Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 17 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
17
Dung lượng
590,4 KB
Nội dung
130 Chương 6 NĂNG LƯỢNG MỚI 6.1. NĂNG LƯỢNG M ẶT TRỜI Bức xạ mặt trời là nguồn năng lượng sạch và vô tận, không có khí thải, không gây ô nhiễm môi trường. Tuy nhiên, nguồn năng lượng này có những nhược điểm cơ bản là phân tán (mật độ năng lượng rất thấp) và không liên tục (không thu được vào ban đêm và lúc trời mưa). Việt Nam là nước nhiệt đới có số giờ chiếu nắng cao. Vì vậy, sử dụng nguồn năng lượng mặt trời để bổ sung cho nhu cầu năng lượng chung của đất nước sẽ có tầm quan trọng rất lớn. Từ Nghệ Tĩnh trở ra có từ 1700 đến 1800 giờ nắng/năm và tổng lượng bức xạ có từ 100 đến 120 kcal/cm 2 . năm. Từ Đà Nẵng trở vào có từ 2000 đến 2500 giờ nắng/năm với tổng lượng bức xạ tương đối cao, từ 125 đến 175 kcal/cm 2 .năm. Các biện pháp thu năng lượng mặt trời phục vụ sản xuất, đời sống là: - Chuyển bức xạ mặt trời sang nhiên liệu thực vật nhờ thực hiện quá trình quang hợp (trồng cây làm chất đốt, trồng cây lấy hạt có dầu, ) - Chuyển bức xạ mặt trời thành điện năng nhờ các pin mặt trời (sử dụng hiệu ứng quang điện biến đổi trực tiếp năng lượng mặt trời thành dòng điện). - Chuyển bức xạ mặt trời thành nhiệt năng (hiệu ứng quang nhiệt), đây là phương pháp hiệu quả nhất trong lĩnh vực sử dụng năng lượng mặt trời. Trong nhiều thiết bị, hiệu suất chuyển đổi có thể đạt trên 60%. Nhiệt năng tạo thành có thể sử dụng cho nhiều mục đích như nấu nướng, đun nóng nước hay các chất lỏng khác, sấy các sản phẩm, làm lạnh và điều hòa không khí. 6.1.1. Điện năng từ năng lượng mặt trời Việc tranh luận về những nguồn năng lượng mới để bổ sung vào những dạng năng lượng đã biết càng trở nên sôi động trong những năm gần đây, khi nguồn nhiên liệu dầu mỏ ngày càng khan hiếm. Người ta đang mong đợi vào những dạng năng lượng sạch, có tiềm năng lớn nhưng ít được khai thác. Điện mặt trời có thể đáp ứng những mong đợi đó, do có tính đơn giản của hệ thống, không cần chăm sóc bảo dưỡng, không làm hại môi trường và khả năng ứng dụng rộng rãi. Gần đây xuất hiện nhiều hệ thống pin mặt trời đã được thử nghiệm, làm việc chắc chắn đối với các ứng dụng khác nhau trong một phổ công suất rộng sau đây: - Các máy phát mini cho đồng hồ và máy tính bỏ túi ở vùng mili oát. - Các hệ thống cung cấp điện nhỏ ở gia đình hoặc lều trại ở vùng Oát. 131 - Các hệ thống cung cấp điện cho làng xã hoặc các hệ thống bơm nước trong vùng kiloOát. - Các trạm phát điện mặt trời liên kết với lưới điện trong vùng mêgaOát. Tất cả các hệ thống này phụ thuộc vào sự cung cấp năng lượng mang tính thay đổi của mặt trời nên việc đánh giá tính kinh tế theo vùng sử dụng có ý nghĩa quyết định. Nhiều nơi trên thế giới đang hình thành các khu nhà, thành phố sử dụng năng lượng mặt trời. Ví dụ, ở Ota, thành phố nhỏ nằm phía Nam thủ đô Tokyo của Nhật Bản, tất cả 550 căn nhà đều có mái là các panen pin mặt trời nối với hệ thống ắc quy, đủ cung cấp điện cho cả ngày và đêm. Ở Anh, đã xây dựng các khu nhà sinh thái chỉ dùng năng lượng tự nhiên, và đang có đề án xây dựng khu toà tháp chỉ dùng năng lượng mặt trời cho hàng nghìn cư dân sinh sống. 6.1.1.1 Nguyên lý làm việc của pin mặt trời Hình 6.1. Nguyên lý hoạt động của pin mặt trời Mặt trời lớp p lớp n tiếp xúc p-n Bước 4 phôton tải điện điện trở tự do điện tích dương điện tích âm Bước 1 Bước 2 Bước 3 dương tính lớp n lớp p lớp n tiếp xúc p-n lớp p âm tính Prôton Điện tử Điện tử tự do Lỗ trống 132 Nhờ hiệu ứng quang học đã biết, năng lượng ánh sáng mặt trời được chuyển đổi trực tiếp thành năng lượng điện trong pin mặt trời. Cơ sở của nguyên lý là các cơ cấu vật lý điện tử trong kỹ thuật transitor của vật liệu bán dẫn. Pin silic tinh thể là một đĩa dày khoảng 250µm có pha thêm Bor, mặt trước của đĩa chứa phosphor khuếch tán với độ sâu khoảng 0,3µm phosphor tác động trong lớp mỏng silic tạo ra một lượng dư electron dẫn, nhờ đó lớp này trở thành lớp dẫn. Ở phần còn lại của đĩa được tạo ra một lượng dư lỗ trống, do đó trở thành lớp dẫn p. Mặt trước của đĩa silic có tiếp xúc dạng ngón với kim loại, nhờ đó có thể cho ánh sáng đi vào nhiều nhất. Mặt sau tiếp xúc với kim loại trên toàn bề mặt. Bề mặt được phủ một lớp chống phản xạ để giữ hao tổn phản xạ ở giá trị nhỏ. Ánh sáng mặt trời chiếu vào tạo ra các mặt electron-lỗ trống. Mật độ các cặp electron-lỗ trống phụ thuộc vào cường độ và sự hợp phổ của ánh sáng chiếu vào. Các điện tử và lỗ trống khuếch tán qua tinh thể và được tách ra nhờ tương tác của vùng phân cách. Các electron được dẫn về mặt trước còn các lỗ trống được dẫn về sau. Hình 6.2. Cấu tạo của một tấm pin mặt trời Dòng quang điện phụ thuộc vào: - Số cặp electron-lỗ trống được tạo ra + Sự hấp thụ ánh sáng + Sự hụt năng lượng giữa lớp hóa trị và lớp dẫn (Eg) - Sự tách các cặp electron- lỗ trống nhờ điện trường nội tại. + Độ dài khuếch tán + Hiệu suất góp phụ thuộc vào độ tinh khiết của vật liệu. Sự biến đổi ánh sáng thành năng lượng điện không đạt được 100% do còn có những hao tổn sau: Hao tổn phản xạ, năng lượng không đủ của các phôton chiếu tới, hao tổn nhiệt bởi các phôton có năng lượng quá cao, sự liên kết lại của các cặp electron-lỗ trống và hao tổn điện trong pin. Hiện nay đối với các pin mặt trời silic tinh L ớp các pin mặt trời đ ã hàn ghép đi ện T ấm keo EVA T ấm kính phía tr ên T ấm keo EVA Tấm đáy 133 thể đã đạt được trong phòng thí nghiệm hiệu suất trên 20%, trong chế tạo hàng loạt đạt hiệu suất khoảng 14% với điện áp hoạt động 0,5 vôn và dòng điện 30mA/cm 2 . Để đạt được điện áp cao cần phải nối tiếp nhiều mảng pin với nhau thành một panen pin mặt trời với điện thế tiêu chuẩn. 6.1.1.2. Các dạng pin mặt trời Có thể phân chia khái quát thành hai loại pin mặt trời, đó là loại lớp dày và loại lớp mỏng. * Pin mặt trời lớp dày: Trên cơ sở nghiên cứu, các pin mặt trời lớp dày chế tạo từ silic tinh thể đang được phổ biến rộng rãi. Người ta chia nó làm hai loại: Pin mặt trời silic đơn tinh thểvà pin mặt trời silic đa tinh thể. Các pin mặt trời silíc đơn tinh thể được chế tạo hàng loạt, có hiệu quả cao. Đối với một pin mặt trời ở điều kiện tiêu chuẩn (nhiệt độ 25 0 C, công suất bức xạ G = 1000W/m 2 , phổ bức xạ/khối lượng không khí = 15) có hiệu suất khoảng 13-16%. Kỹ thuật chế tạo pin mặt trời silic đa tinh thể được mô tả như sau: silic lỏng, tinh thể được rót và làm lạnh thành khối có chiều dài cạnh đến 40cm. Nhờ đó tạo ra một số lượng giới hạn các tinh thể được định hướng. Các khối sau đó được cắt tương ứng với hướng tinh thể có chiều dài 10-15cm và tiếp tục thành đĩa (tấm) có chiều dày 0,4mm. Pin silic đa tinh thể có quá trình chế tạo đơn giản và có chi phí giảm thiểu nên có hiệu suất quang điện thấp, chỉ đạt 10-12%. Hình 6.3 Mặt cắt panen pin mặt trời Tấm kính phủ phía trên Tấm keo EVA Lớp pin mặt trời Tấm keo EVA Tấm đáy 134 * Pin mặt trời lớp mỏng Quá trình chế tạo các pin mặt trời cực mỏng từ silic vô định hình có chiều dày lớp khoảng 1µm, được gọi là pin mặt trời lớp mỏng. Nhờ quá trình tách pha khi ở 150 0 C được các lớp silic vô định hình dày khoảng 1µm. Do có tính chất hấp thụ đặc biệt so với silic tinh thể mà các lớp vô định hình cực mỏng có thể hấp thụ hoàn toàn các phôton. Đối với pin mặt trời chế tạo từ chất bán dẫn liên kết, các lớp hoạt tính của nó là hỗn hợp của các vật liệu bán dẫn khác nhau, thí dụ galli-arsen, cadmiunfid-đồng sunfid, đồng-indi-selen hoặc silic-germani, trong đó pin mặt trời lớp mỏng chế tạo từ bán dẫn liên kết đồng-indi-selen (CiS) có triển vọng phát triển nhất. Ưu thế cơ bản so với silic tinh thể (lớp dày) của loại này là có kết cấu lớp rất mỏng (2 đến 3µm), điều này cho khả năng hấp thụ ánh sáng tốt hơn. 6.1.1.3 Cấu tạo chung một hệ thống điện mặt trời Một hệ thống pin mặt trời cần có các bộ phận phù hợp sao cho năng lượng điện tạo ra có thể được chuyển đổi, lưu trữ và sử dụng một cách tối ưu. Cấu tạo chung một hệ thống pin mặt trời bao gồm: - Nguồn điện mặt trời (từ một hay nhiều môđun) - Acqui - Bộ điều chỉnh nạp - Phụ tải Hình 6.4 Cấu tạo của một hệ thống điện mặt trời (12V, một chiều) Sử dụng hệ thống điện mặt trời rất có ý nghĩa trong những điều kiện nhất định: - Phù hợp các vùng có thời gian nắng nhiều trong năm. - Ở những nơi không có lưới điện. 6.1.2. Nhiệt năng từ năng lượng mặt trời (quang nhiệt) Biến đổi bức xạ mặt trời thành nhiệt năng là một phương pháp hiệu quả nhất trong lĩnh vực sử dụng năng lượng mặt trời. Sự chuyển đổi năng lượng mặt trời có thể thực hiện với hiệu suất cao nhờ các bộ góp nhiệt (các colector) ở nhiệt độ thấp và cần chi phí chế tạo không lớn. Trong nhiều thiết bị, hiệu suất chuyển đổi có thể đạt trên 135 60%. Nhiệt năng tạo thành có thể sử dụng cho nhiều mục đích khác nhau như nấu nướng, đun nóng nước hoặc các chất lỏng khác, sấy nông sản hoặc sản phẩm công nghiệp, làm lạnh hoặc điều hòa không khí. 6.1.2.1. Nguyên lý chuyển hóa quang nhiệt Các biện pháp nhằm chuyển bức xạ mặt trời sang nhiệt năng gọi là quá trình chuyển hóa quang nhiệt. Quá trình này dựa vào một trong hai nguyên lý sau: * Nguyên lý hội tụ bức xạ tiêu điểm, gồm hội tụ theo điểm và hội tụ theo đường - Loại hội tụ theo điểm là các thiết bị dùng gương cầu lõm có dạng paraboloit tròn xoay, mặt trong có độ phản xạ cao, nhờ vậy tập trung ở tiêu điểm nhiệt độ từ vài trăm đến trên 3000 0 C. Người ta đã ứng dụng và đưa vào sản xuất một loại bếp kiểu này nhưng không thuận tiện vì phải đun nấu ngoài trời nắng. Tuy nhiên đối với những người hoạt động trên sa mạc thì dùng bếp kiểu này rất thuận lợi và có hiệu quả cao. - Loại hội tụ theo đường là các thiết bị dùng gương hình lòng máng dài, mặt cắt ngang có dạng parabol, mặt phản xạ phía trong làm hội tụ bức xạ mặt trời theo đường tiêu cự. Nếu tại đường tiêu cự đặt một ống dài cho nước đi qua thì nước sẽ được đun nóng lên. Thiết bị chuyển hóa quang nhiệt làm việc theo nguyên lý hội tụ ít được phổ biến do có một số nhược điểm sau: + Mặt phản xạ nhanh bị mờ sau thời gian làm việc do đó hiệu suất giảm nhanh. + Phải thường xuyên xoay mặt phản xạ theo hướng mặt trời, nếu dùng thiết bị tự động thì giá thành cao, xoay thủ công không thuận tiện. + Thiết bị chỉ thu được phần trực xạ (các tia nắng trực tiếp) còn phần tán xạ thì không thu được, nếu khi bị mây che khuất thì thiết bị không thu được năng lượng. * Nguyên lý bẫy nhiệt nhờ hiệu ứng lồng kính Bộ phận thu nhiệt là một hộp có phần nắp đậy là vật liệu trong suốt như kính hoặc vật liệu tổng hợp (màng mỏng polyetilen hoặc nhựa cứng), mặt đáy là kim loại được bôi đen (có thể dùng sơn đen trộn với bồ hóng hoặc vật liệu tương tự để tạo mặt đen không bóng). Khi bức xạ mặt trời chiếu qua mặt trong suốt thì hầu như toàn bộ phổ bức xạ xuyên qua vào trong hộp làm nóng bề mặt bôi đen. Mặt đen hấp thụ nhiệt và phát ra bức xạ nhiệt, nếu không có nắp trong suốt ngăn lại thì bức xạ nhiệt sẽ tản ra môi trường và nhiệt độ của mặt hấp thụ sẽ ổn định ở nhiệt độ không cao là 70 0 C. Nhờ có nắp trong suốt ngăn bức xạ có bước sóng dài nên nhiệt độ trong hộp tăng cao dần. Nếu tăng số nắp trong suốt lên hai hoặc ba lần thì nhiệt độ trong hộp càng cao. Hộp thu nhiệt kiểu này thu được cả tán xạ khi trời có mây, không mưa. 136 Tùy thuộc vào loại vật liệu cần đốt nóng mà kết cấu dòng chuyển động của chất mang nhiệt khác nhau. Đối với chất lỏng, dòng chuyển động có thể được thiết kế như trên hình 6-5. Đối với chất mang nhiệt là không khí có thể bố trí dòng khí đi qua cả phía trên và phía dưới. Nguyên lý bẫy nhiệt do đó có thể được ứng dụng để sấy khô sản phẩm nông nghiệp hoặc để đun nước nóng. Hình 6.5 Sơ đồ nguyên lý hộp thu nhiệt nhờ hiệu ứng lồng kính (2 lớp kính). 1- Lớp kính dưới; 2- Bề mặt đen thu nhiệt; 3- lớp kính trên; 4- Vật liệu cách nhiệt 5- Các đường ống dẫn chất lỏng mang nhiệt; 6- Vỏ đáy hộp thu nhiệt. Để sấy sản phẩm người ta cho không khí đi qua hộp thu nhiệt. Không khí tiếp xúc với các phần tử hấp thụ được làm nóng lên và được đưa vào buồng sấy nhờ đối lưu tự nhiên hoặc đối lưu cưỡng bức. Để tăng nhiệt độ trong bộ góp nhiệt không khí có thể áp dụng các biện pháp làm tăng diện tích hấp thụ nhiệt như dùng mặt có dạng uốn sóng, có lá thu nhiệt, Để đun nước, có thể cho nước chảy qua mặt dưới của bề mặt hấp thụ, có thể là giàn ống có gắn các cánh hấp thụ nhiệt. 6.1.2.2. Cấu tạo, nguyên tắc làm việc của một số thiết bị chuyển đổi quang nhiệt * Các bộ góp nhiệt phẳng Bộ góp nhiệt hay còn gọi là colector là bộ phận cơ bản của mọi thiết bị dùng năng lượng mặt trời sang các dạng năng lượng hữu ích khác. Colector phẳng có mặt hấp thụ ánh sáng là phẳng. Mặt phẳng này đồng thời là mặt hấp thụ ánh sáng và chuyển đổi năng lượng bức xạ. Cấu trúc colector phẳng rất đơn giản, chỉ là một mặt phẳng bôi đen đạt trên một lớp cách nhiệt. Do tính chất hấp thụ ánh sáng của vật đen, nó có thể nóng lên đến 60 - 70 0 C. Sau đó nếu vẫn tiếp tục được chiếu sáng, mặt hấp thụ sẽ không nóng lên nữa, nhiệt độ cao nhất có thể đạt được gọi là nhiệt độ cân bằng. Sở dĩ nhiệt độ dừng lại ở nhiệt độ cân bằng là do khi nóng lên chính mặt hấp thụ lại trở thành vật bức xạ hồng ngoại đồng thời lại còn truyền nhiệt ra môi trường (nếu có nhiệt độ thấp hơn) theo cơ chế dẫn nhiệt và đối lưu. Như vậy ở nhiệt độ cân bằng năng lượng nhận vào đúng bằng năng lượng thải ra. Muốn tăng nhiệt độ cân bằng hoặc phải 1 2 3 4 5 6 137 tăng mật độ dòng năng lượng tới hoặc giảm hao tổn nhiệt năng bằng cách đặt lên mặt bôi đen một vài lớp che trong suốt thích hợp. Các lớp che trong suốt cho bức xạ mặt trời đi qua dễ dàng song lại cản bức xạ hồng ngoại phát ra từ vật do đó có tác dụng như là một bẫy nhiệt. Nhờ bố trí các nắp che trong suốt mà nhiệt độ cân bằng có thể lên tới 90 - 100 0 C. Ngoài ra để tăng hiệu quả của mặt hấp thụ có thể uốn thành dạng gợn sóng hoặc sử dụng chất bôi đen đặc biệt gọi là chất hấp thụ chọn lọc. Các loại mặt hấp thụ này sẽ hấp thụ rất mạnh bức xạ có bước sóng thuộc giải phổ ánh sáng mặt trời song lại bức xạ hồng ngoại ít hơn nhiều so với mặt hấp thụ bôi đen bằng vật liệu thông thường ở cùng nhiệt độ. Do đó cân bằng năng lượng nằm ở nhiệt độ khoảng 170 - 180 0 C. Nhìn chung colector phẳng có nhiệt độ làm việc không cao nhưng rất dễ chế tạo và có giá thành rẻ, sử dụng dễ dàng, làm việc được cả trong điều kiện bức xạ trực tiếp hay khuếch tán. *. Bộ góp nhiệt zic-zắc Để khắc phục nhược điểm của colector phẳng người ta đã thiết kế loại colector zic zắc gồm các lá kim loại bôi đen ghép lại với nhau. Nhờ vậy colector zic zắc có thể bẫy hầu hết các tia nắng kể cả lúc sáng sớm và khi chiều muộn, do đó nó có thể cấp nhiệt lâu hơn theo thời gian trong ngày. Cấu trúc của colector zic zắc làm giảm mạnh dòng nhiệt đối lưu làm giảm hao tổn nhiệt và tạo điều kiện truyền nhiệt lớn nhất cho chất mang nhiệt. *. Các bộ góp nhiệt hội tụ Khi mặt nhận là mặt phản xạ (không phải là mặt hấp thụ) tập trung bức xạ về một điểm (vùng hẹp) hoặc một dải thì đó là một colector hội tụ. Muốn sử dụng năng lượng bức xạ cần đặt một vật hấp thụ tại vùng tập trung ánh sáng. Người ta thường gọi mặt nhận là bộ phản xạ hay bộ hội tụ, còn vật hấp thụ là bộ nhận, lúc đó colector hội tụ được hiểu là tổ hợp của bộ nhận và bộ hội tụ. Bộ hội tụ đảm nhận việc tập trung dòng năng lượng còn bộ nhận chuyển đổi dòng năng lượng thành dạng năng lượng thích hợp. Colector với bộ hội tụ dạng mặt tròn xoay có độ hội tụ cao, có nghĩa là có tỉ số giữa diện tích qui phẳng của mặt hội tụ với diện tích hấp thụ của mặt nhận cao. Do đó cho phép nhiệt độ có thể tăng tới hàng ngàn độ, song như đã phân tích loại này khó chế tạo và sử dụng. Colector trụ có mặt phản xạ là mặt trụ có độ hội tụ trung bình, tập trung bức xạ thành một dải sáng với nhiệt độ khoảng 350 - 500 0 C. Colector trụ có rất nhiều ưu điểm: dễ chế tạo và qui mô lớn. Nếu colector đủ dài có thể đặt theo một hướng xác định, không đòi hỏi điều chỉnh thường xuyên, phần mất mát năng lượng không đáng kể. Hiện nay có nhiều phương án sử dụng năng lượng mặt trời trên qui mô lớn đã đề 138 cập đến colector hội tụ. Đặc biệt để đun nước, colector hội tụ dùng rất thích hợp và cho hiệu suất cao (60 - 70%), vì có thể sử dụng dễ dàng hiệu ứng lồng kính với bộ nhận. Theo số liệu thực nghiệm cho thấy với một colector trụ có diện tích hứng nắng qui phẳng 1m 2 vào ngày nắng trung bình có thể đun sôi 3 lít nước trong thời gian 20 - 30 phút. Thiết bị có thể hoạt động từ 8 giờ sáng đến 16 giờ chiều và đạt năng suất 50 - 60 lít/ngày. 6.1.2.3. Ứng dụng năng lượng mặt trời để sấy nông sản *. Đặc tính của các collector không khí Để sử dụng năng lượng mặt trời trong lĩnh vực sấy khô sản phẩm, năng lượng mặt trời thường được chuyển đổi thành dòng nhiệt năng của chất mang nhiệt là không khí. Không khí mang nhiệt được đưa đến các bộ phận sấy (trực tiếp hoặc gián tiếp) để làm khô sản phẩm. Đảm nhận việc trao nhiệt là các collector không khí. Các collector không khí được thiết kế khác nhau sẽ cho hiệu suất khác nhau. Hiệu suất của collector không khí phụ thuộc vào vật liệu, khả năng hấp thụ, độ cách nhiệt và do đó sẽ phụ thuộc giá trị hệ số dẫn nhiệt của vật liệu cách nhiệt k, nếu k < 5 w/m 2 sẽ cho hiệu suất cao với khoảng nhiệt độ rộng. Với nhiệt độ thấp của dòng không khí, các collector đơn giản rất phù hợp với việc sấy hạt nông sản. Các kiểu máy sấy loại này có hiệu suất cao ứng với độ chênh lệch nhiệt độ và độ ẩm môi trường nhỏ. Các collector có lớp kính kép, vỏ được che phủ, thậm chí có cách nhiệt chân không cũng không thể hoạt động tốt hơn trong dãy nhiệt độ thấp do việc mất mát nhiệt. Tuy nhiên, chúng lại làm việc có hiệu quả hơn trong khoảng nhiệt độ cao. Do đó các loại collector phức tạp, đắt tiền rất phù hợp cho việc làm nóng ngoài công việc sấy hạt. Đối với việc sấy hạt nông sản, theo các kết quả nghiên cứu có thể chấp nhận được hao tổn áp suất dòng khí qua collector ở khoảng 30- 40mm cột nước. *. Sấy bằng năng lượng mặt trời Ứng dụng năng lượng mặt trời để sấy khô đã được sử dụng từ lâu đời. Sản phẩm thường được rải thành lớp mỏng phơi dưới nắng mặt trời. Ban ngày sản phẩm được đảo trộn định kỳ, ban đêm được che phủ nhằm đạt được độ khô đồng đều và rút ngắn thời gian sấy. Phương pháp này thường kéo dài từ 2 đến 8 ngày. Sản phẩm sau khi sấy thường bị nhiễm bẩn và bị vi khuẩn, nấm, mốc xâm nhập. Việc sấy bằng năng lượng mặt trời trong hộp được che đậy sẽ cải thiện được hiệu suất sấy và chất lượng sản phẩm cũng như tiết kiệm lao động. Bộ phận sấy bằng năng lượng mặt trời đơn giản là một hộp được che bằng tấm nắp trong suốt, tuy nhiên trong nhiều trường hợp bộ phận sấy kiểu này không tạo đủ cường độ sấy. 139 Nước ngọt ra Nước biển vào Mực nư ớc Khay ch ứa Lớp cách nhi ệt Kính Sấy khô nhờ năng lượng mặt trời với dòng không khí đối lưu tự nhiên. Trong hệ thống sấy kiểu hút, vật liệu sấy được sử dụng như một collector. Không khí nằm giữa những lỗ hổng của sản phẩm của lớp trên cùng được làm nóng lên. Một phần năng lượng của không khí đi qua sản phẩm làm bốc hơi nước. Do nhiệt độ ở cửa ra của không khí mặc dù đã giảm song vẫn còn cao hơn nhiệt độ môi trường nên được hút qua ống thải. 6.1.2.4. Sử dụng năng lượng mặt trời để chưng lọc nước mặn Người ta ước lượng mức sử dụng nước ngọt cho sinh hoạt ở nông thôn các vùng nhiệt đới là 20- 50 lít/ ngày/ người. Việc chưng lọc nước (ngọt và mặn) có thể góp phần vào việc cung cấp nước sạch sinh hoạt cho các vùng khó khăn. Hình 6.6 Sơ đồ nguyên lý thiết bị lọc nước bằng năng lượng mặt trời kiểu 2 mái Phương pháp phổ biến cho các thiết bị lọc nước là sự bay hơi, thẩm thấu ngược chiều. Thiết bị lọc nước mặn đã được biết đến khoảng trên 100 năm nay với rất nhiều kết quả lý thuyết và thực hành. Việc lọc nước mặn bằng năng lượng mặt trời dựa trên nguyên lý bay hơi và ngưng đọng chất lỏng, (hình 6.6). Nhiệt lượng chuyển pha nước trong cả hai trường hợp là như nhau và bằng 2430 kJ/kg. Năng lượng bức xạ mặt trời đưa đến một phần được hấp thụ bởi thảm, phần hao tổn do đối lưu, phần phản xạ và một phần hao tổn dẫn nhiệt. Thất thoát nhiệt chủ yếu là bức xạ nhiệt từ mặt nước tới nắp bể lọc và bức xạ phản xạ từ đáy nước tới nắp hầm. Mất nhiệt do dẫn nhiệt và đối lưu nhiệt tới môi trường xung quanh. Hiệu suất của bể lọc nước mặn bằng năng lượng mặt trời khoảng 30%. [...]... Đại học Nông Lâm Huế Bài giảng Cơ điện Nông nghiệp nhằm trang bị cho sinh viên ngành Khoa học cây trồng, Khoa học nghề vườn và sinh vật cảnh, (bao gồm hệ dài hạn tập trung, hệ vừa học vừa làm và một số hệ khác) của Trường Đại học Nông Lâm Huế, những kiến thức về cơ điện nông nghiệp, giúp cho họ nắm vững vai trò, tầm quan trọng của cơ điện trong sản xuất nông nghiệp, thấy rõ tính ưu việt của việc cơ khí... việt của việc cơ khí hóa, điện khí hóa các qúa trình sản xuất Trên cơ sở đó nâng cao trình độ tổ chức, quản lý và hiệu quả sử dụng các loại máy móc, thiết bị dùng trong nông nghiệp Ngoài ra, nó còn là tài liệu tham khảo đối với các cán bộ khoa học kỹ thuật quan tâm đến lĩnh vực này Trong bài giảng này, có sử dụng nguồn tư liệu chính từ Giáo trình Cơ điện nông nghiệp(20 06) do PGS -TS Phan Hòa (chủ biên)... tích như sau: 10 - 15%H2 ; 20 - 30%CO; 2 - 15%CO2 ; 0 - 4%CH4 ; 40 - 60 %N2 Nếu sử dụng không khí giàu ôxy hoặc ôxy tinh khiết để hóa khí nhiê n liệu rắn thì có thể giả m hoặc loại bỏ thành phầ n Nitơ, thành phần "loãng" khí đốt sản xuất ra 6. 2.2 Sản xuất năng lượng từ Biogas 6. 2.3.1 Khái niệm chung về Biogas Bio gas là sản phẩm của quá trình lên me n phân động vật và các loại phế thải hữu cơ khác Thành... gồ m khoảng 5 5-7 0% Metan, 4 5-3 0% CO2 và một phần nhỏ chất lưu huỳnh Quá trình lê n me n vật liệ u hữu cơ để tạo thành Bio gas bao gồ m ba gia i đoạn sau: - Giai đoạn thứ nhất: Dưới tác dụng của các enzym thủy phân, các chất hữu cơ phân tử lớn được phân giải thành các chất hữu cơ phân tử nhỏ (axit béo, axit amin) - Giai đoạn thứ hai: Dưới tác dụng của các vi khuẩn tạo axit, các chất hữu cơ phân tử nhỏ... thạch nên cơ hộ i cạnh tranh của năng lượng mới là một hiệ n thực Cùng với nhiều chính sách mới của Nhà nước, hy vọ ng trong thời gian tới, Việt Nam sẽ là một trong những nước phát triển mạnh các nguồn năng lượng mới Đây cũng là sự lựa chọn đúng đắn cho tương lai 145 Lời nói đầu Bài giảng Cơ điện Nông nghiệp được biên soạn theo đề cương chi tiết thuộc khung chương trình của Dự án NUFFIC tại khoa Nông học,... vào thuận lợi) Người sử dụng cần tuân thủ quy trình công nghệ chặt chẽ để bảo đả m sự ổn định của hệ thống biogas Với dung tích hầm khoảng 6- 8 m3 là đủ lượng khí đốt cho một nông hộ trong đun nấu hàng ngày (sử dụng chất thải của 3 -6 người và 5-1 0 đầu gia súc) 6. 3 CÁC NGUỒN NĂNG LƯỢNG KHÁC Ngoài các nguồn năng lượng truyề n thống từ khoáng vật được con người khai thác và sử dụng với số lượng lớn (than... triều, năng lượng địa nhiệt 6. 3.1 Năng lượng dòng chảy của các sông suối: Động năng của dòng chảy các con sông đã trở thành nguồn năng lượng thủy điện chiế m đến 40% công suất phát điện trên thế giới Đây là nguồn nă ng lượng sạch và có giá thà nh rẻ so với nhiệt điện Những nhà máy thủy điện hiện nay đang đứng đầu về công suất phát điện, từ vài tră m Oát đến vài triệu kW 6. 3.2 Năng lượng gió: Do sự... nghiệp(20 06) do PGS -TS Phan Hòa (chủ biên) và TS Đinh Vương Hùng biên soạn Chúng tôi trân trọng cám ơn các bạn đồng nghiệp đã đóng góp những ý kiến quý báu trong quá trình biên soạn bài giảng này Chắc chắn tập "Bài giảng Cơ điện nông nghiệp" còn có những khiếm khuyết nhất định Chúng tôi hy vọng nhận được nhiều ý kiến đóng góp của bạn đọc để cập nhật và điều chỉnh được hoàn thiện hơn TS Đinh Vương Hùng ... với bể tạo áp - Bể tạo áp: có mức dung dịch cao hơn hầ m phân hủy nhằm tạo ra áp suất khí Bio gas trong hầm phâ n hủy trong khoảng 1, 2-1 ,4 kG/cm2, thông qua cửa nối phía dưới dung dịch Bể tạo áp cũng là nơi lấy chất thải ra sau phân hủy (chủ yếu là nước và các chất vô cơ còn lại) - Van và đường ống dẫn khí gas đến nơi tiêu thụ (bếp đun gas, chạy động cơ khí gas, thắp sáng bằng đèn khí ) 6. 2.3.4 Một số... từ nông - lâm nghiệp có thể dùng để chế biến thà nh nhiên liệu rắn hoặc khí Các cây có dầu như cọ dầu, lạc, đậu tương, cây chứa đường hoặc tinh bột có thể là m nguyê n liệu để sản xuất nhiê n liệ u lỏng và dầu bôi trơn Các chất thải hữu cơ của cây công nghiệp, thực phẩm hoặc cây xanh nhờ phân hủy yế m khí từng phần thành khí sinh vật - Biogas Biogas có thể dùng để đun nấu hoặc sử dụng cho động cơ . đầu Bài giảng Cơ điện Nông nghiệp được biên soạn theo đề cương chi tiết thuộc khung chương trình của Dự án NUFFIC tại khoa Nông học, trường Đại học Nông Lâm Huế. Bài giảng Cơ điện Nông nghiệp. học Nông Lâm Huế, những kiến thức về cơ điện nông nghiệp, giúp cho họ nắm vững vai trò, tầm quan trọng của cơ điện trong sản xuất nông nghiệp, thấy rõ tính ưu việt của việc cơ khí hóa, điện. galli-arsen, cadmiunfid-đồng sunfid, đồng-indi-selen hoặc silic-germani, trong đó pin mặt trời lớp mỏng chế tạo từ bán dẫn liên kết đồng-indi-selen (CiS) có triển vọng phát triển nhất. Ưu thế cơ