1. Trang chủ
  2. » Giáo Dục - Đào Tạo

BÀI TẬP ĐẠO HÀM CÓ HƯỚNG DẪN GỢI Ý doc

9 1,1K 12

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 156,17 KB

Nội dung

BÀI TẬP ĐẠO HÀM Bài 1: Bằng định nghĩa, hãy tính đạo hàm của hàm số: y = 2x 1  tại x 0 = 5 Giải: Tập xác định D = 1 x : x 2         Với  x là số gia của x 0 = 5 sao cho 5+  x   thì   y = 2(5 x) 1    - 10 1   Ta có: y x   = 9 2 x 9 x     Khi đó: y’(5)= x 0 y lim x     =       x 0 9 2 x 3 9 2 x 3 lim x 9 2 x 3              =   x 0 9 2 x 9 lim x 9 2 x 3          =   x 0 2 lim 9 2 x 3      = 1 3 Bài 2 : Chứng minh hàm số x y x 1   liên tục tại x 0 = 0, nhưng không có đạo hàm tại điểm đó. HD: Chú ý định nghĩa: x = x ,neáu x 0 -x ,neáu x<0     Cho x 0 = 0 một số gia  x  y = f(x 0 +  x) –f(x 0 ) = f(  x) –f(0) = x x 1    y x   =   x x x 1      Khi  x  0 + ( thì  x > 0) Ta có: x 0 y lim x      =   x 0 x lim x x 1        =   x 0 1 lim x 1      =1 Bài 3: Cho hàm số y = f(x) = 2 x , ,      neáu x 0 x neáu x<0 a) Cm rằng hàm số liên tục tại x = 0b) Hàm số này có đạo hàm tại điểm x = 0 hay không ? Tại sao? Bài 4: Chứng minh rằng hàm số y = f(x) = 2 (x 1) ,n ,n        2 eáu x 0 -x eáu x<0 không có đạo hàm tại x = 0. Tại x = 2 hàm số đó có đạo hàm hay không ? Bài 5: Chứng minh rằng hàm số y = f(x) = 2 (x 1) , , 2 neáu x 0 (x+1) neáu x<0        không có đạo hàm tại x 0 = 0, nhưng liên tục tại đó. HD:a) f(0) = (0-1) 2 = 1; x 0 y lim x      = -2; x 0 y lim x      = 2  x 0 y lim x       x 0 y lim x       hàm số không có đạo hàm tại x 0 = 0 b) Vì x 0 lim f(x)    =1; x 0 lim f(x)    =1; f(0) = 1  x 0 lim f(x)    = x 0 lim f(x)    = f(0) = 1  hàm số liên tục tại x 0 = 0 Bài 6: Cho hàm số y = f(x) = cosx, sin x Neáu x 0 Neáu x<0      a) Chứng minh rằng hàm số không có đạo hàm tại x = 0. b) Tính đạo hàm của f(x) tại x = 4  HD:a) Vì x 0 lim f(x)   = x 0 lim cos x   =1 và x 0 lim f(x)   = x 0 lim( sin x)    = 0; f(0) = cos0 = 1  x 0 lim f(x)    x 0 lim f(x)    hàm số không liên tục tại x 0 = 0 (hàm số gián đoạn tại x 0 = 0) Bài 7: Tính đạo hàm các hàm số sau: 1. y = ( 2 x -3x+3)( 2 x +2x-1); Đs: y’ = 4x 3 -3x 2 – 8x+ 9 2. y = ( 3 x -3x+2)( 4 x + 2 x -1); Đs: y’ =7*x^6-12*x^2+3- 10*x^4+8*x^3+4*x 3. Tìm đạo hàm của hàm số: y =   2 3x x 1 x         Giải: y’ =   2 3x ' x 1 x         +   2 3x x 1 ' x         =   2 2 3 x 1 x          = 2 1 3x x 2 x              =   2 2 3 x 1 x          + 1 3x x x 2 x  3. y =   1 x 1 1 x         4. y =     3 2 3 x 2 1 x 3x    5. y = ( 2 x -1)( 2 x -4)( 2 x -9); Đs: 6*x^5-56*x^3+98*x 6. y = (1+ x )(1+ 2x )(1+ 3x ) 7. y = 1 x 1 2x   8. y = 3 3 1 2x 1 2x   9. y = x 1 x 1   ; Đs:- 3 1 (x 1)(x 1)   10. y = 2 2 1 x 1 x   ; Đs:- 2 2 3 2x (1 x )(1 x )   11. y = cos 2 1 x 1 x           ; Đs: 2 1 1 x sin 2 x(1 x) 1 x            12. y = (1+sin 2 x) 4 ; Đs: 2 3 (1 sin x) sin 2x  13. y =sin 2 (cos3x); Đs: -3sin(2cos3x)sin3x 14. y = sin x cos x sin x cos x   ; Đs: 2 2 (sin x cosx)  15. y = 2 sin 3x sin x.cos x 518) y = f(x) = x 1 cos x  ; y’ =   2 1 cosx xsin x 1 cosx    519) y = f(x) = tan x x ; y’ = 2 2 x sin x cos x x cos x  522) y = f(x) = sin x 1 cos x  ; y’ = 1 1 cos x  523) y = f(x) = x sin x cos x  ; y’ = sin x cos x x(sin x cos x) 1 sin 2x     526) y = f(x) = 4 1 tan x 4 ; y’ = tan 3 x. 2 1 cos x 527) y = f(x) = cosx 3 1 cos x 3  ; y’ = -sin 3 x 528) y = f(x) = 3sin 2 x –sin 3 x; y’ = 3 sin 2x(2 sin x) 2  529) y = f(x) = 1 3 tan 3 x –tanx + x; y’ = tan 4 x 535) y = f(x) = tan x 1 2  ; y’ = 2 1 x 1 2cos 2  539) y = f(x) = cos 3 4x; y’ = -12cos 2 4x.sin4x 544) y = f(x) = 1 1 tan x x         ; y’ = 2 2 2 x 1 1 1 2x cos x 1 tan x x x                 672) y = f(x) = 3cos 2 x –cos 3 x; y’ = 3 2 sin2x(cosx-2) 682) y = f(x) = 2 2sin x cos2x ; y’ = 2 2sin 2x cos 2x 684) y = f(x) = x x tan cot 2 2 x  ; y’ = 2 2 2(x cosx sin x) x sin x   685) y = f(x) = 2 x x sin cot 3 2 ; y’ = 1 x 2x cot sin 3 2 3 2 1 x sin 2 2  …. 689) y = f(x) = 2 4 1 tan x tan x   ; y’ = 2 2 2 4 tan x(1 2tan x) cos x 1 tan x tan x    694) y = f(x) = 6 8 1 1 sin 3x sin 3x 18 24  ; y’ = sin 5 3xcos 3 3x 705) y = f(x) = cosx.   2 1 sin x  ; y’ = 3 2 2sin x 1 sin x   706) y = f(x) = 0.4 2 2x 1 cos sin 0.8x 2         ; y’ = -0.8 2x 1 cos sin 0.8x 2         2x 1 sin cos0.8x 2         713) y = f(x) = 2 1 1 sin x  ; y’ =   3 2 sin 2x 2 1 sin x   721) y = f(x) = sin 2 x.sinx 2 ; y’ =2sinx(xsinx.cosx 2 +cosx.sinx 2 ) 722) y = f(x) = 2cos x cos2x ; y’ = 2sin x cos 2x cos2x BÀI TẬP ĐẠO HÀM BỔ SUNG 1.Tìm đạo hàm của hàm số: y = x cot2x Giải: y’ = ( x )cot2x+ x (cot2x)’ = 1 2 x cot2x 2 2 x sin 2x  2. Tìm đạo hàm của hàm số: y = 3sin 2 xcosx+cos 2 x y’ = 2(sin 2 x)’cosx+3(sin 2 x)(cosx)’+(cos 2 x)’ = 6sinxcos 2 x-3sin 3 x-2cosxsinx =sinx(6cos 2 x-3sin 2 x-2cosx) 3. Cho hàm số : y = 2 x x x 1   Tìm TXĐ và tính đạo hàm của hàm số ? TXĐ: D = R y’ = 2 2 2 2x 1 x x 1 x. 2 x x 1 x x 1         =   2 3 2 2(x x 1) x(2x 1) x x 1       =… Bài : Chứng minh rằng các hàm số sau có đạo hàm không phụ thuộc x: a) y = sin 6 x + cos 6 x +3sin 2 xcos 2 x; HD: Cách 1: y = (sin 2 x) 3 +(cos 2 x) 3 +3sin 2 xcos 2 x= (sin 2 x+cos 2 x)(sin 4 x- sin 2 xcos 2 x+cos 4 x) +3sin 2 xcos 2 x = [(sin 2 x) 2 +[(cos 2 x) 2 +2sin 2 xcos 2 x-3sin 2 xcos 2 x] +3sin 2 xcos 2 x =[(sin 2 x+cos 2 x) 2 -3sin 2 xcos 2 x] +3sin 2 xcos 2 x = 1  y’ = 0 (đpcm) Cách 2: y’ = 6sin 5 x.(sinx)’ +6cos 5 x.(cosx)’+3[(sin 2 x)’.cos 2 x+sin 2 x(cos 2 x)’] = 6sin 5 x.cosx -6cos 5 x.sinx + 3[2sinx(sinx)’.cos 2 x+sin 2 x.2cosx.(cosx)’] = 6sinx.cosx(sin 4 x-cos 4 x) + 3[2sinx.cosx. cos 2 x-sin 2 x.2cosx.sinx] = 6sinx.cosx(sin 4 x-cos 4 x) + 6sinx.cosx(cos 2 x – sin 2 x) b) y = cos 2 x 3         +cos 2 x 3         +cos 2 2 x 3         +cos 2 2 x 3         -2sin 2 x. Bài : Cho hàm số y = f(x) = 2cos 2 (4x-1) a) Tìm f'(x); b)Tìm tập giá trị của hàm số f'(x) Bài : Cho hàm số y = f(x) = 3cos 2 (6x-1) a) Tìm f'(x); b)Tìm tập giá trị của hàm số f'(x) Bài : Chứng minh rằng các hàm số sau thỏa mãn phương trình : a) y = 2 2x x  ; y 3 y"+1 = 0. b) y = e 4x +2e -x ; y''' –13y' –12y = 0. c) y = e 2x sin5x; y"-4y'+29y = 0 d) y = 3 x [cos(lnx)+sin(lnx)]; 2 x y"-5xy'+10y = 0. e) y =   2 2 x x 1   ; (1+ 2 x )y"+xy'-4y = 0 Bài : Cho hàm số y= f(x) = 2x 2 + 16 cosx – cos2x. 1/. Tính f’(x) và f”(x), từ đó tính f’(0) và f”(  ). 2/. Giải phương trình f”(x) = 0. Bài : Cho hàm số y = f(x) = x 1 2  cos 2 x a) Tính f'(x) b) Giải phương trình f(x) -(x-1)f'(x) = 0 Bài : Giải phương trình f’(x) = 0 biết rằng: f(x) = 3x+ 60 x 3 64 x  +5; b) f(x) = sin3x 3 +cosx- 3 cos3x sin x 3        Giải: f’(x) = 3 2 60 x  + 2 6 64.3x x == 3 2 60 x  + 4 64.3 x == 3 2 4 20 64 1 x x         f’(x) = 0  2 4 20 64 1 x x         = 0  x 4 -20x 2 +64 = 0 (x  0)  …   2; 4   . = 2sin x cos 2x cos2x BÀI TẬP ĐẠO HÀM BỔ SUNG 1.Tìm đạo hàm của hàm số: y = x cot2x Giải: y’ = ( x )cot2x+ x (cot2x)’ = 1 2 x cot2x 2 2 x sin 2x  2. Tìm đạo hàm của hàm số: y = 3sin 2 xcosx+cos 2 x. tại x = 0b) Hàm số này có đạo hàm tại điểm x = 0 hay không ? Tại sao? Bài 4: Chứng minh rằng hàm số y = f(x) = 2 (x 1) ,n ,n        2 eáu x 0 -x eáu x<0 không có đạo hàm tại x =. hàm tại x = 0. Tại x = 2 hàm số đó có đạo hàm hay không ? Bài 5: Chứng minh rằng hàm số y = f(x) = 2 (x 1) , , 2 neáu x 0 (x+1) neáu x<0        không có đạo hàm tại x 0 = 0, nhưng

Ngày đăng: 25/07/2014, 01:20

TỪ KHÓA LIÊN QUAN

w