Bất đối xứng trong tương tác Lepton hạt nhân năng lượng cao
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC ĐÀ LẠT BÁO CÁO ĐỀ TÀI NGHIÊN CỨU KHOA HỌC CẤP BỘ BẤT ĐỐI XỨNG TRONG TƯƠNG TÁC LEPTON-HẠT NHÂN NĂNG LƯỢNG CAO Mã số: B2006.14.02 Thời gian thực hiện: 01.2006 – 12.2007 CHỦ NHIỆM ĐỀ TÀI : LƯƠNG DUYÊN PHU ĐÀ LẠT - 2008 2 Chủ nhiệm đề tài: PGS. TSKH. Lương Duyên Phu Người tham gia: ThS Nguyễn Duy Lý Học viên Cao học Trần Quốc Lâm Người phối hợp: GS. TSKH. Trần Hữu Phát, Viện NL nguyên tử Việt Nam, Hà Nội GS. TSKH. K.A. Gridnev, Trường ĐH Quốc gia St Petersburg, LB Nga 3 MỤC LỤC Tóm tắt kết quả nghiên cứu Summary of Scientific Research Results I. Mở đầu II. Mục đích của đề tài III. Phương pháp chung IV. Các kết quả 1. Khai triển đa cực cho tiết diện tán xạ 2. Các dạng song tuyến 3. Tán xạ đàn hồi a. Hạt nhân spin J = 1/2 b. Hạt nhân spin J = 1 c. Hạt nhân spin J = 3/2 4. Tán xạ không đàn hồi 5. Hiệu ứng bất đối xứng trong tán xạ electron phân cực lên hạt nhân không đị nh hướng 6. Hiệu ứng bất đối xứng trong tán xạ của electron phân cực lên hạt nhân có định hướng 7. Hiệu ứng bất đối xứng trong vài trường hợp đặc biệt a. Bất đối xứng trong tán xạ electron lên hạt nhân spin 0 b. Bất đối xứng trong tán xạ electron lên hạt nhân có N = Z c. Bất đối xứng trong tán xạ electron lên hạt nhân 16 8 O trong chuyển dời 0 + → 0 - V. Nhận xét và kết luận Lời cám ơn Tài liệu tham khảo Chữ ký của chủ nhiệm đề tài và xác nhận của cơ quan chủ quản Bản sao thuyết minh đề tài đã phê duyệt 4 TÓM TẮT KẾT QUẢ NGHIÊN CỨU ĐỀ TÀI KHOA HỌC VÀ CÔNG NGHỆ CẤP BỘ Tên đề tài: Bất đối xứng trong tương tác lepton-hạt nhân năng lượng cao Mã số: B2006.14.02 Chủ nhiệm đề tài: PGS. TSKH. Lương Duyên Phu Tel.: 63.825 166, E-mail: lzphu@hcm.vnn.vn Cơ quan chủ trì đề tài : Trường Đại học Đà Lạt Thời gian thực hiện: 01.2006 – 12.2007 1. Mục tiêu: Áp dụng mô hình chuẩn cho bài toán tán xạ lepton–nucleon và lepton–hạt nhân năng lượng cao, xác định biểu thức của độ bất đối xứng trong quá trình năng lượng cao và khảo sát cơ chế của hiện tượng này. 2. Nội dung chính: Khai triển dòng hạt nhân thành các biên độ đa cực, từ đó khai triển tiết diện tán xạ theo các thừ a số dạng đa cực, từ đó tính độ bất đối xứng trong tán xạ lepton-hạt nhân. 3. Các kết quả chính đạt được: 1/. Khai triển đa cực cho tiết diện tán xạ 2/. Xác định các dạng song tuyến trong tiết diện tán xạ 3/. Xét tán xạ đàn hồi cho hạt nhân spin J = 1/2, 1 và 3/2 4/. Xét tán xạ không đàn hồi trong chuyển dời 3/2 - → 1/2 - của hạt nhân có A = 7 5/. Xác định hiệu ứng bất đối xứng trong tán xạ electron phân cực lên hạt nhân không định hướng 6/. Xác định hiệu ứng bất đối xứng trong tán xạ của electron phân cực lên hạt nhân có định hướng 7/. Xác định hiệu ứng bất đối xứng trong vài trường hợp đặc biệt. 5 SUMMARY RESULTS IN SCIENTIFIC RESEARCH Project Title: Asymmetry in lepton-nucleus interaction at high energies Code Number: B2006.29.43 Coordinator: Associate Professor Doctor of Sciences Lương Duyên Phu Tel.: 63.825 166, E-mail: lzphu@hcm.vnn.vn Implementing Institution: University of Dalat Duration: 01.2006 – 12.2007 1. Objectives: Applying standard model to lepton-nucleus scattering at high energies, determining the expression of asymmetry in high energy processes and studying mechanism of the phenomenon. 2. Main contents: The nuclear currents are expanded into multipole amplitudes, as a result the scattering cross section is expressed in terms of multipole form factors, from these expressions the asymmetry in lepton-nucleus scattering is calculated. 3. Results obtained: 1/. The scattering cross section is expanded into multipole components 2/. The bilinear forms in the cross section are obtained 3/. The elastic scattering on nuclei with spin J = 1/2, 1 and 3/2 is investigated 4/. The inelastic scattering in the transition 3/2 - → 1/2 - for nuclei with A = 7 is investigated 5/. The asymmetry effects in polarized electron scattering on unoriented nuclei are determined 6/. The asymmetry effects in polarized electron scattering on oriented nuclei are determined 7/. The asymmetry effects in some special cases are analyzed. 6 I. MỞ ĐẦU Nghiên cứu cấu trúc hạt nhân bằng tán xạ electron đã đạt được những kết quả rất tốt đẹp trong suốt các thập kỉ 50–70 của thế kỷ XX và cho phép xây dựng được hình ảnh khá chi tiết về cấu trúc của hạt nhân, mà thực chất là cấu trúc điện từ. Khi mô hình chuẩn ra đời, một khả năng mới về nghiên cứu cấu trúc hạt nhân đã mở ra: nghiên cứ u cấu trúc động lực của hạt nhân bằng tán xạ lepton–hạt nhân, ở đây vai trò của hạt tán xạ là lepton, có thể giới hạn ở electron và neutrino. Tác giả trước đây đã nêu ra phương pháp khai triển đa cực cho dòng chuyển dời trong các quá trình này, nhờ vậy việc xác định phần góp của các số hạng đa cực riêng rẽ cũng như việc đưa vào xét cùng hiệu ứng định hướng đã làm cho việc nghiên c ứu cấu trúc hạt nhân năng lượng cao trở nên thuận tiện hơn. Do có mặt tương tác yếu, tán xạ của electron lên hadron sẽ trở nên bất đối xứng đối với electron quay phải và quay trái, tức là độ bất đối xứng A RL khác 0. Trong phạm vi mô hình chuẩn, tương tác lepton-nucleon đã được xác định. Điều này cho phép trên nguyên tắc có thể khảo sát cấu trúc hạt nhân dựa trên tương tác của lepton với hệ các nucleon. Như đã biết, tương tác điện từ của quá trình electron-nucleon đã cho phép tìm hiểu được cấu trúc của hạt nhân, xác định được nhiều đặc trưng của hạt nhân với độ chính xác khá cao. Có thể dự đoán rằng tương tác lepton- nucleon xét trong khuôn khổ mô hình chuẩn m ở ra khả năng mới, nâng cao hơn hiệu quả nghiên cứu cấu trúc hạt nhân so với phương pháp điện từ. Mặt khác, việc nghiên cứu cấu trúc hạt nhân bằng tán xạ lepton-hạt nhân cũng cho ta đánh giá mô hình chuẩn. II. MỤC ĐÍCH CỦA ĐỀ TÀI Trong những năm gần đây việc nghiên cứu cấu trúc hạt nhân bằng mô hình chuẩn và dựa trên tán xạ lepton-hạt nhân ngày càng được chú ý nhiều [1, 2, 3, 14]. Điề u này liên quan đến yêu cầu đánh giá mô hình chuẩn, việc phát triển các phương pháp tính toán về cấu trúc hạt nhân cũng như khả năng nâng cao năng lượng của các lepton tán xạ, mà nhiều phòng thí nghiệm trên thế giới đã gia tốc electron đến năng lượng cỡ 100 GeV. Ngoài ra, việc tạo ra các thiết bị làm định hướng hạt nhân và lepton đã cho phép tìm kiếm được thông tin bổ sung về cấu trúc hạt nhân, trước hết là việc xác định được trên th ực nghiệm bản thân các biên độ tán xạ riêng phần (còn gọi là thừa số dạng riêng phần hay thừa số dạng đa cực), chứ không phải chỉ là một số biểu thứ tổng các bình phương môđun các đại lượng ấy như trong các thí nghiệm với các hạt không định hướng. Tính cấp thiết của đề tài là những đòi hỏi phải làm sáng tỏ cơ chế tương tác của h ạt nhân ở năng lượng cao, bổ sung vào các hiểu biết đã có về cấu trúc hạt nhân năng lượng thấp đã biết. Từ trước đến nay bài toán cấu trúc hạt nhân được xét một cách hệ thống với tương tác điện từ, còn tương tác mạnh và tương tác yếu được đưa vào chủ yếu theo phương pháp hiện tượng luận. Các nghiên cứu ở năng lượng cao hơn chứng tỏ rằng phải tính đến các bậc tự do quark và gluon trong hadron và trong hạt nhân. Theo quan niệm 7 hiện nay, ở vùng năng lượng siêu cao, khoảng 10 16 GeV trở lên, các hạt cơ bản có cấu trúc dạng dây, hay nếu xét trong khung cảnh lý thuyết hợp nhất, chúng là các siêu dây hoặc siêu màng. Khi tăng năng lượng tán xạ lên đến mức siêu cao, cần phải tính đến các yếu tố này. Mục đích của đề tài là áp dụng mô hình chuẩn cho bài toán tán xạ lepton–nucleon và lepton–hạt nhân năng lượng cao, xác định biểu thức của độ bất đối xứng trong quá trình năng lượng cao và khảo sát cơ chế của hiện tượng này. Trong [7] tác giả đã nghiên cứu chung về tán xạ lepton-hạt nhân trong điều kiện định hướng và rút ra công thức tổng quát cho tiết diện tán xạ lepton phân cực lên hạt nhân định hướng. Biên độ tán xạ được khai triển theo đa cực, khai triển như thế có vai trò làm rõ ý nghĩa vật lý của các thành phần có momen xung lượng xác định tham gia vào biên độ tán xạ. Như vậy là ta có công thức biểu thị biên độ tán xạ toàn phần qua các biên độ tán xạ riêng phần, mỗi số hạng ứng với một momen xung lượng xác định. Các biên độ tán xạ riêng phần này còn gọi là các thừa số dạng riêng phần hay thừa số dạng đa cực. Bản thân tiết diện tán xạ biểu thị qua các dạng song tuyến của các thừa số dạng đa cực. Công trình này cho một bổ sung hoàn chỉnh các công thức ở [7]. Các thừa số dạng đa cực có 3 loạ i: điện từ, vectơ và trục. Các thừa số dạng điện từ đã được tính toán để nghiên cứu cấu trúc hạt nhân từ những thập niên 50-70 của thế kỷ trước, đặc biệt là với công trình của Willey [22]. Bản thân tác giả cũng đã thực hiện nhiều tính toán các thừa số dạng điện từ cho nhiều hạt nhân cụ thể trong các công trình trước đây [15-20]. Các thừa số d ạng vectơ và trục là các thừa số dạng ứng với tương tác yếu, gọi là các thừa số dạng yếu. Theo lý thuyết hợp nhất điện từ-yếu thì các thừa số dạng vectơ có liên hệ với các thừa số dạng điện từ. Như vậy chỉ còn phải tính các thừa số dạng trục. Việc tính các thừa số dạng trục là một trong những nhi ệm vụ chủ yếu của việc nghiên cứu cấu trúc hạt nhân ở vùng năng lượng cao hiện nay. Một trong những nhiệm vụ cơ bản của đề tài này là làm rõ vai trò của các thừa số dạng trục. Để có thể đối chiếu thực nghiệm, các thừa số dạng riêng phần cần được đưa vào biểu thức của tiết diện tán xạ và nghiên cứu dáng điệu củ a tiết diện tán xạ phụ thuộc góc cũng như phụ thuộc năng lượng. Một đại lượng khác nữa có thể đối chiếu thực nghiệm là độ bất đối xứng (phải-trái) của tán xạ. Vì tương tác điện từ là đối xứng nên tạo nên bất đối xứng chính là phần tương tác yếu trong tương tác hợp nhất. Nhiệm vụ chính của đề tài này là việc kh ảo sát độ bất đối xứng của tán xạ electron-hạt nhân. Phương pháp nghiên cứu là sử dụng lý thuyết trường lượng tử để tính các tiết diện tán xạ và khai triển các đại lượng theo các biên độ đa cực, cũng như để phân tích các tính chất đối xứng (và bất đối xứng) của các quá trình hạt nhân và của bản thân cấu trúc hạt nhân. Việc biểu thị tiết diện tán xạ cũng nh ư độ bất đối xứng qua các thừa số dạng là tiện lợi trên hai phương diện: một mặt nó làm rõ sự phụ thuộc của các đại lượng vật lý có thể đo được vào các số hạng thành phần có mômen xung lượng xác định, mặt khác các đại lượng thành phần này lại có thể tính được theo các mẫu cấu trúc hạt nhân. Chính điều này làm ta có thêm thông tin về cấu trúc hạt nhân. III. PHƯƠNG PHÁP CHUNG 8 Sau đây là phương pháp tổng quát tính tiết diện tán xạ trong lý thuyết trường và áp dụng trong lý thuyết hợp nhất điện từ-yếu mà tác giả đã sử dụng trong các công trình trước đây. Biên độ tán xạ lepton-hạt nhân có dạng sau: 5 2 4 '()'( )() fi F V A Z M uuJQ u g g uJQ Q αα αα πα γλγγ ⎡⎤ =++ ⎣⎦ (1) trong đó )(QJ F α và )(QJ Z α là các dòng điện từ và dòng yếu của hạt nhân, Q = K – K’ = ( ω , q) là xung lượng truyền, K = ( ε , k) và K’ = ( ε ’, k’) là các xung lượng 4 chiều của lepton trước và sau tán xạ, m Z là khối lượng của boson Z 0 và 22 22 2 16 ( )cos Z W gQ mQ λ παθ =− − , (2) g là hằng số tương tác yếu còn θ W là góc Weinberg. Ta sẽ xét trường hợp năng lượng đủ cao, từ hàng GeV trở lên, và bỏ qua khối lượng electron so với năng lượng của nó. Tiết diện tán xạ của quá trình có dạng: σ = ηε ε '4 2 e m ∑ −−− if 2 fi M , (3) trong đó ký hiệu if −−− ∑ chỉ lấy trung bình theo các định hướng ban đầu và tổng theo các định hướng cuối, η là thừa số giật lùi. Ở năng lượng cao, phân cực của electron là dọc và đặc trưng bằng hình chiếu của vectơ phân cực lên phương chuyển động ξ = ξ.k/k và ξ ’ = ξ’.k/k. Về định hướng của hạt nhân, ta xét trường hợp đối xứng trục và khi đó trạng thái định hướng có thể biểu thị bằng các tham số Fano α ν : α ν = 12 1 +J ∑ M (-1) J – M p M 0 ν MJJM C − , (4) ở đây p M là trọng thống kê của trạng thái hạt nhân có hình chiếu spin M, các lượng JM MJMJ C 2211 là các hệ số Clebsch–Gordan. Trong [21] dòng điện từ của hạt nhân được khai triển thành các thành phần đa cực như sau: * 0 () 4(2 1) (, ,0) () LC FmLm Lmp LD Fq ρπγβ =+ ∑ q , ** () 4(2 1) (, ,0) () Lp FpmLmp Lmp L DFq πγβ =+ ∑ Jq e . (5) 9 Trong khai triển ta đã dùng hệ tọa độ trong đó xung lượng truyền q hướng dọc theo trục Z và e p (p = 0, ±1) là các vectơ đơn vị chu trình trong hệ đó, (, ,0) L pm D γβ là các hàm Wigner trong đó các góc γ và β biểu thị phương của định hướng hạt nhân. Các lượng C Lm F và p Lm F là các thành phần đa cực của dòng với p = 0, ±1 và ta sử dụng các ký hiệu sau 0|| Lm Lm FF≡ , () 1 1 2 EM Lm Lm Lm FFF ± ≡− ± . Ta gọi C Lm F , || Lm F , E Lm F , M Lm F là thành phần Coulomb, dọc, điện và từ (ngang) lần lượt, với momen góc Lm (bậc của đa cực). Các công thức ngược biểu thị các thành phần này qua dòng là 3 () () (,) CL C Lm Lm F F qi Bqd ρ = ∫ rrr , 13 () (). (,) EL E Lm F Lm Fq i q d + = ∫ JrB r r , 3 () (). (,) ML M Lm F Lm Fq i q d= ∫ JrB r r , || 1 || 3 () (). (,) L Lm F Lm Fq i q d − = ∫ JrB r r , (6) Trong đó C Lm B và X Lm B (X = E, M, ||) là các hàm thế đa cực (Coulomb và vectơ) của trường. Tác giả đã phát triển phương pháp trình bày trên xét cho tương tác hợp nhất điện từ- yếu và áp dụng tính tiết diện tán xạ, từ đó tính độ bất đối xứng. Sau đây là các kết quả (Các công thức có đánh dấu * là của tác giả). IV. CÁC KẾT QUẢ 1. Khai triển đa cực cho tiết diện tán xạ Tương tự với khai triển của dòng điện từ (5-6), dòng yếu trung hòa của hạt nhân có khai triển thành các thành phần đa cực như sau: * 0 () 4(2 1) (, ,0) () LC ZmLm Lmp L DZq ρπγβ =+ ∑ q , ** () 4(2 1) (, ,0) () Lp Z pm Lm p Lmp LD Zq πγβ =+ ∑ Jq e , (7*) với 10 3 () () (,) CL C Lm Lm Z Z qi Bqd ρ = ∫ rrr , 13 () (). (,) EL E Lm Z Lm Z qi qd + = ∫ JrB r r , 3 () (). (,) ML M Lm Z Lm Z qi qd= ∫ JrB r r , || 1 || 3 () (). (,) L Lm Z Lm Z qi qd − = ∫ JrB r r . (8*) Theo lý thuyết hợp nhất điện từ-yếu, dòng yếu trung hòa có cấu trúc gồm hai dòng: dòng vectơ V α và dòng trục A α : Z JVA α αα =+ , (0) (1) () ()VS VV VVV α αα ββ =+ , (0) (1) () ()AS AV A AA α αα ββ =+ , (9) (0) 2 VW x β =− , (1) 12 VW x β =− , (0) 0 A β = , (1) 1 A β = , x W ≡ e/g = sin 2 θ W trong đó các chỉ số dưới (S) và (V) biểu thị các thành phần isoscalar và isovector. Theo ký hiệu này thì dòng điện từ có cấu trúc như sau: () ()FSV JVV α αα =+ . (10) Các dòng và các thành phần của chúng trong các công thức trên được hiểu theo nghĩa toán tử. Trong các quá trình tán xạ ta phải lấy yếu tố ma trận giữa các trạng thái đầu |J i M i 〉 và cuối |J f M f 〉 của hạt nhân. Các yếu tố ma trận ấy || X f fLmii JM S JM 〈 〉 (S = F, Z; X = C, ||, E, M) có thể rút gọn theo định lí Wigner-Eckart 1 || |||| 21 ff ii JM XX f fLmii JMLmf L i f JM S JM C J S J J 〈〉=〈〉 + , (11) trong đó || || X f Li JS J 〈〉 là các yếu tố ma trận rút gọn, mà chúng ta sẽ gọi là “các thừa số dạng đa cực ” của hạt nhân (trong chuyển dời đang xét) và kí hiệu đơn giản là X L S . Bây giờ đặt tất cả các biểu thức khai triển vào (1) và (2), ta thu được các công thức sau cho tiết diện tán xạ lepton-hạt nhân khi các hạt định hướng: () 2 4 4' FFZZ R RR Q πα ε σ ηε =++ (12*) R F = (1 + ξξ ’)A 1 + ( ξ + ξ ’)A 2 , R FZ = 2 λ [g V (1 + ξξ ’) + g A ( ξ + ξ ’)]B 1 + + 2 λ [g V ( ξ + ξ ’) + g A (1 + ξξ ’)]B 2 , R Z = λ 2 [( 22 VA gg+ )(1 + ξξ ’) + 2g V g A ( ξ + ξ ’)]C 1 + + 2 λ [( 22 VA gg+ )( ξ + ξ ’) + 2g V g A (1 + ξξ ’)]C 2 , (13*) [...]... 5 5 5 Hiệu ứng bất đối xứng trong tán xạ electron phân cực lên hạt nhân không định hướng Mục đích cuối cùng của công trình này là xét hiệu ứng bất đối xứng trong tán xạ electron -hạt nhân liên quan đến tương tác yếu trong lý thuyết hợp nhất 20 Trong lý thuyết điện từ, tán xạ electron lên hạt nhân là đối xứng đối với trục tán xạ Trong lý thuyết hợp nhất tương tác điện từ-yếu, tính đối xứng này không... hiệu ứng tương tác yếu thuần túy của electron với hạt nhân trong trường hợp này có thể quan sát được chỉ khi năng lượng đủ lớn để tương tác yếu bậc nhất đủ vượt trội tương tác điện từ ở bậc hai V NHẬN XÉT VÀ KẾT LUẬN Mô hình chuẩn và ứng dụng của nó xét bài toán tán xạ lepton- hạt nhân là một lĩnh vực nghiên cứu có hiệu quả về cấu trúc hạt nhân, trước hết là nghiên cứu ảnh hưởng của tương tác yếu lên... đây ARL = 2λ g A βV(0) 1 + 2λ gV βV(0) (35*) Độ bất đối xứng này hoàn toàn không phụ thuộc và cấu trúc hạt nhân c Bất đối xứng trong tán xạ electron lên hạt nhân 16O trong chuyển dời 0+ → 08 Hạt nhân ở trạng thái cơ sở có spin và chẵn lẻ là 0+ Tán xạ electron lên hạt nhân 16O 8 gây chuyển dời 0+ → 0- là tán xạ không đàn hồi Yếu tố ma trận khác 0 duy nhất trong C trường hợp này là A0 Ta có A1 = A2 =... + 2λ ( g A B1 + gV B2 ) A1 + 2λ ( gV B1 + g A B2 ) (29*) Khi các hạt không định hướng, công thức này trở về công thức (25) 7 Hiệu ứng bất đối xứng trong vài trường hợp đặc biệt Sau đây là vài trường hợp mà hiệu ứng bất đối xứng có dạng đặc biệt a Bất đối xứng trong tán xạ electron lên hạt nhân spin 0 Khi hạt nhân có spin J = 0 thì trong tán xạ đàn hồi chỉ có mặt hai thừa số dạng đa cực F và V0C Khi... trục sẽ cần được tính trực tiếp, không dùng giả thiết về sự tỉ lệ nói trên 6 Hiệu ứng bất đối xứng trong tán xạ của electron phân cực lên hạt nhân có định hướng Ngoài hiệu ứng bất đối xứng nêu trong mục 5, cũng có thể xét thêm hiệu ứng bất đối xứng gây bởi sự định hướng của hạt nhân Trong tán xạ electron tương đối tính, khi phân cực trước tán xạ ξ = 1 thì phân cực sau tán xạ cũng có ξ’ = 1 Từ các công... nghĩa là tương tác của electron với hạt nhân là tương tác yếu thuần túy Tiết diện tán xạ này dẫn đến biểu thức về độ bất đối xứng sau: ARL = 2 gV g A 2 g A / gV = 2 2 gV + g A 1 + ( g A / gV ) 2 (38*) Đây là một hiệu ứng rất độc đáo suy ra từ tương tác hợp nhất điện từ-yếu Chú ý rằng vì ta đang sử dụng phép gần đúng bậc nhất, nên ở bậc hai có thể electron vẫn có tương tác điện từ với hạt nhân Vì thế... trường hợp, sử dụng chúng trong bài toán nghiên cứu cấu trúc điện từ-yếu của hạt nhân dựa trên tán xạ lepton- hạt nhân trong điều kiện định hướng Thiếu sót của công trình này là chưa có các số liệu thực nghiệm để đối chiếu Kỹ thuật thực nghiệm hiện nay về hạt nhân đã tạo định hướng được khá nhiều hạt nhân nhẹ và trung bình, cũng như tạo được phân cực electron khá cao Như vậy ở tương tác điện từ, việc sử... các cơ chế tương tác có mặt trong hạt nhân mà tác giả đã theo đuổi trong nhiều năm nay Nó cũng góp phần vào thành tựu chung trong các nghiên cứu khoa học cơ bản ở Việt Nam Kết quả nghiên cứu có thể sử dụng trong các viện nghiên cứu, các trường đại học trong đó có chuyên ngành vật lý hạt nhân Các kết quả nghiên cứu đạt được cũng bổ sung vào nội dung giảng dạy cho chuyên ngành vật lý hạt nhân ở bậc đại... thấy trong biểu thức của độ bất đối xứng, các thừa số dạng trục chỉ có mặt trong hạng thức B 20 Trong các công trình trước đây, tác giả cũng đã nghiên cứu tính bất đối E xứng, nhưng thừa số dạng trục lúc đó được tính trên cơ sở coi thừa số dạng AL tỉ lệ với M VLM , còn AL tỉ lệ với V LE Ở đây các thừa số dạng trục sẽ cần được tính trực tiếp, không dùng giả thiết về sự tỉ lệ nói trên 6 Hiệu ứng bất đối. .. thừa số dạng đa cực F và V0C Khi đó từ (25) và (26) ta có C 0 ARL 2λ g AV0C = C F0 + 2λ gV V0C (30*) Chú ý rằng hạt nhân có spin bằng 0 là hạt nhân hình cầu Sự bất đối xứng trong tán xạ electron lên hạt nhân hình cầu là một tính chất rất độc đáo, chỉ có khi electron có tham gia tương tác yếu Mặt khác thừa số V0C dạng tỉ lệ với thừa số dạng F0C : V0C = 1 ⎡⎛ N ⎞ (0) ⎛ N ⎞ (1) ⎤ C ⎜1 + ⎟ βV + ⎜ 1 − . biệt a. Bất đối xứng trong tán xạ electron lên hạt nhân spin 0 b. Bất đối xứng trong tán xạ electron lên hạt nhân có N = Z c. Bất đối xứng trong tán. bài toán tán xạ lepton nucleon và lepton hạt nhân năng lượng cao, xác định biểu thức của độ bất đối xứng trong quá trình năng lượng cao và khảo sát cơ