1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tổng hợp đề toán + đáp án khối A qua các năm 2002-2014

74 615 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 74
Dung lượng 4,65 MB

Nội dung

Tổng hợp tất cả các đề thi và đáp an môn toán qua các năm,giúp các bạn có cái nhìn tổng quan về các dạng đề toán mà bộ giáo dục đã từng ra,giúp các bạn đạt kết quả cao trong kì thi đại học quan trọng

bộ giáo dục và đào tạo Kỳ thi tuyển sinh đại học, cao ĐẳnG năm 2002 Môn thi : toán Đề chính thức (Thời gian làm bài: 180 phút) _____________________________________________ Câu I (ĐH : 2,5 điểm; CĐ : 3,0 điểm) Cho hàm số : (1) ( là tham số). 23223 )1(33 mmxmmxxy +++= m 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi .1 = m 2. Tìm k để phơng trình: có ba nghiệm phân biệt. 033 2323 =++ kkxx 3. Viết phơng trình đờng thẳng đi qua hai điểm cực trị của đồ thị hàm số (1). Câu II.(ĐH : 1,5 điểm; CĐ: 2,0 điểm) Cho phơng trình : 0121loglog 2 3 2 3 =++ mxx (2) ( là tham số). m 1 Giải phơng trình (2) khi .2 = m 2. Tìm để phơng trình (2) có ít nhất một nghiệm thuộc đoạn [m 3 3;1 ]. Câu III. (ĐH : 2,0 điểm; CĐ : 2,0 điểm ) 1. Tìm nghiệm thuộc khoảng )2;0( của phơng trình: .32cos 2sin21 3sin3cos sin += + + + x x xx x 5 2. Tính diện tích hình phẳng giới hạn bởi các đờng: .3,|34| 2 +=+= xyxxy Câu IV.( ĐH : 2,0 điểm; CĐ : 3,0 điểm) 1. Cho hình chóp tam giác đều đỉnh có độ dài cạnh đáy bằng a. Gọi ABCS . ,S M và lần lợt N là các trung điểm của các cạnh và Tính theo diện tích tam giác , biết rằng SB .SC a AMN mặt phẳng ( vuông góc với mặt phẳng . )AMN )(SBC 2. Trong không gian với hệ toạ độ Đêcac vuông góc Oxyz cho hai đờng thẳng: và . =++ =+ 0422 042 : 1 zyx zyx += += += tz ty tx 21 2 1 : 2 a) Viết phơng trình mặt phẳng chứa đờng thẳng )(P 1 và song song với đờng thẳng . 2 b) Cho điểm . Tìm toạ độ điểm )4;1;2(M H thuộc đờng thẳng 2 sao cho đoạn thẳng MH có độ dài nhỏ nhất. Câu V. ( ĐH : 2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ Đêcac vuông góc Oxy , xét tam giác vuông tại , ABC A phơng trình đờng thẳng là BC ,033 = yx các đỉnh và A B thuộc trục hoành và bán kính đờng tròn nội tiếp bằng 2. Tìm tọa độ trọng tâm của tam giác . G ABC 2. Cho khai triển nhị thức: n x n n n x x n n x n x n n x n n x x CCCC + ++ + = + 3 1 3 2 1 1 3 1 2 1 1 2 1 0 3 2 1 22222222 L ( n là số nguyên dơng). Biết rằng trong khai triển đó C và số hạng thứ t 13 5 nn C= bằng , tìm và n20 n x . Hết Ghi chú: 1) Thí sinh chỉ thi cao đẳng không làm Câu V. 2) Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: Số báo danh: 1 bộ giáo dục và đào tạo Kỳ thi tuyển sinh đại học, cao đẳng năm 2002 Đáp án và thang điểm môn toán khối A Câu ý Nội dung ĐH CĐ I1 23 31 xxym +== Tập xác định Rx . )2(363' 2 =+= xxxxy , = = = 2 0 0' 2 1 x x y 10",066" ===+= xyxy Bảng biến thiên + 210x ' y + 0 0 + 0 " y y + lõm U 4 CT 2 CĐ 0 lồi = = = 3 0 0 x x y , 4)1( =y Đồ thị: ( Thí sinh có thể lập 2 bảng biến thiên) 1,0 đ 0,25 đ 0,5 đ 0,25 đ 1,5 đ 0,5đ 0,5 đ 0,5 đ - 1 1 2 3 x 0 2 4 y 2 I2 Cách I. Ta có 2332323 33033 kkxxkkxx +=+=++ . Đặt 23 3kka += Dựa vào đồ thị ta thấy phơng trình axx =+ 23 3 có 3 nghiệm phân biệt 43040 23 <+<<< kka ()( ) >+ < >++ < 021 30 0)44)(1( 30 2 2 kk k kkk k << 20 31 kk k Cách II. Ta có [ ] 03)3()(033 222323 =++=++ kkxkxkxkkxx có 3 nghiệm phân biệt 03)3()( 22 =++= kkxkxxf có 2 nghiệm phân biệt khác k << ++ >++= 20 31 033 0963 222 2 kk k kkkkk kk 5,0 đ 0,25 đ 0,25 đ 0,25đ 0,25 đ 5,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 3 Cách I. 3)(3)1(363 222' +=++= mxmmxxy , += = = 1 1 0 2 1 ' mx mx y Ta thấy 21 xx và 'y đổi dấu khi qua 1 x và 2 x hàm số đạt cực trị tại 1 x và 2 x . 23)( 2 11 +== mmxyy và 23)( 2 22 ++== mmxyy Phơng trình đờng thẳng đi qua 2 điểm cực trị ( ) 23;1 2 1 + mmmM và ( ) 23;1 2 2 +++ mmmM là: ++ = + 4 23 2 1 2 mmymx mmxy += 2 2 Cách II. 3)(3)1(363 222' +=++= mxmmxxy , Ta thấy 0'09)1(99' 22 =>=+= ymm có 2 nghiệm 21 xx và 'y đổi dấu khi qua 1 x và 2 x hàm số đạt cực trị tại 1 x và 2 x . Ta có 23223 )1(33 mmxmmxxy +++= () .23363 33 1 222 mmxmmxx m x ++++ = Từ đây ta có mmxy += 2 11 2 và mmxy += 2 22 2 . Vậy phơng trình đờng thẳng đi qua 2 điểm cực trị là mmxy += 2 2 . 1,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 1,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25đ 0,25 đ 0,25 đ II 1. Với 2=m ta có 051loglog 2 3 2 3 =++ xx Điều kiện 0>x . Đặt 11log 2 3 += xt ta có 06051 22 =+=+ tttt . 2 3 2 1 = = t t 5,0 đ 0,25 đ 0,1 đ 0,5 đ 3 3 1 = t (loại) , 3 3 2 32 33log3log2 ==== xxxt 3 3 =x thỏa mãn điều kiện 0>x . (Thí sinh có thể giải trực tiếp hoặc đặt ẩn phụ kiểu khác) 0,25 đ 0,5 đ 2. 0121loglog 2 3 2 3 =++ mxx (2) Điều kiện 0>x . Đặt 11log 2 3 += xt ta có 0220121 22 =+=+ mttmtt (3) .21log13log0]3,1[ 2 33 3 += xtxx Vậy (2) có nghiệm ]3,1[ 3 khi và chỉ khi (3) có nghiệm [] 2,1 . Đặt tttf += 2 )( Cách 1. Hàm số )(tf là hàm tăng trên đoạn ][ 2;1 . Ta có 2)1( =f và 6)2( =f . Phơng trình 22)(22 2 +=+=+ mtfmtt có nghiệm [] 2;1 .20 622 222 22)2( 22)1( + + + + m m m mf mf Cách 2. TH1. Phơng trình (3) có 2 nghiệm 21 ,tt thỏa mãn 21 21 << tt . Do 1 2 1 2 21 <= + tt nên không tồn tại m . TH2. Phơng trình (3) có 2 nghiệm 21 ,tt thỏa mãn 21 21 tt hoặc 21 21 tt () 200242 mmm . (Thí sinh có thể dùng đồ thị, đạo hàm hoặc đặt ẩn phụ kiểu khác ) 0,1 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,1 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ III 1. 5 32cos 2sin21 3sin3cos sin += + + + x x xx x . Điều kiện 2 1 2sin x Ta có 5 = + + + x xx x 2sin21 3sin3cos sin 5 + +++ x xxxxx 2sin21 3sin3cos2sinsin2sin =5 = + +++ x xxxxx 2sin21 3sin3cos3coscossin 5 x x xx cos5 2sin21 cos)12sin2( = + + Vậy ta có: 02cos5cos232coscos5 2 =++= xxxx 2cos =x (loại) hoặc ).(2 32 1 cos Zkkxx +== 1,0 đ 0,25 đ 0,25 đ 0,25 đ 1,0 đ 0,25 đ 0,25 đ 0,25 đ 4 2. Vì ( 0x ; ) 2 nên lấy 3 1 =x và 3 5 2 =x . Ta thấy 21 , xx thỏa mãn điều kiện 2 1 2sin x . Vậy các nghiệm cần tìm là: 3 1 =x và 3 5 2 =x . (Thí sinh có thể sử dụng các phép biến đổi khác) Ta thấy phơng trình 3|34| 2 +=+ xxx có 2 nghiệm 0 1 =x và .5 2 =x Mặt khác ++ 3|34| 2 xxx [] 5;0 x . Vậy ()()() dxxxxdxxxxdxxxxS ++++++=++= 1 0 3 1 22 5 0 2 343343|34|3 () dxxxx +++ 5 3 2 343 ()( )() dxxxdxxxdxxxS +++++= 5 3 2 3 1 2 1 0 2 5635 5 3 23 3 1 23 1 0 23 2 5 3 1 6 2 3 3 1 2 5 3 1 ++ ++ += xxxxxxxS 6 109 3 22 3 26 6 13 =++=S (đ.v.d.t) (Nếu thí sinh vẽ hình thì không nhất thiết phải nêu bất đẳng thức ++ 3|34| 2 xxx [] 5;0x ) 0,25 đ 1,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25đ 0,25 đ 1,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25đ IV 1. 1đ 1đ x 5 1 0 -1 y 3 3 2 1 8 -1 5 S N I M C A K B Gọi K là trung điểm của BC và MNSKI = . Từ giả thiết MN a BCMN , 22 1 ==// BC I là trung điểm của SK và MN . Ta có = SACSAB hai trung tuyến tơng ứng ANAM = AMN cân tại A MNAI . Mặt khác ()( ) ()( ) () () SKAISBCAI MNAI AMNAI MNAMNSBC AMNSBC = . Suy ra SAK cân tại 2 3a AKSAA == . 244 3 222 222 aaa BKSBSK === 4 10 84 3 2 22 2 222 aaaSK SASISAAI == == . Ta có 16 10 . 2 1 2 a AIMNS AMN == (đvdt) chú ý 1) Có thể chứng minh MNAI nh sau: () () AIMNSAKMNSAKBC . 2) Có thể làm theo phơng pháp tọa độ: Chẳng hạn chọn hệ tọa độ Đêcac vuông góc Oxyz sao cho h a S a A a C a BK ; 6 3 ;0,0; 2 3 ;0,0;0; 2 ,0;0; 2 ),0;0;0( trong đó h là độ dài đờng cao SH của hình chóp ABCS. . 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 6 2a) Cách I. Phơng trình mặt phẳng )( P chứa đờng thẳng 1 có dạng: ()( ) 042242 =++++ zyxzyx ( 0 22 + ) ()( )( ) 044222 =+++ zyx Vậy () 2;22; ++= P n r .Ta có () 2;1;1 2 = u r // 2 và () 22 1;2;1 M () P // ()() () = = PMPM un P 22 2 2 0 1;2;1 0. rr Vậy () 02: = zxP Cách II Ta có thể chuyển phơng trình 1 sang dạng tham số nh sau: Từ phơng trình 1 suy ra .02 = zx Đặt = = = = '4 2'3 '2 :'2 1 tz ty tx tx () )4;3;2(,0;2;0 111 = uM r // 1 . (Ta có thể tìm tọa độ điểm 11 M bằng cách cho 020 === zyx và tính () 4;3;2 21 21 ; 12 11 ; 22 12 1 = = u r ). Ta có () 2;1;1 2 =u r // 2 . Từ đó ta có véc tơ pháp của mặt phẳng )(P là : [] () 1;0;2, 21 == uun P rrr . Vậy phơng trình mặt phẳng )(P đi qua () 0;2;0 1 M và () 1;0;2 = P n r là: 02 = zx . Mặt khác ()() PM 1;2;1 2 phơng trình mặt phẳng cần tìm là: 02 = zx 5,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,1 đ 0,5 đ 0,5 đ 0,5 đ 0,5 đ 2b) b)Cách I. () MHtttHH +++ 21,2,1 2 = () 32;1;1 + ttt ()()( ) 5)1(6111263211 22 222 +=+=+++= ttttttMH đạt giá trị nhỏ nhất khi và chỉ khi () 3;3;21 Ht = Cách II. () tttHH 21;2;1 2 +++ . MH nhỏ nhất () 4;3;210. 22 HtuMHMH == r 5,0 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,1 đ 0,5 đ 0,5 đ 0,5 đ 0,5 đ V1. Ta có () 0;1 BOxBC = I . Đặt ax A = ta có );( oaA và .33 == ayax CC Vậy ( ) 33; aaC . Từ công thức () () ++= ++= CBAG CBAG yyyy xxxx 3 1 3 1 ta có + 3 )1(3 ; 3 12 aa G . Cách I. Ta có : |1|2|,1|3|,1| === aBCaACaAB . Do đó 1đ 0,25 đ 7 () 2 1 2 3 . 2 1 == aACABS ABC . Ta có () |1|3|1|3 132 2 + = ++ = aa a BCACAB S r = .2 13 |1| = + a Vậy .232|1| +=a TH1. ++ += 3 326 ; 3 347 332 11 Ga TH2 = 3 326 ; 3 134 132 22 Ga . Cách II. y C I O B A x Gọi I là tâm đờng tròn nội tiếp ABC . Vì 22 == I yr . Phơng trình () 321 3 1 1.30: 0 = == I x x xtgyBI . TH1 Nếu A và O khác phía đối với .321+= I xB Từ 2),( = ACId .3232 +=+= I xa ++ 3 326 ; 3 347 1 G TH 2. Nếu A và O cùng phía đối với .321= I xB Tơng tự ta có .3212 == I xa 3 326 ; 3 134 2 G 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 2. Từ 13 5 nn CC = ta có 3n và 1 đ 8 ()() 02835 6 )2)(1( !1 ! 5 !3!3 ! 2 =−−⇔= −− ⇔ − = − nnn nnn n n n n 4 1 −=⇒ n (lo¹i) hoÆc .7 2 = n Víi 7=n ta cã .4421402.2.3514022 222 3 3 4 2 1 3 7 =⇔=⇔=⇔=                 −−− − − xC xxx x x 0,25 ® 0,25 ® 0,5 ® Bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 Môn thi : toán khối A đề chính thức Thời gian làm bài : 180 phút ___________________________________ Câu 1 (2 điểm). Cho hàm số m x mxmx y ( (1) 1 2 ++ = là tham số). 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = 1. 2) Tìm m để đồ thị hàm số (1) cắt trục hoành tại hai điểm phân biệt và hai điểm đó có hoành độ dơng. Câu 2 (2 điểm). 1) Giải phơng trình .2sin 2 1 sin tg1 2cos 1cotg 2 xx x x x + + = 2) Giải hệ phơng trình += = .12 11 3 xy y y x x Câu 3 (3 điểm). 1) Cho hình lập phơng . Tính số đo của góc phẳng nhị diện [] . .' ' ' 'ABCD A B C D DCAB ,' , 2) Trong không gian với hệ tọa độ Đêcac vuông góc Ox cho hình hộp chữ nhật có trùng với gốc của hệ tọa độ, yz ; 0; 0.' ' ' 'ABCD A B C D A ( ), (0; ; 0), '(0; 0; ) B aDaAb . Gọi (0, 0)ab>> M là trung điểm cạnh CC . ' a) Tính thể tích khối tứ diện ' B DA M theo a và b . b) Xác định tỷ số a b để hai mặt phẳng và (' )ABD () M BD vuông góc với nhau. Câu 4 ( 2 điểm). 1) Tìm hệ số của số hạng chứa x 8 trong khai triển nhị thức Niutơn của n x x + 5 3 1 , biết rằng )3(7 3 1 4 += + + + nCC n n n n ( n là số nguyên dơng, x > 0, là số tổ hợp chập k của n phần tử). k n C 2) Tính tích phân + = 32 5 2 4xx dx I . Câu 5 (1 điểm). Cho x, y, z là ba số dơng và x + y + z 1. Chứng minh rằng .82 1 1 1 2 2 2 2 2 2 +++++ z z y y x x HếT Ghi chú : Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: . Số báo danh: . [...]... nht ca A (1,00 im) 1 1 1 1 1 + = 2+ 2 T gi thit suy ra: x y x y xy 1 1 t = a, = b ta cú: a + b = a 2 + b 2 ab x y ( (1) ) 2 A = a 3 + b3 = ( a + b ) a 2 + b 2 ab = ( a + b ) 0,25 2 T (1) suy ra: a + b = ( a + b ) 3ab 2 3 2 2 a+ b Vỡ ab nờn a + b ( a + b ) ( a + b ) 4 2 0,50 2 (a + b) 4 (a + b) 0 0 a + b 4 2 Suy ra: A = ( a + b ) 16 Vi x = y = V .a 1 1 thỡ A = 16 Vy giỏ tr ln nht ca A. .. C0 +1 + C1 +1 + + Cn +1 = 220 2n 2n 2n Ck +1 2n (1) C2n +1 k , k, 0 2n +1 k 2n + 1 nờn: 1 2n +1 C0 +1 + C1 +1 + + Cn +1 = C0 +1 + C1 +1 + + C2n +1 2n 2n 2n 2n 2n 2 ( T khai trin nh thc Niutn ca (1 + 1) 2n +1 C0 +1 + C1 +1 + + C2n +1 = (1 + 1) 2n 2n 2n +1 ) ( 2) 0,25 suy ra: 2n +1 = 22n +1 T (1), (2) v (3) suy ra: 22n = 220 hay n = 10 ( 3) 0,25 10 10 10 10 k k 1 k k Ta cú: 4 + x 7 = C10... nht ca P (1,00 im) Ta cú: x 2 (y + z) 2x x Tng t, y 2 (z + x) 2y y , z 2 (x + y) 2z z P 0,25 0,25 0,50 0,25 2y y 2x x 2z z + + y y + 2z z z z + 2x x x x + 2y y t a = x x + 2y y , b = y y + 2z z , c = z z + 2x x 4c + a 2b 4a + b 2c 4b + c 2a Suy ra: x x = , y y= ,z z= 9 9 9 0,25 2 4c + a 2b 4a + b 2c 4b + c 2a + + Do ú P 9 b c a = 2 c a b a b c 2 4 b + c + a + b + c + a 6... im) K ng sinh AA ' Gi D l im i xng vi A ' qua O ' v H l hỡnh chiu ca B trờn ng thng A ' D O' A' H D B A O Do BH A 'D v BH AA ' nờn BH ( AOO ' A ' ) 0,25 1 Suy ra: VOO 'AB = BH.SAOO ' 3 0,25 Ta cú: A 'B = AB2 A 'A 2 = 3a BD = A 'D 2 A 'B2 = a BO ' D u BH = a 3 2 0,25 1 Vỡ AOO ' l tam giỏc vuụng cõn cnh bờn bng a nờn: SAOO ' = a 2 2 2 3 1 3a a 3a = Vy th tớch khi t din OO ' AB l: V = 3... 6 9 ( 4.3 + 3 6 ) = 2 9 c a b c a b a b + + = + + + 1 1 2 +2 1 4 1 = 3, b c a b c a b a c a b a b c c a b hoc + + 3 3 = 3 Tng t, + + 3) b c a b c a b c a (Do Du "=" xy ra x = y = z = 1 Vy giỏ tr nh nht ca P l 2 V .a 1 0,25 0,25 2,00 Vit phng trỡnh ng trũn (1,00 im) Ta cú M(1; 0), N(1; 2), AC = (4; 4) Gi s H(x, y) Ta cú: BH AC H AC 4(x + 2) 4(y + 2) = 0 4x + 4(y 2) =... 1 Đặt a = x; , b = y; , c = z; y x z áp dụng bất đẳng thức (*) ta có | a | + | b | + | c | | a + b | + | c | | a + b + c | Vậy P = x2 + 1 x2 + y2 + 1 y2 + z2 + 2 1 1 1 ( x + y + z )2 + + + z2 x y z 1 0, 25 đ Cách 1 Ta có 2 1 1 1 P ( x + y + z) + + + x y z 2 ( 3 3 xyz ) 2 2 1 9 + 3 3 = 9t + , với xyz t 2 2 1 x+ y+ z t = 3 xyz 0 < t 3 9 9 9 1 Đặt Q(t ) = 9t + Q... + b 2 + c 2 > 0 ) c + d = 0 Vỡ ( Q ) i qua A ' ( 0;0;1) v C (1;1;0 ) nờn: c = d = a + b a + b + d = 0 Do ú, phng trỡnh ca ( Q ) cú dng: ax + by + ( a + b ) z ( a + b ) = 0 0,25 0,25 0,25 Mt phng ( Q ) cú vect phỏp tuyn n = ( a; b ;a + b ) , mt phng Oxy cú vect phỏp tuyn k = ( 0;0;1) Vỡ gúc gia ( Q ) v Oxy l m cos = a+ b a 2 + b2 + ( a + b ) 2 = 1 1 nờn cos n, k = 6 6 ( ) 0,25 1 2 6 ( a + b )... năm, với hệ số tơng ứng là: 3 2 4 C8 C3 , C8 C 0 4 Suy ra 0,25 a8 = 168 + 70 = 238 0,25 1,0 V Gọi M = cos 2 A + 2 2 cos B + 2 2 cos C 3 = 2 cos 2 A 1 + 2 2 2 cos B+C BC cos 3 2 2 A BC A > 0 , cos 1 nên M 2 cos 2 A + 4 2 sin 4 2 2 2 2 Mặt khác tam giác ABC không tù nên cos A 0 , cos A cos A Suy ra: A A A M 2 cos A + 4 2 sin 4 = 2 1 2 sin 2 + 4 2 sin 4 2 2 2 Do sin 0,25 0,25 2 A A. .. AC, do đó AC (BHD) AC DH Vậy góc phẳng nhị diện [ B, A ' C , D ] là góc BHD 0, 25 đ Xét A ' DC vuông tại D có DH là đờng cao, ta có DH A ' C = CD A ' D CD A ' D a. a 2 a 2 = = Tơng tự, A ' BC vuông tại B có BH là đờng DH = A' C a 3 3 0, 25 đ a 2 cao và BH = 3 Mặt khác: 2a 2 = BD 2 = BH 2 + DH 2 2 BH DH cos BHD = 2a 2 2a 2 2a 2 + 2 cos BHD , 3 3 3 1 BHD = 120o 2 Cách 2 Ta có BD AC BD AC... x + + C2n x 2n 2n 2n 2n = 2 C1 x + C3 x 3 + C5 x 5 + + C2n 1x 2n 1 2n 2n 2n 2 0 1 2n 2n dx = (C 1 2n ) x + C3 x 3 + C5 x 5 + + C2n 1x 2n 1 dx 2n 2n 2n 0 2n dx = (1 + x ) 2n +1 + (1 x ) 2n +1 2 ( 2n + 1) 1 0 = 22n 1 (1) 2n + 1 ) x + C3 x 3 + C5 x 5 + + C2n 1x 2n 1 dx 2n 2n 2n 0 0,50 1 x2 x4 x6 x 2n = C1 + C3 + C5 + + C2n 1 2n 2n 2n 2n 2 4 6 2n 0 1 1 1 1 2n 1 C2n = C1 + C3 + C5 + (2)

Ngày đăng: 19/07/2014, 21:59

HÌNH ẢNH LIÊN QUAN

Bảng biến thiên - Tổng hợp đề toán + đáp án khối A qua các năm 2002-2014
Bảng bi ến thiên (Trang 2)
Đồ thị không cắt trục hoành. - Tổng hợp đề toán + đáp án khối A qua các năm 2002-2014
th ị không cắt trục hoành (Trang 11)
Đồ thị hàm số - Tổng hợp đề toán + đáp án khối A qua các năm 2002-2014
th ị hàm số (Trang 12)
Bảng biến thiên: - Tổng hợp đề toán + đáp án khối A qua các năm 2002-2014
Bảng bi ến thiên: (Trang 33)
M = 3  đồ thị hàm số không tồn tại hai tiệm cận. - Tổng hợp đề toán + đáp án khối A qua các năm 2002-2014
3 đồ thị hàm số không tồn tại hai tiệm cận (Trang 38)
Đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt, khi và chỉ khi phương trình (*) có 2 nghiệm - Tổng hợp đề toán + đáp án khối A qua các năm 2002-2014
th ị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt, khi và chỉ khi phương trình (*) có 2 nghiệm (Trang 49)
Đồ thị hàm số có 3 điểm cực trị khi và chỉ khi  m + &gt; 1 0  ⇔  m &gt; − 1  (*).  0,25 - Tổng hợp đề toán + đáp án khối A qua các năm 2002-2014
th ị hàm số có 3 điểm cực trị khi và chỉ khi m + &gt; 1 0 ⇔ m &gt; − 1 (*). 0,25 (Trang 60)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w