = A 1 cos(ωt + ϕ 1 ) và dao động tổng hợp x = Acos(ωt + ϕ) thì dao động thành phần còn lại là x 2 = A 2 cos(ωt + ϕ 2 ). Trong đó: 2 2 2 2 1 1 1 2 os( )A A A AAc ϕ ϕ = + − − 1 1 2 1 1 sin sin tan os os A A Ac A c ϕ ϕ ϕ ϕ ϕ − = − với ϕ 1 ≤ ϕ ≤ ϕ 2 ( nếu ϕ 1 ≤ ϕ 2 ) 3. Nếu một vật tham gia đồng thời nhiều dao động điều hồ cùng phương cùng tần số x 1 = A 1 cos(ωt + ϕ 1 ; x 2 = A 2 cos(ωt + ϕ 2 ) … thì dao động tổng hợp cũng là dao động điều hồ cùng phương cùng tần số x = Acos(ωt + ϕ). Chiếu lên trục Ox và trục Oy ⊥ Ox . Ta được: 1 1 2 2 os os os x A Ac A c A c ϕ ϕ ϕ = = + + 1 1 2 2 sin sin sin y A A A A ϕ ϕ ϕ = = + + Giáo viên: Đặng Thanh Phú 6 7 Công thức giải nhanh vật lí 12 nâng cao 2 2 x y A A A⇒ = + và tan y x A A ϕ = với ϕ ∈[ϕ Min ;ϕ Max ] VI. DAO ĐỘNG TẮT DẦN – DAO ĐỘNG CƯỠNG BỨC - CỘNG HƯỞNG 1. Một con lắc lò xo dao động tắt dần với biên độ A, hệ số ma sát µ. * Qng đường vật đi được đến lúc dừng lại là: 2 2 2 2 2 kA A S mg g ω µ µ = = * Độ giảm biên độ sau mỗi chu kỳ là: 2 4 4mg g A k µ µ ω ∆ = = * Số dao động thực hiện được: 2 4 4 A Ak A N A mg g ω µ µ = = = ∆ * Thời gian vật dao động đến lúc dừng lại: . 4 2 AkT A t N T mg g πω µ µ ∆ = = = (Nếu coi dao động tắt dần có tính tuần hồn với chu kỳ 2 T π ω = ) 3. Hiện tượng cộng hưởng xảy ra khi: f = f 0 hay ω = ω 0 hay T = T 0 Với f, ω, T và f 0 , ω 0 , T 0 là tần số, tần số góc, chu kỳ của lực cưỡng bức và của hệ dao động. CHƯƠNG III: SĨNG CƠ I. SĨNG CƠ HỌC 1. Bước sóng: λ = vT = v/f Trong đó: λ: Bước sóng; T (s): Chu kỳ của sóng; f (Hz): Tần số của sóng v: Tốc độ truyền sóng (có đơn vị tương ứng với đơn vị của λ) 2. Phương trình sóng Tại điểm O: u O = Acos(ωt + ϕ) Tại điểm M cách O một đoạn x trên phương truyền sóng. * Sóng truyền theo chiều dương của trục Ox thì u M = A M cos(ωt + ϕ - x v ω ) = A M cos(ωt + ϕ - 2 x π λ ) * Sóng truyền theo chiều âm của trục Ox thì u M = A M cos(ωt + ϕ + x v ω ) = A M cos(ωt + ϕ + 2 x π λ ) 3. Độ lệch pha giữa hai điểm cách nguồn một khoảng x 1 , x 2 1 2 1 2 2 x x x x v ϕ ω π λ − − ∆ = = Nếu 2 điểm đó nằm trên một phương truyền sóng và cách nhau một khoảng x thì: 2 x x v ϕ ω π λ ∆ = = Lưu ý: Đơn vị của x, x 1 , x 2 , λ và v phải tương ứng với nhau 4. Trong hiện tượng truyền sóng trên sợi dây, dây được kích thích dao động bởi nam châm điện với tần số dòng điện là f thì tần số dao động của dây là 2f. II. SĨNG DỪNG 1. Một số chú ý * Đầu cố định hoặc đầu dao động nhỏ là nút sóng. * Đầu tự do là bụng sóng * Hai điểm đối xứng với nhau qua nút sóng ln dao động ngược pha. * Hai điểm đối xứng với nhau qua bụng sóng ln dao động cùng pha. * Các điểm trên dây đều dao động với biên độ khơng đổi ⇒ năng lượng khơng truyền đi * Khoảng thời gian giữa hai lần sợi dây căng ngang (các phần tử đi qua VTCB) là nửa chu kỳ. 2. Điều kiện để có sóng dừng trên sợi dây dài l: * Hai đầu là nút sóng: * ( ) 2 l k k N λ = ∈ Số bụng sóng = số bó sóng = k Số nút sóng = k + 1 * Một đầu là nút sóng còn một đầu là bụng sóng: (2 1) ( ) 4 l k k N λ = + ∈ Số bó sóng ngun = k Số bụng sóng = số nút sóng = k + 1 3. Phương trình sóng dừng trên sợi dây CB (với đầu C cố định hoặc dao động nhỏ là nút sóng) * Đầu B cố định (nút sóng): Phương trình sóng tới và sóng phản xạ tại B: os2 B u Ac ft π = và ' os2 os(2 ) B u Ac ft Ac ft π π π = − = − Phương trình sóng tới và sóng phản xạ tại M cách B một khoảng d là: os(2 2 ) M d u Ac ft π π λ = + và ' os(2 2 ) M d u Ac ft π π π λ = − − Giáo viên: Đặng Thanh Phú 7 O x M x T ∆Α x t O 8 Công thức giải nhanh vật lí 12 nâng cao Phương trình sóng dừng tại M: ' M M M u u u= + 2 os(2 ) os(2 ) 2 sin(2 ) os(2 ) 2 2 2 M d d u Ac c ft A c ft π π π π π π π λ λ = + − = + Biên độ dao động của phần tử tại M: 2 os(2 ) 2 sin(2 ) 2 M d d A A c A π π π λ λ = + = * Đầu B tự do (bụng sóng): Phương trình sóng tới và sóng phản xạ tại B: ' os2 B B u u Ac ft π = = Phương trình sóng tới và sóng phản xạ tại M cách B một khoảng d là: os(2 2 ) M d u Ac ft π π λ = + và ' os(2 2 ) M d u Ac ft π π λ = − Phương trình sóng dừng tại M: ' M M M u u u= + 2 os(2 ) os(2 ) M d u Ac c ft π π λ = Biên độ dao động của phần tử tại M: 2 cos(2 ) M d A A π λ = Lưu ý: * Với x là khoảng cách từ M đến đầu nút sóng thì biên độ: 2 sin(2 ) M x A A π λ = * Với x là khoảng cách từ M đến đầu bụng sóng thì biên độ: 2 cos(2 ) M d A A π λ = III. GIAO THOA SĨNG Giao thoa của hai sóng phát ra từ hai nguồn sóng kết hợp S 1 , S 2 cách nhau một khoảng l: Xét điểm M cách hai nguồn lần lượt d 1 , d 2 Phương trình sóng tại 2 nguồn 1 1 Acos(2 )u ft π ϕ = + và 2 2 Acos(2 )u ft π ϕ = + Phương trình sóng tại M do hai sóng từ hai nguồn truyền tới: 1 1 1 Acos(2 2 ) M d u ft π π ϕ λ = − + và 2 2 2 Acos(2 2 ) M d u ft π π ϕ λ = − + Phương trình giao thoa sóng tại M: u M = u 1M + u 2M 1 2 1 2 1 2 2 os os 2 2 2 M d d d d u Ac c ft ϕ ϕϕ π π π λ λ − + +∆     = + − +         Biên độ dao động tại M: 1 2 2 os 2 M d d A A c ϕ π λ − ∆   = +  ÷   với 1 2 ϕ ϕ ϕ ∆ = − Chú ý: * Số cực đại: (k Z) 2 2 l l k ϕ ϕ λ π λ π ∆ ∆ − + < < + + ∈ * Số cực tiểu: 1 1 (k Z) 2 2 2 2 l l k ϕ ϕ λ π λ π ∆ ∆ − − + < < + − + ∈ 1. Hai nguồn dao động cùng pha ( 1 2 0 ϕ ϕ ϕ ∆ = − = ) * Điểm dao động cực đại: d 1 – d 2 = kλ (k∈Z) Số đường hoặc số điểm (khơng tính hai nguồn): l l k λ λ − < < * Điểm dao động cực tiểu (khơng dao động): d 1 – d 2 = (2k+1) 2 λ (k∈Z) Số đường hoặc số điểm (khơng tính hai nguồn): 1 1 2 2 l l k λ λ − − < < − 2. Hai nguồn dao động ngược pha:( 1 2 ϕ ϕ ϕ π ∆ = − = ) * Điểm dao động cực đại: d 1 – d 2 = (2k+1) 2 λ (k∈Z) Số đường hoặc số điểm (khơng tính hai nguồn): 1 1 2 2 l l k λ λ − − < < − * Điểm dao động cực tiểu (khơng dao động): d 1 – d 2 = kλ (k∈Z) Số đường hoặc số điểm (khơng tính hai nguồn): l l k λ λ − < < Chú ý: Với bài tốn tìm số đường dao động cực đại và khơng dao động giữa hai điểm M, N cách hai nguồn lần lượt là d 1M , d 2M , d 1N , d 2N . Đặt ∆d M = d 1M - d 2M ; ∆d N = d 1N - d 2N và giả sử ∆d M < ∆d N . + Hai nguồn dao động cùng pha: • Cực đại: ∆d M < kλ < ∆d N • Cực tiểu: ∆d M < (k+0,5)λ < ∆d N + Hai nguồn dao động ngược pha: • Cực đại:∆d M < (k+0,5)λ < ∆d N • Cực tiểu: ∆d M < kλ < ∆d N Số giá trị ngun của k thoả mãn các biểu thức trên là số đường cần tìm. IV. SĨNG ÂM 1. Cường độ âm: W P I= = tS S Với W (J), P (W) là năng lượng, cơng suất phát âm của nguồn S (m 2 ) là diện tích mặt vng góc với phương truyền âm (với sóng cầu thì S là diện tích mặt cầu S=4πR 2 ) 2. Mức cường độ âm 0 ( ) lg I L B I = Hoặc 0 ( ) 10.lg I L dB I = Với I 0 = 10 -12 W/m 2 ở f = 1000Hz: cường độ âm chuẩn. 3. * Tần số do đàn phát ra (hai đầu dây cố định ⇒ hai đầu là nút sóng) Giáo viên: Đặng Thanh Phú 8 9 Coõng thửực giaỷi nhanh vaọt lớ 12 naõng cao ( k N*) 2 v f k l = ng vi k = 1 õm phỏt ra õm c bn cú tn s 1 2 v f l = k = 2,3,4 cú cỏc ho õm bc 2 (tn s 2f 1 ), bc 3 (tn s 3f 1 ) * Tn s do ng sỏo phỏt ra (mt u bt kớn, mt u h mt u l nỳt súng, mt u l bng súng) (2 1) ( k N) 4 v f k l = + ng vi k = 0 õm phỏt ra õm c bn cú tn s 1 4 v f l = k = 1,2,3 cú cỏc ho õm bc 3 (tn s 3f 1 ), bc 5 (tn s 5f 1 ) V. HIU NG P-PLE 1. Ngun õm ng yờn, mỏy thu chuyn ng vi vn tc v M . * Mỏy thu chuyn ng li gn ngun õm thỡ thu c õm cú tn s: ' M v v f f v + = * Mỏy thu chuyn ng ra xa ngun õm thỡ thu c õm cú tn s: " M v v f f v = 2. Ngun õm chuyn ng vi vn tc v S , mỏy thu ng yờn. * Mỏy thu chuyn ng li gn ngun õm vi vn tc v M thỡ thu c õm cú tn s: ' S v f f v v = * Mỏy thu chuyn ng ra xa ngun õm thỡ thu c õm cú tn s: " S v f f v v = + Vi v l vn tc truyn õm, f l tn s ca õm. Chỳ ý: Cú th dựng cụng thc tng quỏt: ' M S v v f f v v = m Mỏy thu chuyn ng li gn ngun thỡ ly du + trc v M , ra xa thỡ ly du -. Ngun phỏt chuyn ng li gn ngun thỡ ly du - trc v S , ra xa thỡ ly du +. CHNG IV: DAO NG V SểNG IN T 1. Dao ng in t * in tớch tc thi q = q 0 cos(t + ) * Hiu in th (in ỏp) tc thi 0 0 os( ) os( ) q q u c t U c t C C = = + = + * Dũng in tc thi i = q = -q 0 sin(t + ) = I 0 cos(t + + 2 ) * Cm ng t: 0 os( ) 2 B B c t = + + Trong ú: 1 LC = l tn s gúc riờng 2T LC = l chu k riờng 1 2 f LC = l tn s riờng 0 0 0 q I q LC = = 0 0 0 0 0 q I L U LI I C C C = = = = * Nng lng in trng: 2 2 1 1 W 2 2 2 q Cu qu C = = = 2 2 0 W os ( ) 2 q c t C = + * Nng lng t trng: 2 2 2 0 1 W sin ( ) 2 2 t q Li t C = = + * Nng lng in t: W=W W t + 2 2 2 0 0 0 0 0 1 1 1 W 2 2 2 2 q CU q U LI C = = = = Chỳ ý: + Mch dao ng cú tn s gúc , tn s f v chu k T thỡ W v W t bin thiờn vi tn s gúc 2, tn s 2f v chu k T/2 + Mch dao ng cú in tr thun R 0 thỡ dao ng s tt dn. duy trỡ dao ng cn cung cp cho mch mt nng lng cú cụng sut: 2 2 2 2 2 0 0 2 2 C U U RC I R R L = = = P + Khi t phúng in thỡ q v u gim v ngc li Giỏo viờn: ng Thanh Phỳ 9 10 Công thức giải nhanh vật lí 12 nâng cao + Quy ước: q > 0 ứng với bản tụ ta xét tích điện dương thì i > 0 ứng với dòng điện chạy đến bản tụ mà ta xét. 2. Sự tương tự giữa dao động điện và dao động cơ Đại lượng cơ Đại lượng điện Dao động cơ Dao động điện x q x” + ω 2 x = 0 q” + ω 2 q = 0 v i k m ω = 1 LC ω = m L x = Acos(ωt + ϕ) q = q 0 cos(ωt + ϕ) k 1 C v = x’ = -ωAsin(ωt + ϕ) i = q’ = -ωq 0 sin(ωt + ϕ) F u 2 2 2 ( ) v A x ω = + 2 2 2 0 ( ) i q q ω = + µ R W=W đ + W t W=W đ + W t W đ W t (W C ) W đ = 1 2 mv 2 W t = 1 2 Li 2 W t W đ (W L ) W t = 1 2 kx 2 W đ = 2 2 q C 3. Sóng điện từ Vận tốc lan truyền trong khơng gian v = c = 3.10 8 m/s Máy phát hoặc máy thu sóng điện từ sử dụng mạch dao động LC thì tần số sóng điện từ phát hoặc thu được bằng tần số riêng của mạch. Bước sóng của sóng điện từ 2 v v LC f λ π = = Lưu ý: Mạch dao động có L biến đổi từ L Min → L Max và C biến đổi từ C Min → C Max thì bước sóng λ của sóng điện từ phát (hoặc thu) λ Min tương ứng với L Min và C Min λ Max tương ứng với L Max và C Max CHƯƠNG V: ĐIỆN XOAY CHIỀU 1. Biểu thức điện áp tức thời và dòng điện tức thời: u = U 0 cos(ωt + ϕ u ) và i = I 0 cos(ωt + ϕ i ) Với ϕ = ϕ u – ϕ i là độ lệch pha của u so với i, có 2 2 π π ϕ − ≤ ≤ 2. Dòng điện xoay chiều i = I 0 cos(2πft + ϕ i ) * Mỗi giây đổi chiều 2f lần * Nếu pha ban đầu ϕ i = 2 π − hoặc ϕ i = 2 π thì chỉ giây đầu tiên đổi chiều 2f-1 lần. 3. Cơng thức tính thời gian đèn huỳnh quang sáng trong một chu kỳ Khi đặt điện áp u = U 0 cos(ωt + ϕ u ) vào hai đầu bóng đèn, biết đèn chỉ sáng lên khi u ≥ U 1 . 4 t ϕ ω ∆ ∆ = Với 1 0 os U c U ϕ ∆ = , (0 < ∆ϕ < π/2) 4. Dòng điện xoay chiều trong đoạn mạch R,L,C * Đoạn mạch chỉ có điện trở thuần R: u R cùng pha với i, (ϕ = ϕ u – ϕ i = 0) U I R = và 0 0 U I R = Lưu ý: Điện trở R cho dòng điện khơng đổi đi qua và có U I R = * Đoạn mạch chỉ có cuộn thuần cảm L: u L nhanh pha hơn i là π/2, (ϕ = ϕ u – ϕ i = π/2) L U I Z = và 0 0 L U I Z = với Z L = ωL là cảm kháng Lưu ý: Cuộn thuần cảm L cho dòng điện khơng đổi đi qua hồn tồn (khơng cản trở). * Đoạn mạch chỉ có tụ điện C: u C chậm pha hơn i là π/2, (ϕ = ϕ u – ϕ i = -π/2) C U I Z = và 0 0 C U I Z = với 1 C Z C ω = là dung kháng Lưu ý: Tụ điện C khơng cho dòng điện khơng đổi đi qua (cản trở hồn tồn). * Đoạn mạch RLC khơng phân nhánh 2 2 2 2 2 2 0 0 0 0 ( ) ( ) ( ) L C R L C R L C Z R Z Z U U U U U U U U= + − ⇒ = + − ⇒ = + − tan ;sin ; os L C L C Z Z Z Z R c R Z Z ϕ ϕ ϕ − − = = = với 2 2 π π ϕ − ≤ ≤ Giáo viên: Đặng Thanh Phú 10 U u O M'2 M2 M'1 M1 -U U 0 0 1 -U 1 Sáng Sáng Tắt Tắt [...]... 15 15 Công thức giải nhanh vật lí 12 nâng cao - Dãy Pasen: Nằm trong vùng hồng ngoại Ứng với e chuyển từ quỹ đạo bên ngồi về quỹ đạo M Lưu ý: Vạch dài nhất λNM khi e chuyển từ N → M Vạch ngắn nhất λ∞M khi e chuyển từ ∞ → M Mối liên hệ giữa các bước sóng và tần số của các vạch quang phổ của ngun từ hiđrơ: 1 1 1 = + λ13 12 λ23 và f13 = f12 +f23 (như cộng véctơ) Giáo viên: Đặng Thanh Phú 16 16 Công thức... R2 (giả sử ϕ1 > ϕ2) tan ϕ1 − tan ϕ 2 = tan ∆ϕ 1 + tan ϕ1 tan ϕ2 Trường hợp đặc biệt ∆ϕ = π/2 (vng pha nhau) thì tanϕ1tanϕ2 = -1 VD: * Mạch điện ở hình 1 có uAB và uAM lệch pha nhau ∆ϕ 12 12 Công thức giải nhanh vật lí 12 nâng cao Ở đây 2 đoạn mạch AB và AM có cùng i và uAB chậm pha hơn uAM ⇒ ϕAM – ϕAB = ∆ϕ ⇒ A L M C * Hiệu đường đi của ánh sáng (hiệu quang trình) B D d = d 2 - d1 = tan ϕ AM − tan ϕ... 1 1 1 = + λ13 12 λ23 và f13 = f12 +f23 (như cộng véctơ) Giáo viên: Đặng Thanh Phú 16 16 Công thức giải nhanh vật lí 12 nâng cao CHƯƠNG IX VẬT LÝ HẠT NHÂN 1 Hiện tượng phóng xạ * Số ngun tử chất phóng xạ còn lại sau thời gian t - N = N 0 2 t T * Hệ thức Anhxtanh giữa khối lượng và năng lượng Vật có khối lượng m thì có năng lượng nghỉ E = m.c2 Với c = 3.108 m/s là vận tốc ánh sáng trong chân khơng *... giao thoa ánh sáng trắng (0,4 µm ≤ λ ≤ 0,76 µm) + Vân sáng: D [kλ − (k − 0,5)λt ] Khi vân sáng và vân tối nằm cùng phía đối với a 14 14 Công thức giải nhanh vật lí 12 nâng cao eU h = 2 mv0 Max 2 Þ H= Lưu ý: Trong một số bài tốn người ta lấy Uh > 0 thì đó là độ lớn * Xét vật cơ lập về điện, có điện thế cực đại VMax và khoảng cách cực đại dMax mà electron chuyển động trong điện trường cản có cường độ E được...  i2 = I 0cos(ωt − ) 3  2π  i3 = I 0 cos(ωt + 3 )  U gọi là hiện tượng cộng hưởng dòng điện R Suất điện động trong khung dây: e = ωNSBcos(ωt + ϕ - trường 11 U2 U2 = 2 Z L − ZC 2R 11 Công thức giải nhanh vật lí 12 nâng cao * R1 + R2 = Khi R=R1 R=R2 P thì có cùng giá trị Ta có * U ; R1 R2 = ( Z L − Z C ) 2 P Và P Max hoặc 2 khi R = R1 R2 R L,R0 A B * Khi U2 U2 = 2 Z L − Z C 2( R + R0 ) U 2 2 R02...Công thức giải nhanh vật lí 12 nâng cao + Khi ZL > ZC hay ω> + Khi ZL < ZC hay ω< + Khi ZL = ZC hay ω= Lúc đó I Max = 1 ⇒ ϕ > 0 thì u nhanh pha hơn i LC 1 ⇒ ϕ < 0 thì u chậm pha hơn i LC 1 ⇒ ϕ = 0 thì u cùng pha với... vân sẽ dịch chuyển về phía S1 (hoặc S2) một đoạn: x0 = (n - 1)eD a * Xác định số vân sáng, vân tối trong vùng giao thoa (trường giao thoa) có bề rộng L (đối xứng qua vân trung tâm) 13 13 Công thức giải nhanh vật lí 12 nâng cao éL ù NS = 2 ê ú 1 + ê iú 2 ë û éL ù + Số vân tối (là số chẵn): N t = 2 ê + 0,5ú ê ú 2 ëi û D [kλt − (k − 0,5)λđ ] a D ∆xMaxđ = [kλ + (k − 0,5)λt ] Khi vân sáng và vân tối nằm... * Năng lượng liên kết ∆E = ∆m.c2 = (m0-m)c2 * Số hạt ngun tử bị phân rã bằng số hạt nhân con được tạo thành và bằng số hạt (α hoặc e- hoặc e+) được tạo thành: t T A Z u r p φ uu r p2 17 Công thức giải nhanh vật lí 12 nâng cao ur u u r uu u r r Thực chất của phóng xạ β+ là một hạt prơtơn biến thành một hạt nơtrơn, một hạt Tương tự khi p1 ^ p hoặc p2 ^ p pơzitrơn và một hạt nơtrinơ: K1 v1 m2 A p ® n... tối liên tiếp: v c , truyền trong chân khơng l 0 = f f * Chiết suất của mơi trường trong suốt phụ thuộc vào màu sắc ánh sáng Đối với ánh sáng màu đỏ là nhỏ nhất, màu tím là lớn nhất * Ánh sáng trắng là tập hợp của vơ số ánh sáng đơn sắc có màu biến thiên liên tục từ đỏ đến tím Bước sóng của ánh sáng trắng: 0,4 µm ≤ λ ≤ 0,76 µm 2 Hiện tượng giao thoa ánh sáng (chỉ xét giao thoa ánh sáng trong thí nghiệm... 2 4R 2 + Z L − Z L 2 Lưu ý: L và C mắc liên tiếp nhau 1 * Khi L = 2 thì IMax ⇒ URmax; PMax còn ULCMin Lưu ý: L và C mắc liên tiếp ωC Khi và Lưu ý: R và C mắc liên tiếp nhau 14 Mạch RLC có ω thay đổi: 12 Đoạn mạch RLC có L thay đổi: * 2 U R2 + ZL R 1 1 1 1 C + C2 = ( + )⇒C = 1 Z C 2 Z C1 Z C2 2 Khi nhau U CMax = thì * Khi C = C1 hoặc C = C2 thì UC có cùng giá trị thì UCmax khi C * Trường hợp cuộn dây . của ngun từ hiđrơ: 13 12 23 1 1 1 λ λ λ = + và f 13 = f 12 +f 23 (như cộng véctơ) Giáo viên: Đặng Thanh Phú 16 17 Công thức giải nhanh vật lí 12 nâng cao CHƯƠNG IX. VẬT LÝ HẠT NHÂN 1. Hiện. 1 Công thức giải nhanh vật lí 12 nâng cao CHƯƠNG I: ĐỘNG LỰC HỌC VẬT RẮN 1. Toạ độ góc Là toạ độ xác định vị trí của một vật rắn quay quanh một trục cố định bởi. viên: Đặng Thanh Phú 1 2 Công thức giải nhanh vật lí 12 nâng cao dL M dt = 9. Định luật bảo tồn mơmen động lượng Trường hợp M = 0 thì L = const Nếu I = const ⇒ γ = 0 vật rắn khơng quay hoặc quay

Ngày đăng: 01/08/2014, 02:22

TỪ KHÓA LIÊN QUAN

w