-=.T Bai 2 Bai 1 vdi (S) ld phia ngoei crla mit cEu tdm 0 bdn kinh R. qr+ 74 * < * Bei 3 vrTq ^ Khai tridn thinh chu6i nEuy6n 2 him sd tn(I + x)vit In(I -x). Trinh biy c6ch tfnh gEn dring gi5 tri cia In7. . rnUorvc pAr Hoc sU pHAu rp HO cHi MrNH v. e a ' ,, ' . xn-oh vhil}';"i6p'rV$i; r dd] ''r - Hmffil' )b+1 6*% : IA ", :s ,;i Tinh tich ph6n durdnn 0,u Gy + 2x-y) dx + (xy-x + 2y) dy ",,' .Fi*- li v6i (L) li dudngtrdn rd + f -2ay= O(a>0)theo 2c5ch: a) Tinh trfc ti6p b) Dirng c6ng thitc Green. S0\ \ \ >*- ff Tinh tich ph6n mit JJ o, 1l ayaz + f axdz + zJ axayl l fada+?nsaTiii&ngu6 cG pLild trinh vi ph6n: 4xf -(x) +xf '(x)+f(x)=e . Bii s Cho him s6 f(x) = 2x vdi x . (41). HEy bidu di6n f(x) thinh : a) chuSi Fourier 2 n, sin ntxvdi An ri c6c h6 s6 Fourier. n=l +@ f b) Tich phan Fourier J o A(a) cLrsdx da vdi A(a) ld bi6n ddi Fourier. frH i\ 1/ I I r i. i-j L{ ri I \ '\i \ i \ a '{ 'i. ''i . phia ngoei crla mit cEu tdm 0 bdn kinh R. qr+ 74 * < * Bei 3 vrTq ^ Khai tridn thinh chu6i nEuy6n 2 him sd tn(I + x)vit In(I -x). Trinh biy c6ch tfnh gEn dring gi5. (L) li dudngtrdn rd + f -2ay= O(a>0)theo 2c5ch: a) Tinh trfc ti6p b) Dirng c6ng thitc Green. S0 >*- ff Tinh tich ph6n mit JJ o, 1l ayaz + f axdz + zJ axayl. -(x) +xf '(x)+f(x)=e . Bii s Cho him s6 f(x) = 2x vdi x . (41). HEy bidu di6n f(x) thinh : a) chuSi Fourier 2 n, sin ntxvdi An ri c6c h6 s6 Fourier. n=l +@ f b) Tich phan