1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán cao cấp Tập 1 part 2 docx

28 378 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 28
Dung lượng 393,06 KB

Nội dung

1.4. Biˆe ’ udiˆe ˜ nsˆo ´ ph´u . cdu . ´o . ida . ng lu . o . . ng gi´ac 27 T`u . d ´othudu . o . . c z 2 =  2(1 + cos ϕ)  cos  − ϕ 2  + i sin  − ϕ 2  v`a do vˆa . y w =  2(1 + cos ϕ)  2(1 + cos ϕ) ×  cos ϕ 2 + i sin ϕ 2  cos  − ϕ 2  + i sin  − ϕ 2  = cos ϕ + i sin ϕ.  V´ı d u . 3. 1) T´ınh ( √ 3+i) 126 2) T´ınh acgumen cu ’ asˆo ´ ph´u . c sau w = z 4 − z 2 nˆe ´ u argz = ϕ v`a |z| =1. Gia ’ i. 1) Ta c´o √ 3+i =2  cos π 6 + i sin π 6  .T`u . d´o ´a p d u . ng cˆong th ´u . c Moivre ta thu du . o . . c: ( √ 3+i) 126 =2 126  cos 126π 6 + i sin 126π 6  =2 126 [cos π + i sin π]=−2 126 . 2) Ta c´o w = z 4 −z 2 = cos 4ϕ + i sin 4ϕ −[cos 2ϕ −i sin 2ϕ] = cos 4ϕ − cos 2ϕ + i(sin 4ϕ + sin 2ϕ) = −2 sin 3ϕ sin ϕ +2i sin 3ϕ cos ϕ = 2 sin 3ϕ[−sin ϕ + i cos ϕ]. (i) Nˆe ´ u sin 3ϕ>0(t´u . c l`a khi 2kπ 3 <ϕ< (2k +1)π 3 , k ∈ Z )th`ı w = 2 sin 3ϕ  cos  π 2 + ϕ  + i sin  π 2 + ϕ  . (ii) Nˆe ´ u sin 3ϕ<0(t´u . c l`a khi (2k − 1)π 3 <ϕ< 2kπ 3 , k ∈ Z )th`ı w =(−2 sin 3ϕ)[sin ϕ −icos ϕ]. 28 Chu . o . ng 1. Sˆo ´ ph´u . c Ta t`ım da . ng lu . o . . ng gi´ac cu ’ a v = sin ϕ − i cos ϕ.Hiˆe ’ n nhiˆen |v| =1. Ta t´ınh argv argv = arctg  −cos ϕ sin ϕ  = arctg(−cotgϕ) = arctg  − tg  π 2 − ϕ  = arctg  tg  ϕ − π 2  = ϕ − π 2 · Nhu . vˆa . ynˆe ´ u sin 3ϕ<0th`ı w =(−2 sin 3ϕ)  cos  ϕ − π 2  + i sin  ϕ − π 2  . (iii) Nˆe ´ u sin 3ϕ =0⇒ ϕ = kπ 3 ⇒ w =0. Nhu . vˆa . y argw =            π 2 + ϕ nˆe ´ u 2kπ 3 <ϕ< (2k +1)π 3 , khˆong x´ac di . nh nˆe ´ u ϕ = kπ 3 , ϕ − π 2 nˆe ´ u (2k − 1)π 3 <ϕ< 2kπ 3 ·  V´ı d u . 4. Ch´u . ng minh r˘a ` ng 1) cos π 9 + cos 3π 9 + cos 5π 9 + cos 7π 9 = 1 2 . 2) cos ϕ + cos(ϕ + α)+cos(ϕ +2α)+···+ cos(ϕ + nα) = sin (n +1)α 2 cos  ϕ + nα 2  sin α 2 · Gia ’ i. 1) D˘a . t S = cos π 9 + cos 3π 9 + ···+ cos 7π 9 , T = sin π 9 + sin 3π 9 + ···+ sin 7π 9 , z = cos π 9 + i sin π 9 . 1.4. Biˆe ’ udiˆe ˜ nsˆo ´ ph´u . cdu . ´o . ida . ng lu . o . . ng gi´ac 29 Khi d´o S + iT = z + z 3 + z 5 + z 7 = z(1 − z 8 ) 1 −z 2 = z − z 9 1 −z 2 = z +1 1 −z 2 = 1 1 − z = 1  1 −cos π 9  − i sin π 9 =  1 −cos π 9  + i sin π 9  1 −cos π 9  2 + sin 2 π 9 = 1 2 + sin π 9 2  1 −cos π 9  · Do d ´o S = 1 2 · 2) Tu . o . ng tu . . nhu . trong 1) ta k´yhiˆe . u S = cos ϕ + cos(ϕ + α)+···+ cos(ϕ + nα), T = sin ϕ + sin(ϕ + α)+···+ sin(ϕ + nα), z = cos α + i sin α, c = cos ϕ + i sin ϕ. Khi d ´o S + iT = c + cz + ···+ cz n = c(1 − z n+1 ) 1 −z = (cos ϕ + i sin ϕ)[1 −cos(n +1)α − i sin(n +1)α] 1 − cos α −i sin α = (cos ϕ + i sin ϕ)2 sin (n +1)α 2  cos (n +1)α − π 2 + i sin (n +1)α − π 2  2 sin α 2  cos α − π 2 + i sin α −π 2  = sin (n +1)α 2 cos  ϕ + nα 2  sin α 2 + sin (n +1)α 2 sin  ϕ + nα 2 sin α 2 i. T`u . d´o so s´anh phˆa ` n thu . . c v`a phˆa ` na ’ o ta thu du . o . . ckˆe ´ t qua ’ .  B˘a ` ng phu . o . ng ph´ap tu . o . ng tu . . ta c´o thˆe ’ t´ınh c´ac tˆo ’ ng da . ng a 1 sin b 1 + a 2 sin b 2 + ···+ a n sin b n , a 1 cos b 1 + a 2 cos b 2 + ···+ a n cos b n 30 Chu . o . ng 1. Sˆo ´ ph´u . c nˆe ´ u c´ac acgumen b 1 ,b 2 , ,b n lˆa . pnˆen cˆa ´ psˆo ´ cˆo . ng c`on c´ac hˆe . sˆo ´ a 1 ,a 2 , ,a n lˆa . p nˆen cˆa ´ psˆo ´ nhˆan. V´ı d u . 5. T´ınh tˆo ’ ng 1) S n =1+a cos ϕ + a 2 cos 2ϕ + ···+ a n cos nϕ; 2) T n = a sin ϕ + a 2 sin 2ϕ + ···+ a n sin nϕ. Gia ’ i. Ta lˆa . pbiˆe ’ uth´u . c S n + iT n v`a thu du . o . . c Σ=S n + iT n =1+a(cos ϕ + i sin ϕ)+a 2 (cos 2ϕ + i sin 2ϕ)+ + a n (cos nϕ + i sin nϕ). D˘a . t z = cos ϕ + i sin ϕ v`a ´ap du . ng cˆong th´u . c Moivre ta c´o: Σ=1+az + a 2 z 2 + ···+ a n z n = a n+1 z n+1 − 1 az − 1 (nhˆan tu . ’ sˆo ´ v`a mˆa ˜ usˆo ´ v´o . i a z −1) = a n+2 z n − a n+1 z n+1 − a 2 +1 a 2 − a  z + 1 z  +1 (do z + 1 z = 2 cos ϕ) = a n+2 (cos nϕ + i sin nϕ) −a n+1 [cos(n +1)ϕ + i sin(n +1)ϕ] a 2 − 2a cos ϕ +1 + −a cos ϕ + ai sin ϕ +1 a 2 − 2a cos ϕ +1 = a n+2 cos nϕ − a n+1 cos(n +1)ϕ − a cos ϕ +1 a 2 − 2a cos ϕ +1 + + i a n+2 sin nϕ −a n+1 sin(n +1)ϕ + a sin ϕ a 2 − 2a cos ϕ +1 · B˘a ` ng c´ach so s´anh phˆa ` n thu . . c v`a phˆa ` na ’ otathudu . o . . c c´ac kˆe ´ t qua ’ cˆa ` n d u . o . . c t´ınh. V´ı d u . 6. 1) Biˆe ’ udiˆe ˜ n tg5ϕ qua tgϕ. 1.4. Biˆe ’ udiˆe ˜ nsˆo ´ ph´u . cdu . ´o . ida . ng lu . o . . ng gi´ac 31 2) Biˆe ’ udiˆe ˜ n tuyˆe ´ n t´ınh sin 5 ϕ qua c´ac h`am sin cu ’ a g´oc bˆo . icu ’ a ϕ. 3) Biˆe ’ udiˆe ˜ n cos 4 ϕ v`a sin 4 ϕ·cos 3 ϕ qua h`am cosin cu ’ a c´ac g´oc bˆo . i. Gia ’ i. 1) V`ı tg5ϕ = sin 5ϕ cos 5ϕ nˆen ta cˆa ` nbiˆe ’ udiˆe ˜ n sin 5ϕ v`a cos 5ϕ qua sin ϕ v`a cosϕ. Theo cˆong th´u . c Moivre ta c´o cos 5ϕ + i sin 5ϕ = (cos ϕ + i sin ϕ) 5 = sin 5 ϕ +5i cos 4 ϕ sin ϕ − 10 cos 3 ϕ sin 2 ϕ −10i cos 2 ϕ sin 3 ϕ + 5 cos ϕ sin 4 ϕ + i sin 5 ϕ. T´ach phˆa ` n thu . . c v`a phˆa ` na ’ o ta thu d u . o . . cbiˆe ’ uth´u . cd ˆo ´ iv´o . i sin 5ϕ v`a cos 5ϕ v`a t`u . d´o tg5ϕ = 5 cos 4 ϕ sin ϕ −10 cos 2 ϕ sin 3 ϕ + sin 5 ϕ cos 5 ϕ −10 cos 3 ϕ sin 2 ϕ + 5 cos ϕ sin 4 ϕ (chia tu . ’ sˆo ´ v`a mˆa ˜ usˆo ´ cho cos 5 ϕ) = 5tgϕ −10tg 3 ϕ +tg 5 ϕ 1 − 10tg 2 ϕ + 5tg 4 ϕ · 2) D˘a . t z = cos ϕ + i sin ϕ. Khi d´o z −1 = cos ϕ − i sin ϕ v`a theo cˆong th´u . c Moivre: z k = cos kϕ + i sin kϕ, z −k = cos kϕ − i sin kϕ. Do d´o cos ϕ = z + z −1 2 , sin ϕ = z − z −1 2i z k + z −k = 2 cos kϕ, z k −z −k =2i sin kϕ. ´ Ap du . ng c´ac kˆe ´ t qua ’ n`ay ta c´o sin 5 ϕ =  z − z −1 2i  5 = z 5 − 5z 3 +10z − 10z −1 +5z −3 −z −5 32i = (z 5 − z −5 ) −5(z 3 − z −3 )+10(z − z −1 ) 32i = 2i sin 5ϕ −10i sin 3ϕ +20i sin ϕ 32i = sin 5ϕ −5 sin 3ϕ + 10 sin ϕ 16 · 32 Chu . o . ng 1. Sˆo ´ ph´u . c 3) Tu . o . ng tu . . nhu . trong phˆa ` n 2) ho˘a . c gia ’ i theo c´ach sau d ˆay 1 + cos 4 ϕ =  e iϕ + e −iϕ 2  4 = 1 16  e 4iϕ +4e 2iϕ +6+4e −2iϕ + e −4iϕ  = 1 8  e 4ϕi + e −4ϕi 2  + 1 2  e 2ϕi + e −2ϕi 2  + 3 8 = 3 8 + 1 2 cos 2ϕ + 1 8 cos 4ϕ. 2 + sin 4 ϕ cos 3 ϕ =  e ϕi − e −ϕi 2i  4  e ϕi + e −ϕi 2  3 = 1 128  e 2ϕi − e −2ϕi  3  e ϕi −e −ϕi  = 1 128  e 6ϕi − 3e 2ϕi +3e −2ϕi − e −6ϕi  e ϕi −e −ϕi  = 1 128  e 7ϕi −e 5ϕi − 3e 3ϕi +3e ϕi +3e −ϕ i − 3e −3ϕi − e −5ϕi + e −7ϕi  = 3 64 cos ϕ − 3 64 cos 3ϕ − 1 64 cos 5ϕ − 1 64 cos 7ϕ.  V´ı d u . 7. 1) Gia ’ i c´ac phu . o . ng tr`ınh 1 + (x +1) n −(x − 1) n =0 2 + (x + i) n +(x − i) n =0, n>1. 2) Ch´u . ng minh r˘a ` ng mo . i nghiˆe . mcu ’ aphu . o . ng tr`ınh  1+ix 1 −ix  n = 1+ai 1 −ai ,n∈ N,a∈ R d ˆe ` u l`a nghiˆe . m thu . . c kh´ac nhau. Gia ’ i. 1) Gia ’ iphu . o . ng tr`ınh 1 + Chia hai vˆe ´ cu ’ aphu . o . ng tr`ınh cho (x −1) n ta du . o . . c  x +1 x −1  n =1⇒ x +1 x − 1 = n √ 1=cos 2kπ n + i sin 2kπ n = ε k , k =0, 1, ,n− 1. 1.4. Biˆe ’ udiˆe ˜ nsˆo ´ ph´u . cdu . ´o . ida . ng lu . o . . ng gi´ac 33 T`u . d ´o suy r˘a ` ng x +1=ε k (x −1) ⇒ x(ε k − 1)=1+ε k . Khi k =0⇒ ε 0 = 1. Do d´ov´o . i k =0phu . o . ng tr`ınh vˆo nghiˆe . m. V´o . i k = 1,n−1 ta c´o x = ε k +1 ε k − 1 = (ε k + 1)(ε k −1) ε k − 1)(ε k −1) = ε k ε k + ε k − ε k − 1 ε k ε k − ε k − ε k − 1 = −2i sin 2kπ n 2 −2 cos 2kπ n = −i sin 2kπ n 1 −cos 2kπ n = icotg kπ n ,k=1, 2, ,n− 1. 2 + C˜ung nhu . trˆen, t`u . phu . o . ng tr`ınh d˜a cho ta c´o  x + i x − i  n = −1 ⇐⇒ x + i x −i = n √ −1=cos π +2kπ n + i sin π +2kπ n hay l`a x + i x −i = cos (2k +1)π n + i sin (2k +1)π n = cos ψ + i sin ψ,ψ= (2k +1)π n · Ta biˆe ´ ndˆo ’ iphu . o . ng tr`ınh: x + i x −i − 1=cosψ + i sin ψ − 1 ⇔ 2i x −i =2i sin ψ 2 cos ψ 2 −2 sin 2 ψ 2 ⇔ 1 x −i = sin ψ 2  cos ψ 2 − 1 i sin ψ 2  = sin ψ 2  cos ψ 2 + i sin ψ 2  . 34 Chu . o . ng 1. Sˆo ´ ph´u . c T`u . d ´o suy ra x −i = 1 sin ψ 2  cos ψ 2 + i sin ψ 2  = cos ψ 2 − i sin ψ 2 sin ψ 2 = cotg ψ 2 − i. Nhu . vˆa . y x −i = cotg ψ 2 − i ⇒ x = cotg ψ 2 = cotg (2k +1)π 2n ,k= 0,n− 1. 2) Ta x´et vˆe ´ pha ’ icu ’ aphu . o . ng tr`ınh d ˜a cho. Ta c´o    1+ai 1 −ai    =1⇒ 1+ai 1 − ai = cos α + i sin α v`a t `u . d ´o 1+xi 1 − xi = n  1+ai 1 −ai = cos α +2kπ n + i sin α +2kπ n ,k= 0,n− 1. T`u . d ´onˆe ´ ud˘a . t ψ = α +2kπ n th`ı x = cos ψ − 1+i sin ψ i[cos ψ +1+i sin ψ] =tg ψ 2 =tg α +2kπ 2n ,k= 0,n− 1. R˜o r`ang d ´o l`a nh˜u . ng nghiˆe . m thu . . c kh´ac nhau.  V´ı d u . 8. Biˆe ’ udiˆe ˜ n c´ac sˆo ´ ph´u . csaudˆay du . ´o . ida . ng m˜u: 1) z = (− √ 3+i)  cos π 12 −i sin π 12  1 −i · 2) z =  √ 3+i. 1.4. Biˆe ’ udiˆe ˜ nsˆo ´ ph´u . cdu . ´o . ida . ng lu . o . . ng gi´ac 35 Gia ’ i. 1) D˘a . t z 1 = − √ 3+i, z 2 = cos π 12 − i sin π 12 , z 3 =1− i v`a biˆe ’ udiˆe ˜ n c´ac sˆo ´ ph´u . cd´odu . ´o . ida . ng m˜u. Ta c´o z 1 =2e 5π 6 i ; z 2 = cos π 12 − i sin π 12 = cos  − π 12  + i sin  − π 12  = e − π 12 i ; z 3 = √ 2e − π 4 i . T`u . d´othudu . o . . c z = 2e 5π 6 i · e − π 12 i √ 2e − π 4 i = √ 2e iπ . 2) Tru . ´o . chˆe ´ tbiˆe ’ udiˆe ˜ nsˆo ´ ph´u . c z 1 = √ 3+i du . ´o . ida . ng m˜u. Ta c´o |z 1 | =2; ϕ = arg( √ 3+i)= π 6 , do d ´o √ 3+i =2e π 6 i .T`u . d ´othudu . o . . c w k = 4  √ 3+i = 4 √ 2e i ( π 6 +2kπ) 4 = 4 √ 2e i (12k+1)π 24 ,k= 0, 3.  V´ı d u . 9. T´ınh c´ac gi´a tri . 1) c˘an bˆa . c3: w = 3 √ −2+2i 2) c˘an bˆa . c4: w = 4 √ −4 3) c˘an bˆa . c5: w = 5  √ 3 −i 8+8i . Gia ’ i. Phu . o . ng ph´ap tˆo ´ t nhˆa ´ td ˆe ’ t´ınh gi´a tri . c´ac c˘an th´u . cl`abiˆe ’ u diˆe ˜ nsˆo ´ ph´u . cdu . ´o . idˆa ´ u c˘an du . ´o . ida . ng lu . o . . ng gi´ac (ho˘a . cda . ng m˜u) rˆo ` i ´ap du . ng c´ac cˆong th´u . ctu . o . ng ´u . ng. 1) Biˆe ’ udiˆe ˜ n z = −2+2i du . ´o . ida . ng lu . o . . ng gi´ac. Ta c´o r = |z| = √ 8=2 √ 2; ϕ = arg(−2+2i)= 3π 4 · 36 Chu . o . ng 1. Sˆo ´ ph´u . c Do d´o w k = 3  √ 8  cos 3π 4 +2kπ 3 + i sin 3π 4 +2kπ 3  ,k= 0, 2. T`u . d´o w 0 = √ 2  cos π 4 + i sin π 4  =1+i, w 1 = √ 2  cos 11π 12 + i sin 11π 12  , w 2 = √ 2  cos 19π 12 + i sin 19π 12  . 2) Ta c´o −4 = 4[cos π + i sin π] v`a do d ´o w k = 4 √ 4  cos π +2kπ 4 + i sin π +2kπ 4  ,k= 0, 3. T`u . d ´o w 0 = √ 2  cos π 4 + i sin π 4  =1+i, w 1 = √ 2  cos 3π 4 + i sin 3π 4  = −1+i, w 2 = √ 2  cos 5π 4 + i sin 5π 4  = −1 − i, w 3 = √ 2  cos 7π 4 + i sin 7π 4  =1−i. 3) D ˘a . t z = √ 3 −i 8+8i · Khi d ´o |z| = √ 3+1 √ 64 + 64 = 1 4 √ 2 . Ta t´ınh argz.Tac´o argz = arg( √ 3 −i) − arg(8 + 8i)=− π 6 − π 4 = − 5π 12 · [...]... θ (DS 2 cos cos + i sin v´.i 0 θ < π; o 2 2 2 3π − θ 3π − θ θ cos + i sin v´.i π θ < 2 ) o 2 cos 2 2 2 8) − sin α + i (1 + cos α) π+θ π+θ θ cos + i sin v´.i 0 θ < π; o (DS 2 cos 2 2 2 3π + θ 3π + θ θ cos + i sin v´.i π θ < 2 ) o 2 cos 2 2 2 3 T´ ınh: √ π π 10 0 1 3 1) cos − i sin ) (DS − − i 6 6 2 2 12 4 2) √ (DS 21 2 ) 3+i √ ( 3 + i)6 3) (DS −3, 2) ( 1 + i)8 − (1 + i)4 √ √ (−i − 3 )15 (−i + 3 )15 4)... ıch a 1) z 3 − 6z 2 + 11 z − 6 2) 6z 4 − 11 z 3 − z 2 − 4 (DS (z − 1) (z − 2) (z − 3)) √ 1 i 3 z− 2 2 2 3) 3z 4 − 23 z 2 − 36 z + i√ ) (DS 3(z − 3)(z + 3) z − i √ 3 3 n (DS (z − ε0 )(z − 1) · · · (z − εn 1 ), 4) z − 1 2kπ 2kπ εk = cos + i sin , k = 0, n − 1) n n (DS (z − 1 − i)(z − 1 + i)(z + 1 − i)(z + 1 + i)) 5) z 4 + 4 2 (DS 6(z − 2) z + 3 √ 1+ i 3 z− 2 6) z 4 + 16 √ √ √ √ (DS (z − 2 (1 + i))(z − 2 (1 −... 4) 2 2 6 6 √ 5π 5π − 3 1 + i (DS cos + i sin ) 5) 2 2 6 6 √ 5π 5π 3 1 (DS cos + i sin ) 6) − i 2 2 3 3 √ 4π 4π 3 1 (DS cos + i sin ) 7) − − i 2 2 3 3 √ √ 23 π 23 π + i sin ) (DS 2 2 + 3 cos 8) 2 + 3 − i 12 12 √ √ 19 π 19 π + i sin ) (DS 2 2 − 3 cos 9) 2 − 3 − i 12 12 ’ ˜ a o u ´ o a 2 Biˆu diˆn c´c sˆ ph´.c sau dˆy du.´.i dang lu.o.ng gi´c e e a 1) − cos ϕ + i sin ϕ (DS cos(π − ϕ) + i sin(π − ϕ)) π π 2) ... (DS −64i) (1 − i )20 (1 + i )20 5) (1 + i )10 0 (1 − i)96 + (1 + i)96 (DS 2) (1 + icotgϕ)5 (DS cos(π − 10 ϕ) + i sin(π − 10 ϕ)) 1 − icotgϕ)5 √ (1 − i 3)(cos ϕ + i sin ϕ) 7) 2 (1 − i)(cos ϕ − i sin ϕ) √ π π 2 cos 6ϕ − + i sin 6ϕ − ) (DS 2 12 12 6) ’ ˜ o u 1. 4 Biˆu diˆn sˆ ph´.c du.´.i dang lu.o.ng gi´c e e ´ o a √ (1 + i 3)3n 8) (1 + i)4n (DS 2) 1 1 ` a 4 Ch´.ng minh r˘ng z + = 2 cos ϕ ⇒ z n + n = 2 cos nϕ... + 2 (1 + i))(z + 2 (1 − i))) 7) z 4 + 8z 3 + 8z − 1 √ √ 17 )(z + 4 + 17 )) √ √ 1 i 7 1+ i 7 3 8) z + z + 2 z− ) (DS (z + 1) z − 2 2 ´ ´ u u a e o o a a 7 Phˆn t´ c´c da th´.c trˆn tru.`.ng sˆ thu.c th`nh c´c da th´.c bˆt a ıch a `.ng d´ ’ o kha quy trˆn c`ng tru o e u (DS (x + 1) (x2 − x + 2) ) 1) x3 + x + 2 √ √ (DS (x2 − 2x 2 + 4)(x2 + 2 2x + 4)) 2) x4 + 16 √ √ 3) x4 + 8x3 + 8x − 1 (DS (x2 + 1) (x + 4 − 17 )(x... Nˆu n > 1 th` εn = 1 v` do d´ e ı S= 1 − εn = 0 1 ε 1 − εn · 1 ε ´ Chu.o.ng 1 Sˆ ph´.c o u 38 ’ ’ ` ınh a 2) Ta k´ hiˆu tˆng cˆn t´ l` S Ta x´t biˆu th´.c y e o a e e u (1 − ε)S = S − εS = 1 + 2 + 3 2 + · · · + nεn 1 − ε − 2 2 − · · · − (n − 1) εn 1 − nεn = 1 + ε + 2 + · · · + εn 1 −nεn = −n 0(ε =1) v` εn = 1 ı a Nhu vˆy (1 − ε)S = −n → S = −n 1 ε ´ nˆu ε = 1 e ´ Nˆu ε = 1 th` e ı S = 1 + 2 + ···... 2 .1 Da th´.c u 47 - ’ ’ o a e Dinh l´ 2 .1. 2 Gia su da th´.c Q(x) c´ c´c nghiˆm thu.c b1, b2 , , bm y u i bˆi tu.o.ng u.ng 1, 2, , βm v` c´c c˘p nghiˆm ph´.c liˆn ho.p a1 ´ v´ o o a a a e u e v` a1 , a2 v` a2 , , an v` an v´.i bˆi tu.o.ng u.ng 1 , 2 , , λn Khi d´ a a a o o o ´ Q(x) = (x − b1 ) 1 (x − b2 ) 2 · · · (x − bm )βm (x2 + p1 x + q1) 1 × × (x2 + p2 x + q2) 2 · · · (x2... εn 1 , 2 = εn 2 , 2 .1 Da th´.c u 53 M˘t kh´c a a (x − εk )(x − εk ) = x2 − (εk + εk )x + εk εk = x2 − x · 2 cos 2kπ + 1 n Do d´ o  n 1  2 2kπ  (x − 1) ´ ´ x2 − x · 2 cos + 1 nˆu n l` sˆ le, e a o ’    n k =1  n 2 2 xn − 1 = 2kπ (x − 1) (x + 1) +1 x2 − x · 2 cos   n  k =1    ´ ´ a nˆu n l` sˆ ch˘ n e a o ˜ ` ˆ BAI TAP ` ´ ’ a e u a o 1 Ch´.ng minh r˘ng sˆ z0 = 1 + i l` nghiˆm cua da... k = β0 (1 + εk + εk + · · · + εk ) 1 2 n 1 εk = m cos 2mπ 2mπ + i sin n n (n 1) k k = β0 1 + εk + ε2k + · · · + 1 1 1 k = cos 2 2 + i sin n n mk ’ ´ ´ ´ ´ u a a a o a a o a e 1 Biˆu th´.c trong dˆu ngo˘ c vuˆng l` cˆp sˆ nhˆn Nˆu εk = 1, t´.c l` e u ´ k khˆng chia hˆt cho n th` o e ı k S = β0 1 − εnk 1 k 1 1 = β0 = 0 (v` εn = 1) ı 1 k 1 − 1 1 − εk 1 ’ ˜ o u 1. 4 Biˆu diˆn sˆ ph´.c du.´.i dang lu.o.ng... 4k)π , k = 0, n − 1) (DS x = −cicotg 4n 4) (x + ci)n − (cos α + i sin α)(x − ci)n = 0, α = 2kπ α + 2kπ (DS x = −cicotg , k = 0, n − 1) 2n 15 T´ ınh Dn (x) = 1 1 + cos x + cos 2x + · · · + cos nx 2 2 2n + 1 1 sin 2 x (DS Dn (x) = ) 2 2 sin x 2 ’u diˆn cos 5x v` sin 5x qua cos x v` sin x ˜ 16 1) Biˆ e e a a 2 2 2) T´nh cos ı v` sin a 5 5 (DS 1) cos 5x = cos5 x − 10 cos3 x sin2 x + 5 cos x sin4 . d´o w k = 3  √ 8  cos 3π 4 +2kπ 3 + i sin 3π 4 +2kπ 3  ,k= 0, 2. T`u . d´o w 0 = √ 2  cos π 4 + i sin π 4  =1+ i, w 1 = √ 2  cos 11 π 12 + i sin 11 π 12  , w 2 = √ 2  cos 19 π 12 + i sin 19 π 12  . 2) Ta c´o −4 = 4[cos. sin π 6  10 0 (DS. − 1 2 − i √ 3 2 ) 2)  4 √ 3+i  12 (DS. 2 12 ) 3) ( √ 3+i) 6 ( 1+ i) 8 − (1 + i) 4 (DS. −3, 2) 4) (−i − √ 3) 15 (1 −i) 20 + (−i + √ 3) 15 (1 + i) 20 (DS. −64i) 5) (1 + i) 10 0 (1 −i) 96 + (1+ i) 96 (DS e −4ϕi 2  + 1 2  e 2 i + e 2 i 2  + 3 8 = 3 8 + 1 2 cos 2 + 1 8 cos 4ϕ. 2 + sin 4 ϕ cos 3 ϕ =  e ϕi − e −ϕi 2i  4  e ϕi + e −ϕi 2  3 = 1 128  e 2 i − e 2 i  3  e ϕi −e −ϕi  = 1 128  e 6ϕi −

Ngày đăng: 29/07/2014, 07:20

TỪ KHÓA LIÊN QUAN