KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 05 Thời gian làm bài: 150 phút, không kể thời gian giao đề I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (3,0 điểm): Cho hàm số: 2 2 (4 )y x x= - 1) Khảo sát sự biến thiên và vẽ đồ thị ( )C của hàm số đã cho. 2) Tìm điều kiện của tham số b để phương trình sau đây có 4 nghiệm phân biệt: 4 2 4 log 0x x b- + = 3) Tìm toạ độ của điểm A thuộc ( )C biết tiếp tuyến tại A song song với : 16 2011d y x= + Câu II (3,0 điểm): 1) Giải phương trình: 2 2 log ( 3) log ( 1) 3x x- + - = 2) Tính tích phân: 2 3 sin 1 2 cos x I dx x p p = + ò 3) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: 4 3 x x y e e x - = + + trên đoạn [1;2] Câu III (1,0 điểm): Cho tứ diện SABC có ba cạnh SA, SB, SC đôi một vuông góc với nhau, SB =SC = 2cm, SA = 4cm. Xác định tâm và tính bán kính của mặt cầu ngoại tiếp tứ diện, từ đó tính diện tích của mặt cầu đó. II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây 1. Theo chương trình chuẩn Câu IVa (2,0 điểm): Trong không gian Oxyz , cho điểm ( 3;2; 3)A - - và hai đường thẳng 1 1 2 3 : 1 1 1 x y z d - + - = = - và 2 3 1 5 : 1 2 3 x y z d - - - = = 1) Chứng minh rằng 1 d và 2 d cắt nhau. 2) Viết phương trình mặt phẳng (P) chứa 1 d và 2 d . Tính khoảng cách từ A đến mp(P). Câu Va (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây: 2 1y x x= + - và 4 1y x x= + - 2. Theo chương trình nâng cao Câu IVb (2,0 điểm): Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng 1 1 2 3 : 1 1 1 x y z d - + - = = - và 2 1 6 : 1 2 3 x y z d - - = = 1) Chứng minh rằng 1 d và 2 d chéo nhau. 2) Viết phương trình mp(P) chứa 1 d và song song với 2 d . Tính khoảng cách giữa 1 d và 2 d Câu Vb (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây: 2y x= , 4x y+ = và trục hoành Hết Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: Số báo danh: Chữ ký của giám thị 1: Chữ ký của giám thị 2: BI GII CHI TIT . Cõu I: 2 2 4 2 (4 ) 4y x x x x= - = - + Tp xỏc nh: D = Ă o hm: 3 4 8y x x  = - + Cho 3 2 2 2 0 4 0 0 0 4 8 0 4 ( 2) 0 2 0 2 2 x x x y x x x x x x x ộ ộ ộ = = = ờ ờ ờ  = - + = - + = ờ ờ ờ - + = = = ờ ờ ờ ở ở ở Gii hn: lim lim x x y y - Ơ + Ơđ đ = - Ơ = - Ơ ; Bng bin thiờn x 2- 0 2 + y  + 0 0 + 0 y 4 4 0 Hm s B trờn cỏc khong ( ; 2),(0; 2)- Ơ - , NB trờn cỏc khong ( 2; 0),( 2; )- + Ơ Hm s t cc i y C = 4 ti 2x = Cẹ , t cc tiu y CT = 0 ti 0x = CT . Giao im vi trc honh: cho 2 4 2 2 0 0 0 4 0 2 4 x x y x x x x ộ ộ = = ờ ờ = - + = ờ ờ = = ờ ờ ở ở Giao im vi trc tung: cho 0 0x y= =ị Bng giỏ tr: x 2- 2- 0 2 2 y 0 0 0 4 0 th hm s nh hỡnh v bờn õy: 4 2 4 2 4 log 0 4 logx x b x x b- + = - + =Û (*) Số nghiệm của phương trình (*) bằng số giao điểm của (C) và d: y = logb Dựa vào đồ thị, (C) cắt d tại 4 điểm phân biệt khi và chỉ khi 4 0 log 4 1 10b b< < < <Û Vậy, phương trình (*) có 4 nghiệm phân biệt khi và chỉ khi 4 1 10b< < Giả sử 0 0 ( ; )A x y . Do tiếp tuyến tại A song song với : 16 2011d y x= + nên nó có hệ số góc 3 3 0 0 0 0 0 0 ( ) 16 4 8 16 4 8 16 0 2f x x x x x x ¢ = - + = - + = = -Û Û Û 0 0 2 0x y= - =Þ Vậy, ( 2;0)A - Câu II: 2 2 log ( 3) log ( 1) 3x x- + - = Điều kiện: 3 0 3 3 1 0 1 x x x x x ì ì ï ï - > > ï ï >Û Û í í ï ï - > > ï ï î î . Khi đó, 2 2 2 log ( 3) log ( 1) 3 log ( 3)( 1) 3 ( 3)( 1) 8x x x x x x é ù - + - = - - = - - =Û Û ë û (loai (nhan) 2 2 1 ) 3 3 8 4 5 0 5 x x x x x x x é = - ê - - + = - - =Û Û Û ê = ê ë Vậy, phương trình đã cho có nghiệm duy nhất: x = 5 2 3 sin 1 2 cos x I dx x p p = + ò Đặt 1 2 cos 2 sin . sin . 2 dt t x dt x dx x dx - = + = - =Þ Þ Đổi cận: x 3 p 2 p t 2 1 Thay vo: 2 1 2 2 1 1 1 1 1 ln ln 2 ln 2 2 2 2 2 dx dt I t t t ổ ử - ữ ỗ ữ = ì = = = = ỗ ữ ỗ ố ứ ũ ũ Vy, ln 2I = Hm s 4 3 x x y e e x - = + + liờn tc trờn on [1;2] o hm: 4 3 x x y e e -  = - + Cho 2 4 0 4 3 0 3 0 3 4 0 x x x x x x y e e e e e e -  = - + = - + = + - = (1) t x t e= (t > 0), phng trỡnh (1) tr thnh: (nhan) (loai) 2 1 3 4 0 1 0 [1;2] 4 x t t t e x t ộ = ờ + - = = = ẽ ờ = - ờ ở (loi) 4 (1) 3f e e = + + v 2 2 4 (2) 6f e e = + + Trong 2 kt qu trờn s nh nht l: 4 3e e + + , s ln nht l 2 2 4 6e e + + Vy, [1;2] 4 min 3y e e = + + khi x = 1 v 2 2 [1;2] 4 max 6y e e = + + khi x = 2 Cõu III Gi H,M ln lt l trung im BC, SA v SMIH l hbh. Ta cú, || ( )IH SA SBC IH SH^ ^ị ị SMIH l hỡnh ch nht D thy IH l trung trc ca on SA nờn IS = IA H l tõm ng trũn ngoi tip SBCD v ( )IH SBC^ nờn ( )IS IB IC IA= = = ị I l tõm mt cu ngoi tip hỡnh chúp. Ta cú, 2 2 2 2 1 1 1 2 2 2 2 2 2 SH BC SB SC= = + = + = (cm) v 1 1 2 2 IH SM SA= = = (cm) Bán kính mặt cầu là: 2 2 2 2 ( 2) 2 6R IS SH IH= = + = + = Diện tích mặt cầu : 2 2 4 4 ( 6) 24 ( )S R cm p p p = = = THEO CHƯƠNG TRÌNH CHUẨN Câu IVa: d 1 đi qua điểm 1 (1; 2;3)M - , có vtcp 1 (1;1; 1)u = - r d 2 đi qua điểm 2 (3;1;5)M , có vtcp 2 (1;2;3)u = r Ta có 1 2 1 1 1 1 1 1 [ , ] ; ; (5; 4;1) 2 3 3 1 1 2 u u æ ö - - ÷ ç ÷ ç = = - ÷ ç ÷ ç ÷ ÷ ç è ø r r và 1 2 (2;3;2)M M = uuuuuur Suy ra, 1 2 1 2 [ , ]. 5.2 4.3 1.2 0u u M M = - + = uuuuuur r r , do đó d 1 và d 2 cắt nhau. Mặt phẳng (P) chứa 1 d và 2 d . Điểm trên (P): 1 (1; 2;3)M - vtpt của (P): 1 2 [ , ] (5; 4;1)n u u= = - r r r Vậy, PTTQ của mp(P) là: 5( 1) 4( 2) 1( 3) 0x y z- - + + - = 5 4 16 0x y z- + - =Û Khoảng cách từ điểm A đến mp(P) là: 2 2 2 5.( 3) 4.2 ( 3) 16 42 ( ,( )) 42 42 5 ( 4) 1 d A P - - + - - = = = + - + Câu Va: 2 1y x x= + - và 4 1y x x= + - Cho 2 4 2 4 1 1 0 0, 1x x x x x x x x+ - = + - - = = = ±Û Û Vậy, diện tích cần tìm là : 1 2 4 1 S x x dx - = - ò 0 1 3 5 3 5 0 1 2 4 2 4 1 0 1 0 2 2 4 ( ) ( ) 3 5 3 5 15 15 15 x x x x S x x dx x x dx - - æ ö æ ö ÷ ÷ ç ç ÷ ÷ ç ç = - + - = - + - = + =Û ÷ ÷ ç ç ÷ ÷ è ø è ø ò ò THEO CHƯƠNG TRÌNH NÂNG CAO Câu IVb: d 1 đi qua điểm 1 (1; 2;3)M - , có vtcp 1 (1;1; 1)u = - r d 2 đi qua điểm 2 ( 3;2; 3)M - - , có vtcp 2 (1;2;3)u = r Ta có 1 2 1 1 1 1 1 1 [ , ] ; ; (5; 4;1) 2 3 3 1 1 2 u u æ ö - - ÷ ç ÷ ç = = - ÷ ç ÷ ç ÷ ÷ ç è ø r r và 1 2 ( 4;4; 6)M M = - - uuuuuur Suy ra, 1 2 1 2 [ , ]. 5.( 4) 4.4 1.( 6) 42 0u u M M = - - + - = - ¹ uuuuuur r r , do đó d 1 và d 2 chéo nhau. Mặt phẳng (P) chứa 1 d và song song với 2 d . Điểm trên (P): 1 (1; 2;3)M - vtpt của (P): 1 2 [ , ] (5; 4;1)n u u= = - r r r Vậy, PTTQ của mp(P) là: 5( 1) 4( 2) 1( 3) 0x y z- - + + - = 5 4 16 0x y z- + - =Û Khoảng cách giữa hai đường thẳng d 1 và d 2 bằng khoảng cách từ M 2 đến mp(P): 1 2 2 2 2 2 5.( 3) 4.2 ( 3) 16 42 ( , ) ( ,( )) 42 42 5 ( 4) 1 d d d d M P - - + - - = = = = + - + Câu Vb: Ta có, 2 2 ( 0) 2 y y x x y= = >Û và 4 4x y x y+ = = -Û Trục hoành là đường thẳng có phương trình y = 0: Cho (nhan) (loai) 2 2 4 4 4 0 2 2 2 y y y y y y é = - ê = - + - =Û Û ê = ê ë Diện tích cần tìm là: 2 2 0 4 2 y S y dx= + - ò 2 2 3 2 2 0 0 14 14 ( 4) 4 2 6 2 3 3 y y y S y dx y æ ö ÷ ç ÷ ç = + - = + - = - = ÷ ç ÷ è ø ò (đvdt) . KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 05 Thời gian làm bài: 150 phút, không kể thời gian giao đề I. PHẦN. mp(P) là: 5( 1) 4( 2) 1( 3) 0x y z- - + + - = 5 4 16 0x y z- + - =Û Khoảng cách từ điểm A đến mp(P) là: 2 2 2 5. ( 3) 4.2 ( 3) 16 42 ( ,( )) 42 42 5 ( 4) 1 d A P - - + - - = = = + - + Câu Va:. ) 3 5 3 5 15 15 15 x x x x S x x dx x x dx - - æ ö æ ö ÷ ÷ ç ç ÷ ÷ ç ç = - + - = - + - = + =Û ÷ ÷ ç ç ÷ ÷ è ø è ø ò ò THEO CHƯƠNG TRÌNH NÂNG CAO Câu IVb: d 1 đi qua điểm 1 (1; 2;3)M - , có