1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu nghành điện hạt nhân - 4 ppsx

28 363 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 28
Dung lượng 1,01 MB

Nội dung

 Nuclear Power Engineering at Electric Power University Copyright © 2011 Tokyo Institute of Technology All Rights Reserved. Safety   Regulation- 1 -Deterministicvs.Probabilistic/ Fukushima- July26,ThirdPeriod Hiroshi UJITA Tokyo Institute of Technology 1  Nuclear Power Engineering at Electric Power University Copyright © 2011 Tokyo Institute of Technology All Rights Reserved. 2 Quy chế và an toàn • Therearegrowingtendencyintheorganizationalproblemandalsotheimpactontheenvironment, duetowidespreadandcomplextargetsystem. • ShiftfromprescriptiveRegulationtoNormativeRegulation. • Thelegalsystemchangesfromresultstheorytoacttheory(backgroundtheory,proceduretheory, frameworktheory). • Theshiftfromthepunishmentduetoaccidentoccurtothepunishmentduetonottomakethe mechanismtopreventtheaccident. • AsforthePerformanceStandardRegulationintheU.S.,Risk-InformedPerformance-Based Regulationhasbeenadoptedbasedontherisktheory. • AsfortheRegulatoryorganization,SafetyandEnvironmentalRegulatoryAuthorityshouldbe establishedasintheCabinetOffice,withunifiedlookthroughouttheorganizationand independenttotheotherauthorities.CreateanInstituteforEnvironmentandSafetyand EnvironmentandSafetyAdvisoryCommitteetodeveloppolicies.  Nuclear Power Engineering at Electric Power University Copyright © 2011 Tokyo Institute of Technology All Rights Reserved. 3 LawandSafety • Recently,frequentoverstuffedcorporatescandalsandaccidents. • Responsiblepersonwillfulnegligence,thatisinactionbytheostrichfashion “hadbeenpredictedwhiledidnotconsider,”istheworst. • Sincethelawhasbeendesignedfororganizationalaccidentprevention primarily,itworksbycombiningbothtechnicalandlegalmeasurestoimprove safetymeasures. • Inaddition,economicandsocialsanctionsandprocedureandframeworktheory, etc.arealsorequired. • Asforthesocialandeconomicsanctionsagainstorganizationalaccidents, punitivecompensationsystemshouldalsobeconsidered.  Nuclear Power Engineering at Electric Power University Copyright © 2011 Tokyo Institute of Technology All Rights Reserved. • Preventingdamage • Failureexpansionmitigation:autonomouscharacteristic,inherentsafety (intrinsicallysafety) • Accidentprevention:afail-safe,fool-proof,redundancy,diversity • Accidentexpansionmitigation:confinement,controlrelease • Environmentaleffectsmitigation:evacuation – Focusonpreventingdamage,expansionmitigation,oraccident preventiontotheforefront – Increasedattentiontoback-upsystems,ifithasalargeenoughimpact ontheenvironment 4 DefenseinDepthforthesafetydesign  Nuclear Power Engineering at Electric Power University Copyright © 2011 Tokyo Institute of Technology All Rights Reserved. • Deterministicapproach: • Safetyassessmentforeachbarriertodefenseindepth – Themostsevereeventisassumedtorepresentthetypicalevent,whilethe initiatingeventsareconsideredandclassifiedbybehavior(DesignBasis Accident) – Inadditiontothis,assumingthatfailureofoneofthemostimportantsafety- relatedequipment(SingleFailureCriteria), – Wemayguaranteethesafetybasedontheevaluationthatwecanstillhave enoughsafetyonthatseverehypothesis. – SingleFailureCriterionfailure • LOCA,LossofCoolantAccident,therealitywillnothappen(NRC) • Transientisthemostlikelyevent(ReactorSafetyStudy1975,TMI Accident1979) 5 SystemSafetyEvaluation1  Nuclear Power Engineering at Electric Power University Copyright © 2011 Tokyo Institute of Technology All Rights Reserved. • Probabilisticapproach: • Overallsystemsafetyassessmentbasedontheconceptofrisk – Easilysecuredcoverageofeventsintheprocessofconsideringtheprobability – Rationaldecisionsduetothepresenceofriskevaluationcriteria -SafetyGoals:aquantitativediscussion“howsafeissafeenough” – Determinationofquantitativesafetytrendthroughoutthelifecycle – Evaluationofsafetymeasuresimplementedashardwareattheinitialsystem construction – Evaluationofdailysafetyfromenteringthecommercialoperation • Determininginspectionfrequency,acceptablewaitingtime,etc.areinherently risk-based • Chemicalplants:extensionoftimespanofperiodicinspection;1yearto2years – Eventsoflargeuncertaintiesanddifficulttopredictcanbequantifiedasanexpert judge • Seismic(Tsunami)riskassessment,humanreliabilityassessment 6 SystemSafetyEvaluation2  Nuclear Power Engineering at Electric Power University Copyright © 2011 Tokyo Institute of Technology All Rights Reserved. 7 Themethodologyforsafety DeterministicApproachUseBothApproachesProbabilisticApproach DesignMethod231 ManagementMethod122 EvaluationMethod243   4:Excellent3: Good2:Fair1:Poor  Nuclear Power Engineering at Electric Power University Copyright © 2011 Tokyo Institute of Technology All Rights Reserved. • (Successpathmethod–MissionCritical;Space,Missile) • PRA(ProbabilisticRiskAnalysis)SafetyCritical – ETA/FTA(EventTree/Faulttreeanalysis) – HRA (Human Reliability Analysis) – CMF (Common Mode Failure) Analysis • QRA(QuantitativeRiskAnalysis) – HSE(Health&SafetyExecutive) – ISO(InternationalStandardOrganizations) • FMEA(FailureMode&EffectAnalysis) • HAZOP(HazardousOperabilityStudy) 8 Methodologyofrisktheory  Nuclear Power Engineering at Electric Power University Copyright © 2011 Tokyo Institute of Technology All Rights Reserved. Study of internal initiating event Analysis of the accident sequences leading to core damage Analysis of the accident sequences leading to loss of containme nt function Analysis of core damage accident progressi on phenome na Core Damage Frequency Source term to atmosphere Analysis of public exposure to atmospheric dispersion risk Study of external initiating events Accident mitigation system reliability analysis Human reliability analysis Occurrence frequency of each phenomenon Frequency of containment function Loss Level1 PSA Level2 PSA Level3 PSA ProbabilisticRisk(Safety)Assessmentprocedure   9 Fukushima Daiichi Accident  Nuclear Power Engineering at Electric Power University Copyright © 2011 Tokyo Institute of Technology All Rights Reserved.    Level1PSA   Initiating Event Success Criteria Plant Survey HumanError Dependent Failure Uncertainty    study Sensitivity    analysis ComponentFailureRate Model (Coredamage frequency) Accidentsequence quantification FaultTree EventTree Phenomenapropagationscenario 10 [...]... for 52 Plants in Japan 10 10 -4 PSA Result of Internal Event in  Normal Operation for 52 Plants  shows to be less than  performance goal Index 2: Containment Failure Frequency 1 0-5 1 0-6 Index 1: Core Damage Frequency   -3 BWR PWR 1 0-7 1 0-8 1 0-9 1 0-1 0 10 -1 0 1 0-9 1 0-8 1 0-7 1 0-6 CDF (1/(r.y)) 1 0-5 1 0 -4 NISA, PSA Methodology After Accident  Managemant Published (Oct.20 04)   1 0-3 Copyright © 2011 Tokyo Institute... Explosion Melt- Concrete Interaction Copyright © 2011 Tokyo Institute of Technology All Rights Reserved 17 Nuclear Power Engineering at Electric Power University 100   FP release and accident  propagation are  categoraized by same way 1 0-1 Source Terms (-) Radioactive Release  to Atmosphere Group 1 & Group 5 Group 3 Group 3.& Group 3 &Group 4 Group 5 1 0-2 Group 2 Group 2 & Group 4 -3 10 1 0 -4 1 0-5 1 0-6 FP release will decrease ...  The long-term energy demand and supply simulation to minimize the total energy system cost was  conducted for energy prediction during the 21st Century in the world.  Taking the effort for energy-saving as major premise, carbon-sequestration for fossil fuel, renewable  energy and nuclear energy should be altogether developed, which means energy best mix is achieved,  under the CO2 constraint around 45 0ppm atmosphere. ... Electric Power University IAEA International Fact Finding Expert Mission of the Nuclear Accident following the Great East Japan Earthquake and Tsunami Tokyo, Fukushima Dai-ichi NPP, Fukushima Dai-ni NPP and Tokai NPP,  Japan,  24 May- 1 June 2011, Preliminary Summary   • The Japanese Government, nuclear regulators and operators have been extremely open in sharing  information and answering the many questions of the mission to assist the world in learning lessons to ... exceptional circumstances. This has been greatly assisted by highly professional back-up support,  especially the arrangements at J-Village to secure the protection of workers going on sites • The Japanese Government’s longer term response to protect the public, including evacuation, has  been impressive and extremely well organized. A suitable and timely follow-up programme on public  and worker exposures and health monitoring would be beneficial • The planned road-map for recovery of the stricken reactors is important and acknowledged. It will ... Electric Power University IAEA International Fact Finding Expert Mission of the Nuclear Accident following the Great East Japan Earthquake and Tsunami Tokyo, Fukushima Dai-ichi NPP, Fukushima Dai-ni NPP and Tokai NPP,  Japan,  24 May- 1 June 2011, Preliminary Summary   • The tsunami hazard for several sites was underestimated. Nuclear designers and operators should appropriately  evaluate and provide protection against the risks of all natural hazards, and should periodically update these ... If the accident happens again anywhere in, it will become the global phase-out.  In the world, rational unified safety standards (organizational structure, design and operation, regulations)  should be reviewed based on the Fukushima Daiichi Problem world-wide analysis and established Copyright © 2011 Tokyo Institute of Technology All Rights Reserved 24 Nuclear Power Engineering at Electric Power University Lesson Learned from Fukushima‐Daiichi Nuclear Accident... Fault tree analysis  (Each function of Defense in Depth) Safety Function S Loss S=A*B  =A*B1+A*B2 AND gate   (Minimal Cut set) Safety Function A Loss Safety Function B Loss OR gate P(A+B+C) =P(A)+P(B)+P(C) -P(AB)-P(BC)-P(CA) +P(ABC) Safety Function B1 Loss Safety Function B2 Loss P(ABC) =P(A)P(B)P(C) Copyright © 2011 Tokyo Institute of Technology All Rights Reserved 13 Nuclear Power Engineering at Electric Power... Uncertainty Analysis Copyright © 2011 Tokyo Institute of Technology All Rights Reserved 19 Nuclear Power Engineering at Electric Power University   Public exposure expectation (Man-Rem/year) Risk sensitivity of the for containment leakage 40 0 Plant 300 Grand Gulf Oconee Peach Bottom Surry 200 100 0 0.1 1 10 100 1000 Containment leakage rate (%/day) Copyright © 2011 Tokyo Institute of Technology All Rights Reserved... Group 3.& Group 3 &Group 4 Group 5 1 0-2 Group 2 Group 2 & Group 4 -3 10 1 0 -4 1 0-5 1 0-6 FP release will decrease  due to natural fall, if the  time to PCV failure to core  melt initiation prolonged 1 0-7 -1 0 0 10 20 30 Time to PCV Failure from Core Melt Initiation (h) Failure location Xe CsI Sr Drywell × ● ○ Gas space in wetwell + ▲ △ Bottom of wetwell (liquid part) * ■ □ Copyright © 2011 Tokyo Institute . 5. 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 -1 0 0 10 20 30 Source Terms (-) Time to PCV Failure from Core Melt Initiation (h) Group 3.& Group 4. Group 3. Group 2. & Group 4. . Reserved. 13 Faulttreeanalysis (EachfunctionofDefenseinDepth) SafetyFunctionSLoss SafetyFunctionB2LossSafetyFunctionB1Loss SafetyFunctionBLossSafetyFunctionALoss ANDgate ORgate P(A+B+C) =P(A)+P(B)+P(C) -P(AB)-P(BC)-P(CA) +P(ABC) P(ABC)=P(A)P(B)P(C) S=A*B =A*B1+A*B2 (MinimalCutset)  Nuclear Power Engineering. Tokyo Institute of Technology All Rights Reserved. Safety   Regulation- 1 - Deterministicvs.Probabilistic/ Fukushima - July26,ThirdPeriod Hiroshi UJITA Tokyo Institute of Technology 1  Nuclear

Ngày đăng: 24/07/2014, 12:20

TỪ KHÓA LIÊN QUAN