SỞ GIÁO DỤC & ĐÀO TẠO THÁI NGUYÊN TRƯỜNG THPT LƯƠNG NGỌC QUYẾN ĐỀ THI THỬ ĐẠI HỌC LẦN THỨ I – NĂM 2011 MÔN TOÁN- KHỐI D (Thời gian làm bài 180 phút-không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I: (2 điểm) Cho hàm số : 2 1 x y x (C) a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C). b) Chứng minh rằng: với mọi giá trị của m, đường thẳng d : y x m luôn cắt đồ thị (C) tại hai điểm A,B phân biệt. Tìm giá trị nhỏ nhất của độ dài đoạn thẳng AB. Câu II: (2 điểm) a)Giải bất phương trình: 9 2 2 2 2 1 2 2 1 34.15 25 0 x x x x x x b)Tìm a để hệ phương trình sau có nghiệm : x+1 1 2 1 y a x y a Câu III: (2 điểm) a) Giải phương trình: 2 2 1 8 1 2cos cos ( ) sin 2 3cos( ) sin 3 3 2 3 x x x x x b) Tính : 1 3 1 0 x e dx Câu IV: (1 điểm) Trong không gian với hệ toạ độ Oxyz ,cho điểm I(1;5;0) và hai đường thẳng 1 : 4 1 2 x t y t z t ; 2 2 : 1 3 3 x y z Viết phương trình tham số của đường thẳng d đi qua điểm I và cắt cả hai đường thẳng 1 và 2 Viết phương trình mặt phẳng( ) qua điểm I , song song với 1 và 2 PHẦN RIÊNG: Thí sinh chỉ được làm 1 trong 2 câu V.a hoặc V.b Câu V.a DÀNH CHO HỌC SINH HỌC THEO CHƯƠNG TRÌNH CHUẨN (3 điểm) 1)Trong không gian , cho hệ trục toạ độ Đề Các vuông góc Oxyz Tìm số các điểm có 3 toạ độ khác nhau từng đôi một,biết rằng các toạ độ đó đều là các số tự nhiên nhỏ hơn 10. Trên mỗi mặt phẳng toạ độ có bao nhiêu điểm như vậy ? 2) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng đường cao, bằng a. Tính khoảng cách giữa hai đường thẳng SC và AB 3) Giải phương trình: 2 log 2 3 1 x x Câu V.b: DÀNH CHO HỌC SINH HỌC THEO CHƯƠNG TRÌNH NÂNG CAO (3 điểm) 1) Chứng minh rằng phương trình : 5 5 5 0 x x có nghiệm duy nhất 2)Viết phương trình các tiếp tuyến của e líp (E): 2 2 1 16 9 x y , biết tiếp tuyến đi qua điểmA(4;3) 3) Có bao nhiêu số tự nhiên có 7 chữ số khác nhau từng đôi một , trong đó chữ số 2 đứng liền giữa hai chữ số 1 và 3. HẾT Họ và tên thí sinh………Số báo danh……………Phòng thi… ĐÁP ÁN CHẤM THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG LẦN I- KHỐI D Năm học 2009-2010 PHẦN CHUNG (7 điểm) Nội dung chính và kết quả Điểm thành phần a) (1điểm) D=R/ 1 y ' 2 1 ( 1) x > 0 , x D h/số đồng biến trên D và không có cực trị Các đường tiệm cận: T/c đứng x=1; T/c ngang: y =1 Tâm đối xứng I(1;1) BBT x - 1 + y’ + + y + 1 1 - Đồ thị f(x)=(x-2)/(x-1) f(x)=1 x(t)=1 , y(t)=t -3 -2 -1 1 2 3 4 5 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 x y 0,25 điểm 0,25 điểm 0,5 điểm Câu I 2 điểm b) (1 điểm) * Phương trình hoành độ giao điểm của d ( ) C là: 2 2 0 x mx m (1) ; đ/k 1 x Vì 2 4 8 0 (1) 1 0 m m f với m ,nên p/t (1) có 2 nghiệm phân biệt khác 1 với m .Suy ra d ( ) C tại hai điểm phân biệt với m *Gọi các giao điểm của d ( ) C là: A( ; A A x x m ) ; B( ; B B x x m );với A x ; B x là các nghiệm của p/t (1) 2 2 2 2 2 2( ) 2 ( ) 4 . 2 4( 2) 2 ( 2) 4 8 A B A B A B AB x x x x x x m m m Vậy : AB min 2 2 , đạt được khi m = 2 0,25 điểm 0,25 điểm 0,25 điểm 0,25 điểm a) (1 điểm) 2 2 2 2 2 2 1 2 2 1 2(2 ) 2 9 34.15 25 0 9.3 34.3 x x x x x x x x x x . 2 2 2 2(2 ) 5 25.5 0 x x x x 2 2 2 2 2 2(2 ) 2 2 3 1 5 3 3 9. 34. 25 0 5 5 3 25 5 9 x x x x x x x x 2 2 0 ( ;1 3) (0;2) (1 3; ) 2 2 x x x x x KL: Bpt có tập nghiệm là T= ( ;1 3) (0;2) (1 3; ) 0,25điểm 0,25điểm 0,5 điểm Câu II 2 điểm b)(1 điểm) đ/k 1; 1 x y .Bất pt 2 2 1 1 ( 1) ( 1) 2 1 x y a x y a 2 1 1 1 1. 1 (2 1) 2 x y a x y a a ; Vậy 1 x và 1 y là nghiệm của p/t: T 2 2 1 ( 2 1) 0* 2 aT a a .Rõ ràng hệ trên có nghiệm khi p/t* có 2 nghiệm không âm 2 2 2 0 2( 2 1) 0 0 0 1 2 2 6 0 1 ( 2 1) 0 2 a a a S a a P a a 0,25 điểm 0,25điểm 0,5điểm a) (1 điểm) 2cosx+ 2 2 1 8 1 os ( ) sin 2 3 os(x+ )+ sin 3 3 2 3 c x x c x 2 osx+ c 2 2 1 8 1 os sin 2 3sinx+ sin 3 3 3 c x x x 2 2 6 osx+cos 8 6sinx.cosx-9sinx+sin c x x 2 6 osx(1-sinx)-(2sin 9sinx+7) 0 c x 7 6 osx(1-sinx)-2(sinx-1)(sinx- ) 0 2 c (1-sinx)(6cosx-2sinx+7) 0 (1) (2) 1 sinx=0 6cosx-2sinx+7=0 2 ;( ) 2 x k k Z (p/t (2) vô nghiệm ) 0,25 điểm 0,25 điểm 0,5 điểm Câu III 2 điểm b) (1 điểm) Tính: I= 1 3 1 0 x e dx Đặt 3 1 x t ; t 0 2 2 3 1 . 3 x t dx t dt ; 0 1 1 2 x t x t Vậy I= 2 1 2 3 t te dt Đặt t t u t du dt dv e dt v e . Ta có 2 2 1 2 2 ( ) 3 3 t t I te e dt e 0,5 điểm 0,5 điểm Câu Nội dung chính và kết quả Điểm thành phần Câu IV 1 điểm I(1;5;0) , 1 : 4 1 2 x t y t z t 2 2 : 1 3 3 x y z 1 có vtcp 1 (1; 1;2) u ;và 1 đi qua điểm M 1 (0;4; 1) 2 có vtcp 2 (1; 3; 3) u ; 2 đi qua điểm 2 (0;2;0) M mp(P)chứa 1 và điểm I có vtpt 1 1 , (3; 1; 2) n M I u r uuuur ur p/t mp(P) : 3x –y - 2z + 2 = 0 Tương tự mp(Q) chứa 2 và điểm I có vtpt ' n ur (3;-1;2) p/t mp(Q) : 3x - y + 2z + 2 = 0 *Vì đường thẳng d qua I , cắt 1 và 2 , nên d = (P) (Q) đường thẳng d có vtcp ' , d u n n ur uur r = (1;3;0); d đi qua điểm I(1;5;0) Nên p/t tham số của d là 1 5 3 0 x t y t z *mp( ) qua điểm I và song song với 1 và 2 nên ( ) có vtpt n uur = 1 2 , u u ur uur =(9;5;-2) p/t ( ) : 9x + 5y -2z – 34 = 0 0,25 điểm 0,25 điểm 0,5 điểm CâuVa 3 điểm 1)(1 điểm) Tập hợp các số tự nhiên nhỏ hơn 10 : 0;1;2;3;4;5;6;7;8;9 *Số điểm có 3 toạ độ khác nhau đôi một là: 3 10 720 A (điểm) * Trên mỗi mặt phẳng toạ độ,mỗi điểm đều có một toạ độ bằng 0, hai toạ độ còn lại khác nhau và khác 0.Số các điểm như vậy là: 2 9 72 A (điểm) 2) * Xác định k/c(AB;SC) Vì AB//mp(SDC) d(AB,SC) = d(AB,mp(SDC)) Lấy M,N lần lượt là trung điểm của AB,DC;Gọi O = AC BD mp(SMN) mp(SDC) Hạ MH SN , (H SN) MH mp(SDC) MH = d(M;(SDC)) = d(AB;(SDC))= d(AB;SC) * Tính MH: Hạ OI SN MH = 2.OI SNO vuông có: 2 2 2 2 2 2 2 2 1 1 1 .OS OS OS ON OI OI ON ON Với ON = 2 a ; OS = a N O A D B C S M I H ta tính được OI = a 5 5 MH= 2a 5 5 3) (1 điểm) 2 log 2 3 1 x x * ; Đ/k x>0 . Đặt 2 log x t 2 t x p/t * 3 1 3 4 1 1. 4 4 t t t t Nhận thấy p/t này có nghiệm t = 1, và c/m được nghiệm đó là duy nhất. Vậy , ta được : 2 log 1 2 x x KL: p/t có duy nhất nghiệm x = 2 0,5 điểm 0,5 điểm 0,25 điểm 0,25 điểm 0,25 điểm 0,5 điểm 0,5 điểm Câu Vb 3 điểm 1)(1 điểm) Đặt 5 ' 4 2 ( ) 5 5 ( ) 5( 1) 5( 1)( 1)( 1) f x x x f x x x x x 1 '( ) 0 1 x f x x .Ta có bảng biến thiên của h/s f(x): x - -1 1 + f’(x) + 0 - 0 + f(x) -1 + - -9 Nhìn vào bảng biến thiên,ta thấy : đường thẳng y=0 chỉ cắt đồ thị của h/s f(x) tại một điểm duy nhất. Vậy p/t đã cho có 1 nghiệm duy nhất 2) (1 điểm) Gọi toạ độ tiếp điểm là ( 0 0 ; x y ), PTTT (d) có dạng: 0 0 1 16 9 x x y y * Vì A(4;3) (d) 0 0 4 3 1 16 9 x y (1) Vì tiếp điểm ( ) E ,nên 2 2 0 0 1 16 9 x y (2) .Từ (1),(2) ta có 0 0 00 2 2 0 0 0 0 12 3 4; 0 4 0; 3 9 16 144 x x yy x y x y . Từ p/t * , ta thấy có 2 tiếp tuyến của (E) đi qua điểm A(4;3) là : (d 1 ) : x – 4 = 0 ; (d 2 ) : y – 3 = 0 3)(1 điểm) 1 TH : Số phải tìm chứa bộ 123: Lấy 4 chữ số 0;4;5;6;7;8;9 : có 4 7 A cách Cài bộ 123 vào vị trí đầu,hoặc cuối,hoặc giữa hai chữ số liền nhau trong 4 chữ số vừa lấy: có 5 cách có 5 4 7 A = 5.840 = 4200 số gồm 7 chữ số khác nhau trong đó chứa bộ 123 Trong các số trên, có 4 3 6 A = 4.120 = 480 số có chữ số 0 đứng đầu Có 5 4 7 A - 4 3 6 A = 3720 số phải tìm trong đó có mặt bộ 123 2 TH : Số phải tìm có mặt bộ 321 (lập luận tương tự) Có 3720 số gồm 7 chữ số khác nhau , có bặt 321 Kết luận: có 3720.2 = 7440 số gồm 7 chữ số khác nhau đôi một,trong đó chữ số 2 đứng liền giữa hai chữ số 1 và 3 0,25 điểm 0,25 điểm 0,5 điểm 0,25 điểm 0,25 điểm 0,5 điểm 0,5 điểm 0,5 điểm Chú ý :- Nếu học sinh làm theo cách khác đúng thì phải cho điểm tối đa . SỞ GIÁO D C & ĐÀO TẠO TH I NGUYÊN TRƯỜNG THPT LƯƠNG NGỌC QUYẾN ĐỀ THI THỬ Đ I HỌC LẦN THỨ I – NĂM 2011 MÔN TOÁN- KH I D (Th i gian làm b i 180 phút-không kể th i gian phát đề) PHẦN. liền giữa hai chữ số 1 và 3. HẾT Họ và tên thí sinh………Số báo danh……………Phòng thi ĐÁP ÁN CHẤM THI THỬ Đ I HỌC VÀ CAO ĐẲNG LẦN I- KH I D Năm học 200 9-2 010 PHẦN CHUNG (7 i m) N i. osx+cos 8 6sinx.cosx-9sinx+sin c x x 2 6 osx(1-sinx )-( 2sin 9sinx+7) 0 c x 7 6 osx(1-sinx )-2 (sinx-1)(sinx- ) 0 2 c (1-sinx)(6cosx-2sinx+7) 0 (1) (2) 1 sinx=0 6cosx-2sinx+7=0 2