1. Trang chủ
  2. » Giáo Dục - Đào Tạo

chuyên đề sóng cơ học nâng cao có giải chi tiết

25 1,1K 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 463,26 KB

Nội dung

CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG SÓNG CƠ HỌC NÂNG CAO Câu 1: Ở mặt thoáng của một chất lỏng có hai nguồn kết hợp A, B cách nhau 10 cm, dao động theo phương thẳng đứng với phương trình lần lượt là u A = 3cos(40πt + π/6) (cm); u B = 4cos(40πt + 2π/3) (cm). Cho biết tốc độ truyền sóng là 40 cm/s. Một đường tròn có tâm là trung điểm của AB, nằm trên mặt nước, có bán kính R = 4cm. Số điểm dao động với biên độ 5 cm có trên đường tròn là: A. 30 B. 32 C. 34 D. 36 Hướng dẫn Phương trình sóng tại M do sóng tại A truyền đến là: u AM = 3cos(40πt + 6  - 1 2 d   ) Phương trình sóng tại M do sóng tại B truyền đến là: u BM = 4cos(40πt + 2 3  - 2 2 d   ) Phương trình sóng tổng quát tổng hợp tại M là: u M = u AM + u BM = 3cos(40πt + 6  - 1 2 d   ) + 4cos(40πt + 2 3  - 2 2 d   ) Biên độ sóng tổng hợp tại M là: (Áp dụng công thức dao động điều hòa) A = 2 2 2 1 2 2 2 3 4 2.3.4. os( ( )) 3 6 d d c       + + − − − = 2 2 2 1 2 3 4 2.3.4. os( ( )) 2 c d d    + + − − Biên độ sóng tổng hợp tại M bằng 5 khi: 2 1 2 os( ( )) 2 c d d    − − = 0 Khi đó: 2 1 2 ( ) 2 d d    − − 2 1 2 ( 2 d d     − − ) = 2 k   − Do đó: d 2 – d 1 = k 2  ; Mà - 8 ≤ d 2 – d 1 ≤ 8 ⇔ - 8 ≤ k 2  ≤ 8 ⇔ - 8 ≤ k ≤ 8 Tương tự tại hai điểm M và N ở hai đầu bán kính là điểm dao động với biên độ bằng 5cm Nên số điểm dao động với biên độ 5cm là: n = 17x2 – 2 = 32 Câu 2: Ở mặt nước có hai nguồn sóng cơ A và B cách nhau 15 cm, dao động điều hòa cùng tần số, cùng pha theo phương vuông góc với mặt nước. Điểm M nằm trên AB, cách trung điểm O là 1,5 cm, là điểm gần O nhất luôn dao động với biên độ cực đại. Trên đường tròn tâm O, đường kính 20cm, nằm ở mặt nước có số điểm luôn dao động với biên độ cực đại là A. 18. B. 16. C. 32. D. 17. Hướng dẫn Sóng tại M có biên độ cực đại khi d 2 – d 1 = kλ Ta có d 1 = 15/2 + 1,5 = 9cm; d 2 = 15/2 – 1,5 = 6cm Khi đó d 2 – d 1 = 3. Với điểm M gần O nhất chọn k = 1. Khi đó ta có: λ = 3Số điểm dao động với biên độ cực đại trên đoạn AB là: d 1 d 2 A S 1 O S 2 B A R = 4cm O B CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG - S 1 S 2 ≤ d 2 – d 1 ≤ S 1 S 2 Hay -15 ≤ kλ ≤ 15 ⇔ -5 ≤ k ≤ 5 Vậy số điểm dao động với biên độ cực đại trên đường tròn tâm O bán kính 20cm là n = 10x 2 – 2 = 18 cực đại (ở đây tạ A và B là hai cực đại do đó chỉ có 8 đường cực đại cắt đường tròn tại 2 điểm, 2 cực đại tại A và B tiếp xúc với đường tròn) Câu 3: Hai mũi nhọn S 1 , S 2 cách nhau 9cm, gắn ở đầu một cầu rung có tần số f = 100Hz được đặt cho chạm nhẹ vào mặt một chất lỏng. Vận tốc truyền sóng trên mặt chất lỏng là v = 0,8 m/s. Gõ nhẹ cho cần rung thì 2 điểm S 1 , S 2 dao động theo phương thẳng đứng với phương trình dạng: u = acos2πft. Điểm M trên mặt chất lỏng cách đều và dao động cùng pha S 1 , S 2 gần S 1 S 2 nhất có phương trình dao động. Hướng dẫn Phương trình sóng tổng quát tổng hợp tại M là: u M = 2acos(π 2 1 d d  − )cos(20πt - π 2 1 d d  + ) Với M cách đều S 1 , S 2 nên d 1 = d 2 . Khi đó d 2 – d 1 = 0 → cos(π 2 1 d d  − ) = 1 → A = 2a Để M dao động cùng pha với S 1 , S 2 thì: π 2 1 d d  + = 2kπ suy ra: 2 1 2d d k  + = 1 2 2 d d k  + ⇔ = và d 1 = d 2 = kλ Gọi x là khoảng cách từ M đến AB: d 1 = d 2 = 2 2 2 AB x   +     = k  Suy ra ( ) 2 2 2 AB x k    = −     = 2 0,64 9k − ; (λ = v/f = 0,8 cm) Biểu thức trong căn có nghĩa khi 2 0,64 9k − ≥ 0 ⇔ k ≥ 3,75 Với x ≠ 0 và khoảng cách là nhỏ nhất nên ta chọn k = 4 Khi đó 1 2 2 8 d d k  + = = Vậy phương trình sóng tại M là: u M = 2acos(200t - 8) = u M = 2acos(200t) Câu 4: Hai nguồn sóng kết hợp trên mặt nước cách nhau một đoạn S 1 S 2 = 9λ phát ra dao động u=cos(ωt). Trên đoạn S 1 S 2 , số điểm có biên độ cực đại cùng pha với nhau và ngược pha với nguồn (không kể hai nguồn) là: A. 8. B. 9 C. 17. D. 16. Hướng dẫn Phương trình sóng tổng quát tổng hợp tại M là: u M = 2cos(π 2 1 d d  − )cos(20πt - π 2 1 d d  + ) Với d 1 + d 2 = S 1 S 2 = 9λ Khi đó: Phương trình sóng tổng quát tổng hợp tại M là: u M = 2cos(π 2 1 d d  − )cos(20πt - 9π) = 2cos(π 2 1 d d  − )cos(20πt - π) = - 2cos(π 2 1 d d  − )cos(20πt) Vậy sóng tại M ngược pha với nguồn khi cos(π 2 1 d d  − ) = 1 ⇔ π 2 1 d d  − = k2π ⇔ d 1 - d 2 = 2kλ S 1 O S 2 x d 1 CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG Với - S 1 S 2 ≤ d 1 - d 2 ≤ S 1 S 2 ⇔ -9λ ≤ 2kλ ≤ 9λ⇔ 4,5 ≤ k ≤ 4,5 Suy ra k = 0; ±1, ±2; ±3; ±4. Có 9 giá trị (có 9 cực đại)Chọn đáp án B Câu 5: Trên mặt nước có hai nguồn kết hợp AB cách nhau một đoạn 12cm đang dao động vuông góc với mặt nước tạo ra sóng với bước song 1,6cm. Gọi C là một điểm trên mặt nước cách đều hai nguồn và cách trung điểm O của đoạn AB một khoản 8cm. Hỏi trên đoạn CO, số điểm dao động ngược pha với nguồn là: A. 2 B. 3 C. 4 D. 5 Hướng dẫn Do hai nguồn dao động cùng pha nên để đơn giản ta cho pha ban đầu của chúng bằng 0. Độ lệch pha giữa hai điểm trên phương truyền sóng: 2 d    ∆ = . Xét điểm M nằm trên đường trung trực của AB cách A một đoạn d 1 và cách B một đoạn d 2 . Suy ra d 1 =d 2 . Mặt khác điểm M dao động ngược pha với nguồn nên 1 2 (2 1) d k     ∆ = = + Hay : 1 1,6 (2 1) (2 1) (2 1).0,8 2 2 d k k k  = + = + = + (1) . Theo hình vẽ ta thấy 1 AO d AC≤ ≤ (2). Thay (1) vào (2) ta có : 2 2 (2 1)0,8 2 2 AB AB k OC   ≤ + ≤ +     (Do 2 AB AO = và 2 2 2 AB AC OC   = +     ) Tương đương: 4 6 (2 1)0,8 10 3,25 5,75 5 k k k k =  ≤ + ≤ ⇒ ≤ ≤ ⇒  =  Kết luận trên đoạn CO có 2 điểm dao dộng ngược pha với nguồn. Câu 6: Trên bề mặt chất lỏng có hai nguồn kết hợp AB cách nhau 40cm dao động cùng pha. Biết sóng do mỗi nguồn phát ra có tần số f=10(Hz), vận tốc truyền sóng 2(m/s). Gọi M là một điểm nằm trên đường vuông góc với AB tại đó A dao đông với biên độ cực đại. Đoạn AM có giá trị lớn nhất là : A. 20cm B. 30cm C. 40cm D.50cm Hướng dẫn: Ta có 200 20( ) 10 v cm f  = = = . Do M là một cực đại giao thoa nên để đoạn AM có giá trị lớn nhất thì M phải nằm trên vân cực đại bậc 1 như hình vẽ và thõa mãn : 2 1 1.20 20( )d d k cm  − = = = (1). ( do lấy k=+1) Mặt khác, do tam giác AMB là tam giác vuông tại A nên ta có : 2 2 2 2 2 1 ( ) ( ) 40 (2)AM d AB AM d= = + = + .Thay (2) vào (1) ta được: 2 2 1 1 1 40 20 30( )d d d cm+ − = ⇒ = Đáp án B Câu 7: Trên bề mặt chất lỏng có hai nguồn kết hợp AB cách nhau 100cm dao động cùng pha. Biết sóng do mỗi nguồn phát ra có tần số f=10(Hz), vận tốc truyền sóng 3(m/s). Gọi M là một điểm nằm trên đường vuông góc với AB tại đó A dao đông với biên độ cực đại. Đoạn AM có giá trị nhỏ nhất là : A. 5,28cm B. 10,56cm C. 12cm D. 30cm Hướng dẫn Ta có 300 30( ) 10 v cm f  = = = . Số vân dao động với biên độ dao động cực đại trên đoạn AB thõa mãn điều kiện : 2 1 AB d d k AB  − < − = < . A B M K=0 d1 d2 K=1 A B M K=0 d1 d2 K=3 CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG Hay : 100 100 3,3 3,3 3 3 AB AB k k k   − − < < ⇔ < < ⇔ − < < . Suy ra : 0, 1, 2, 3k = ± ± ± . Vậy để đoạn AM có giá trị bé nhất thì M phải nằm trên đường cực đại bậc 3 như hình vẽ và thõa mãn 2 1 3.30 90( )d d k cm  − = = = (1) ( do lấy k=3) Mặt khác, do tam giác AMB là tam giác vuông tại A nên ta có : 2 2 2 2 2 1 ( ) ( ) 100 (2)AM d AB AM d= = + = + Thay (2) vào (1) ta được : 2 2 1 1 1 100 90 10,56( )d d d cm+ − = ⇒ = Đáp án B Câu 8: Trên mặt nước, hai nguồn kết hợp A, B cách nhau 40cm luôn dao động cùng pha, có bước sóng 6cm. Hai điểm CD nằm trên mặt nước mà ABCD là một hình chữ nhât, AD=30cm. Số điểm cực đại và đứng yên trên đoạn CD lần lượt là : A. 5 và 6 B. 7 và 6 C. 13 và 12 D. 11 và 10 Hướng dẫn: Số điểm cực đại trên đoạn CD thoã mãn : 2 1 2 1 d d k AD BD d d AC BC  − =   − < − < −  Suy ra : AD BD k AC BC  − < < − Hay : AD BD AC BC k   − − < < . Hay : 30 50 50 30 6 6 k − − < < Giải ra : -3,3<k<3,3 Kết luận có 7 điểm cực đại trên CD. Số điểm cực tiểu trên đoạn CD thoã mãn : 2 1 2 1 (2 1) 2 d d k AD BD d d AC BC   − = +    − < − < −  Suy ra : (2 1) 2 AD BD k AC BC  − < + < − Hay : 2( ) 2( ) 2 1 AD BD AC BC k   − − < + < . Thay số : 2(30 50) 2(50 30) 2 1 6 6 k − − < + < Suy ra : 6,67 2 1 6,67k− < + < Vậy : -3,8<k<2,835. Kết luận có 6 điểm đứng yên. Câu 9: ở mặt thoáng của một chất lỏng có hai nguồn kết hợp A và B cách nhau 20(cm) dao động theo phương thẳng đứng với phương trình 2. (40 )( ) A U cos t mm  = và 2. (40 )( ) B U cos t mm   = + . Biết tốc độ truyền sóng trên mặt chất lỏng là 30(cm/s). Xét hình vuông ABCD thuộc mặt chất lỏng. Số điểm dao động với biên độ cực đại trên đoạn BD là : A. 17 B. 18 C. 19 D. 20 Hướng dẫn: 2 2 20 2( )BD AD AB cm= + = Với 2 2 40 ( / ) 0,05( ) 40 rad s T s       = ⇒ = = = Vậy : . 30.0,05 1,5vT cm  = = = 2 1 2 1 (2 1) 2 d d k AD BD d d AB O   − = +    − < − < −  (vì điểm D B≡ nên vế phải AC thành AB còn BC thành B.B=O) Suy ra : (2 1) 2 AD BD k AB  − < + < − Hay : 2( ) 2 2 1 AD BD AB k   − < + < . Thay số : 2(20 20 2) 2.20 2 1 1,5 1,5 k − < + < Suy ra : 11,04 2 1 26,67k− < + < Vậy : -6,02<k<12,83. Kết luận có 19 điểm cực đại. A B D C O CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG Câu 10: Hai nguồn sóng kết hợp giống hệt nhau được đặt cách nhau một khoảng cách x trên đường kính của một vòng tròn bán kính R (x < R) và đối xứng qua tâm của vòng tròn. Biết rằng mỗi nguồn đều phát sóng có bước sóng λ và x = 6λ. Số điểm dao động cực đại trên vòng tròn là A. 26 B. 24 C. 22. D. 20. Hướng dẫn: Xét điểm M trên AB (AB = 2x = 12λ) AM = d 1 BM = d 2 d 1 – d 2 = kλ; d 1 + d 2 = 6λ; → d 1 = (3 + 0,5k)λ 0 ≤ d 1 = (3 + 0,5k)λ ≤ 6λ → - 6 ≤ k ≤ 6 Số điểm dao động cực đại trên AB là 13 điểm kể cả hai nguồn A, B. Nhưng số đường cực đại cắt đường tròn chỉ có 11 vì vậy Số điểm dao động cực đại trên vòng tròn là 22. Chọn đáp án C. Câu 11: Giao thoa sóng nước với hai nguồn A, B giống hệt nhau có tần số 40Hz và cách nhau 10cm. Tốc độ truyền sóng trên mặt nước là 0,6m/s. Xét đường thẳng By nằm trên mặt nước và vuông góc với AB. Điểm trên By dao động với biên độ cực đại gần B nhất là A. 10,6mm B. 11,2mm C. 12,4mm D. 14,5 Hướng dẫn: 1. AB  = 6,7 ⇒ Điểm cực đại trên AB gần B nhất có k = 6 Gọi I là điểm cực đại trên đường tròn gần AB nhất Ta có: d 1I – d 2I = 18 cm vì d 1I = AB = 20cm ⇒ d 2I = 2cm Áp dụng tam giác vuông x 2 + h 2 = 4 ⇒ (20 – x) 2 + h 2 = 400 Giải ra h = 19,97mm 2. AB  = 6,7 ⇒ Điểm cực đại trên AB gần B nhất có k = 6 Ta có: d 1I – d 2I = 9 cm (1) Áp dụng tam giác vuông d 2 1 = d 2 2 + 100 (2) Giải (1) và (2) ⇒ d 2 = 10,6mm Câu 12: Giao thoa sóng nước với hai nguồn A, B giống hệt nhau có tần số 40Hz và cách nhau 10cm. Tốc độ truyền sóng trên mặt nước là 0,6m/s. Xét đường thẳng By nằm trên mặt nước và vuông góc với AB. Điểm trên By dao động với biên độ cực đại gần B nhất là: A. 10,6mm B. 11,2mm C. 12,4mm D. 14,5. Hướng dẫn: M • • B A • A B I h x A B I d 1 y d 2 y • M • CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG Bước sóng λ = v/f = 0,015m = 1,5 cm Xét điểm N trên AB dao động với biên độ cực đại AN = d’ 1 ; BN = d’ 2 (cm) d’ 1 – d’ 2 = kλ = 1,5k d’ 1 + d’ 2 = AB = 10 cm d’ 1 = 5 + 0,75k 0 ≤ d’ 1 = 5 + 0,75k ≤ 10 ⇒ - 6 ≤ k ≤ 6 Điểm M đường thẳng By gần B nhất ứng với k = 6 Điểm M thuộc cực đại thứ 6 d 1 – d 2 = 6λ = 9 cm (1) d 1 2 – d 2 2 = AB 2 = 10 2 ⇒ d 1 + d 2 = 100/9 (2) Lấy (2) – (1) 2d 2 = 100/9 -9 = 19/9 ⇒ d 2 = 19/18 = 1,0555 cm = 10,6 mm. Chọn đáp án A Cách khác: Gọi I là điểm nằm trên AB Điểm cực đại gần B nhất trên By ứng với điểm cực đại Xa O nhất là H ( Tính chất của Hipebol) Ta có  AB K AB ≤≤ − ⇒ 6,66,6 ≤≤− K ⇒ k max = 6 Vậy d 1 – d 2 = 6λ = 9 cm . Tiếp theo ta dựa vào tam giác vuông AMB như cách giải trên. Câu 13: Giao thoa sóng nước với hai nguồn giống hệt nhau A, B cách nhau 20cm có tần số 50Hz. Tốc độ truyền sóng trên mặt nước là 1,5m/s. Trên mặt nước xét đường tròn tâm A, bán kính AB. Điểm trên đường tròn dao động với biên độ cực đại cách đường thẳng qua A, B một đoạn gần nhất là A. 18,67mm B. 17,96mm C. 19,97mm D. 15,34mm Hướng dẫn: Bước sóng λ = v/f = 0,03m = 3 cm Xét điểm N trên AB dao động với biên độ cực đại AN = d’ 1 ; BN = d’ 2 (cm) d’ 1 – d’ 2 = kλ = 3k d’ 1 + d’ 2 = AB = 20 cm d’ 1 = 10 +1,5k 0≤ d’ 1 = 10 +1,5k ≤ 20 ⇒ - 6 ≤ k ≤ 6 ⇒ Trên đường tròn có 26 điểm dao động với biên độ cực đại Điểm gần đường thẳng AB nhất ứng với k = 6. Điểm M thuộc cực đại thứ 6 d 1 – d 2 = 6λ = 18 cm; d 2 = d 1 – 18 = 20 – 18 = 2cm Xét tam giác AMB; hạ MH = h vuông góc với AB. Đặt HB = x h 2 = d 1 2 – AH 2 = 20 2 – (20 – x) 2 h 2 = d 2 2 – BH 2 = 2 2 – x 2 ⇒ 20 2 – (20 – x) 2 = 2 2 – x 2 ⇒ x = 0,1 cm = 1mm ⇒ h = mmxd 97,19399120 222 2 ==−=− . Chọn đáp án C Cách khác: v 3 f cmλ = = ; AM = AB = 20cm O H d 1 d 2 d 1 y • A M • • B d 2 d 1 M • • B • A d 2 CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG AM - BM = kλ⇒BM = 20 - 3k AB AB k 6,7− < < ≈ λ λ ⇒ k max = 6⇒BM min = 2cm ∆AMB cân: AM = AB = 200mm; BM = 20mm. Khoảng cách từ M đến AB là đường cao MH của ∆AMB: h = ( )( ) ( ) p p a p b p c a b c 2 ; p 21cm a 2 − − − + + = = 2 21.1.1.19 h 1,997cm 19,97mm 20 ⇒ = ≈ = Câu 14. Tại một điểm trên mặt phẳng chất lỏng có một nguồn dao động tạo ra sóng ổn định trên mặt chất lỏng. Coi môi trường tuyệt đối đàn hồi. M và N là 2 điểm trên mặt chất lỏng, cách nguồn lần lượt là R 1 và R 2 . Biết biên độ dao động của phần tử tại M gấp 4 lần tại N. Tỉ số 2 1 R R bằng A. 1/4 B. 1/16 C. 1/2 D. 1/8 Hướng dẫn: Năng lượng sóng cơ tỉ lệ với bình phương biên độ, tại một điểm trên mặt phẳng chất lỏng có một nguồn dao động tạo ra sóng ổn định trên mặt chất lỏng thì năng lượng sóng truyền đi sẽ được phân bố đều cho đường tròn (tâm tại nguồn sóng) Công suất từ nguồn truyền đến cho 1 đơn vị dài vòng tròn tâm O bán kính R là R E  2 0 Suy ra 1 2 0 0 2 2 2 2 R R R R R E R E A A E E M N N M N M N M ====   Vậy 16 1 164 2 1 2 2 2 1 2 =→=== R R A A R R N M Câu 15: Công suất âm thanh cực đại của một máy nghe nhạc gia đình là 10W. Cho rằng cứ truyền trên khoảng cách 1m, năng lượng âm bị giảm 5% so với lần đầu do sự hấp thụ của môi trường truyền âm. Biết I 0 = 10 -12 W/m 2 . Nếu mở to hết cỡ thì mức cường độ âm ở khoảng cách 6m là: A. 102 dB B. 107 dB C. 98 dB D. 89 dB Hướng dẫn: Cường độ âm phát đi từ nguồn điểm được xác định là: 2 d4 P S P I π == Năng lượng âm giảm nên công suất giảm theo quan hệ: P = E/t, cứ 1m thì giảm 5% hay ( ) ( ) 6 06 6 0 6 0 1 0 10 95,0.PP95,0 E E 95,0 E E 05,0 E EE =⇒=⇒=⇒= − Vậy mức cường độ âm tại vị trí cách nguồn âm 6m là: ( ) dB102 I.d4 95,0.P log10L 0 2 6 0 = π = Câu 16: Tại hai điểm A và B trên mặt nước cách nhau 8 cm có hai nguồn kết hợp dao động với phương trình: 1 2 u u acos40 t(cm)= = π , tốc độ truyền sóng trên mặt nước là 30cm / s . Xét đoạn thẳng CD = 4cm trên mặt nước có chung đường trung trực với AB. Khoảng cách lớn nhất từ CD đến AB sao cho trên đoạn CD chỉ có 3 điểm dao dộng với biên độ cực đại là: A. 3,3 cm. B. 6 cm. C. 8,9 cm. D. 9,7 cm. Hướng dẫn: Bước sóng λ = v/f = 30/20 = 1,5 cm. Khoảng cách lớn nhất từ CD đến AB mà trên CD chỉ có 3 điểm dao đông với biên độ cực đai khi tại C và D thuộc các vân cực đaibậc 1 ( k = ± 1) Tại C: d 2 – d 1 = 1,5 (cm) Khi đó AM = 2cm; BM = 6 cm N M h d 2 d 1 C D CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG Ta có d 1 2 = h 2 + 2 2 d 2 2 = h 2 + 6 2 Do đó d 2 2 – d 1 2 1,5(d 1 + d 2 ) = 32 d 2 + d 1 = 32/1,5 (cm) d 2 – d 1 = 1,5 (cm) Suy ra d 1 = 9,9166 cm 2 2 2 1 2 9,92 4 9,7h d cm= − = − = Câu 17 : Trên bề mặt chất lỏng cho 2 nguồn dao đông vuông góc với bề mặt cha61tlo3ng có phương trình dao động u A = 3 cos 10πt (cm) và u B = 5 cos (10πt + π/3) (cm). Tốc độ truyền sóng trên dây là V= 50cm/s . AB =30cm. Cho điểm C trên đoạn AB, cách A khoảng 18cm và cách B 12cm .Vẽ vòng tròn đường kính 10cm, tâm tại C. Số điểm dao đông cực đại trên đường tròn là A. 7 B. 6 C. 8 D. 4 Hướng dẫn: Ta có: v 50 10 f 5 cm  = = = Để tính số cực đại trên đường tròn thì chỉ việc tính số cực đại trên đường kính MN sau đó nhân 2 lên vì mỗi cực đại trên MN sẽ cắt đường tròn tại 2 điểm ngoại trừ 2 điêm M và N chỉ cắt đường tròn tại một điểm Áp dụng công thức     2 12 12 − +=− kdd Xét một điểm P trong đoạn MN có khoảng cách tới các nguồn là d 2, d 1 Ta có     2 12 12 − +=− kdd = 1 6 k   + Mặt khác: 2 1 17 13 4 M M M d d d cm∆ = − = − = 2 1 7 23 16 N N N d d d cm∆ = − = − = − Vì điểm P nằm trong đoạn MN nên ta có 2 1N M d d d d∆ ≤ − ≤ ∆ ⇔ -16 1 6 k   ≤ + ≤ 4 ⇔ 16 1 4 1 6 6 k   − − ≤ ≤ − ⇔ 1,8 0,23k− ≤ ≤ Mà k nguyên ⇒ k= -1, 0 ⇒ Có 2 cực đại trên MN ⇒ Có 4 cực đại trên đường tròn Chứng minh công thức:     2 12 12 − +=− kdd Xét 2 nguồn kết hợp x 1 =A 1 cos( 1 t   + ),x 2 =A 2 cos( 2 t   + ), Xét điểm M trong vùng giao thoa có khoảng cách tới các nguồn là d 1, d 2 Phương trình sóng do x 1, x 2 truyền tới M: x 1M = A 1 cos( 1 1 2 d t     + − ) x 2M =A 2 cos( 2 2 2 d t     + − ) Phương trình sóng tổng hợp tại M: x M = x 1M + x 2M Dùng phương pháp giản đồ Fresnel biểu diễn các véc tơ quay A 1, A 2, và A/ Biên độ dao động tổng hợp: A 2 =A 1 2 +A 2 2 +2A 1 A 2 cos[ 1 1 2 d    − -( 2 2 2 d    − )]=A 1 2 +A 2 2 +2A 1 A 2 cos( 2 1 1 2 2 d d     − − + ) Biên độ dao động tổng hợp cực đại A=A 1 +A 2 khi: cos( 2 1 1 2 2 d d     − − + )=1 ⇔ 2 1 1 2 2 d d     − − + =k2  ⇔     2 12 12 − +=− kdd CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG Biên độ dao động tổng hợp cực tiểu A= 1 2 A -A khi cos( 2 1 1 2 2 d d     − − + )=-1 ⇔ 2 1 1 2 2 d d     − − + = 2k   + ⇔     2 ) 2 1 ( 12 12 − ++=− kdd Câu 18: Tại O có 1 nguồn phát âm thanh đẳng hướng với công suất ko đổi.1 người đi bộ từ A đến C theo 1 đường thẳng và lắng nghe âm thanh từ nguồn O thì nghe thấy cường độ âm tăng từ I đến 4I rồi lại giảm xuống I .Khoảng cách AO bằng: A. 2 2 AC B. 3 3 AC C. 3 AC D. 2 AC Hướng dẫn: Do nguồn phát âm thanh đẳng hướngCường độ âm tại điểm cách nguồn âm RI = 2 4 R P  . Giả sử người đi bộ từ A qua M tới C ⇒ I A = I C = I ⇒ OA = OC I M = 4I ⇒ OA = 2. OM. Trên đường thẳng qua AC I M đạt giá trị lớn nhất, nên M gần O nhất ⇒ OM vuông góc với AC và là trung điểm của AC AO 2 = OM 2 + AM 2 = 44 22 ACAO + ⇒ 3AO 2 = AC 2 ⇒ AO = 3 3AC . Chọn đáp án B Câu 19. Sóng dừng xuất hiện trên sợi dây với tần số f=5Hz. Gọi thứ tự các điểm thuộc dây lần lượt là O,M,N,P sao cho O là điểm nút, P là điểm bụng sóng gần O nhất (M,N thuộc đoạn OP) . Khoảng thời gian giữa 2 lần liên tiếp để giá trị li độ của điểm P bằng biên độ dao động của điểm M,N lần lượt là 1/20 và 1/15s. Biết khoảng cách giữa 2 điểm M,N là 0.2cm Bước sóng của sợi dây là: A. 5.6cm B. 4.8 cm C. 1.2cm D. 2.4cm Hướng dẫn: Chu kì của dao động T = 1/f = 0,2(s) Theo bài ra ta có t M’M = 20 1 (s) = 4 1 T t N’N = 15 1 (s) = 3 1 T ⇒ t MN = 2 1 ( 3 1 - 4 1 )T = 24 1 T = 120 1 vận tốc truyền sóng v = MN/t MN = 24cm/s Do đó:  = v.T = 4,8 cm. Chọn đáp án B Chú ý : Thời gian khi li độ của P bằng biên độ của M, N đi từ M,N đến biên rồi quay lai thì t MM > t NN mà bài ra cho t MM < t NN Câu 20. Hai điểm A, B nằm trên cùng một đường thẳng đi qua một nguồn âm và ở hai phía so với nguồn âm. Biết mức cường độ âm tại A và tại trung điểm của AB lần lượt là 50 dB và 44 dB. Mức cường độ âm tại B là A. 28 dB B. 36 dB C. 38 dB D. 47 dB Hướng dẫn: Từ công thức I = P/4πd 2 Ta có: 2 A M M A I d = ( ) I d và L A – L M = 10.lg(I A /I M ) → d M = 0,6 A 10 .d P’ N’ M’ O M N P CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG Mặt khác M là trung điểm cuả AB, nên ta có: AM = (d A + d B )/2 = d A + d M ; (d B > d A ) Suy ra d B = d A + 2d M Tương tự như trên, ta có: 2 0,6 2 A B B A I d = ( ) = (1+ 2 10 ) I d và L A – L B = 10.lg(I A /I B ) Suy ra L B = L A – 10.lg 0,6 2 (1 2 10 )+ = 36dB Cách 2 Cường độ âm tại điểm cách nguồn âm khoảng R; I = 2 P 4 πR = 10 L .I 0 ; với P là công suất của nguồn; I 0 cường độ âm chuẩn, L mức cường độ âm→ R = 0 P 4 π.I L 1 10 M là trung điểm của AB, nằm hai phía của gốc O nên: R M = OM = B A R R 2 − (1) Ta có R A = OA và L A = 5 (B) → R A = 0 P 4 π.I LA 1 10 = 0 P 4 π.I 5 1 10 (2) Ta có R B = OB và L B = L → R B = 0 P 4 π.I LB 1 10 = 0 P 4 π.I L 1 10 (3) Ta có R M = OM và L M = 4,4 (B) → R M = 0 P 4 π.I LM 1 10 = 0 P 4 π.I 4,4 1 10 (4) Từ đó ta suy ra 2R M = R B – R A → 2 4,4 10 1 = L 10 1 – 5 10 1 → L 10 1 = 5 10 1 + 2 4,4 10 1 L 10 = 9,4 4,4 5 10 10 +2 10 → L 2 10 = 5,22,2 7,4 10.210 10 + = 63,37 → 8018,1 2 = L → L = 3,6038 (B) = 36 (dB) Câu 21: Một sợi dây đàn hồi căng ngang, đang có sóng dừng ổn định. Trên dây, A là một điểm nút, B là điểm bụng gần A nhất với AB = 18 cm, M là một điểm trên dây cách B một khoảng 12 cm. Biết rằng trong một chu kỳ sóng, khoảng thời gian mà độ lớn vận tốc dao động của phần tử B nhỏ hơn vận tốc cực đại của phần tử M là 0,1s. Tốc độ truyền sóng trên dây là: A. 3,2 m/s. B. 5,6 m/s. C. 4,8 m/s. D. 2,4 m/s. Hướng dẫn: + A là nút; B là điểm bụng gần A nhất ⇒ Khoảng cách: AB = 4  = 18cm, ⇒  = 4.18 = 72cm + Biên độ sóng dừng tại một điểm M bất kì trên dây: 2 2 |sin | M M d A a   = (Với d M là khoảng cách từ B đến M; a là biên độ của sóng tới và sóng phản xạ) Với d M = MB = 12cm = 6  ⇒ 2 .12 2 |sin | 72 M A a  = = 2a. sin 3  = 2a. 3 2 = a 3 +. Tốc độ cực đại tại M: v Mmax = A M .  = a 3  +. Tốc độ của phần tử tại B (bụng sóng) khi có li độ x B = A M là: v B =  x B = a 3  = v Mmax * Phần tử tại bụng sóng: Càng ra biên tốc độ càng giảm ⇒ Thời gian mà độ lớn vận tốc dao động của phần tử B nhỏ hơn vận tốc cực đại của phần tử M (Ứng với lúc phần tử của bụng sóng qua vị trí có li độ M ra biên và trở về M) B M A [...]... truyền sóng cách nhau x = λ/3, sóng có biên độ A, chu kì T Tại thời điểm t1 = 0, có uM = +3cm và uN = -3cm Ở thời điểm t2 liền sau đó có uM = +A, biết sóng truyền từ N đến M Biên độ sóng A và thời điểm t2 là A 2 3cm và 11T 12 B 3 2cm và 11T 12 C 2 3cm và 22T 12 D 3 2cm và 22T 12 Hướng dẫn: Ta có độ lệch pha giữa M và N là: 2x 2  ∆ = = ⇒ = ,  3 6 Từ hình vẽ, ta có thể xác định biên độ sóng uM... thụ, vận tốc truyền sóng trên mặt nước là 40cm/s Xét đường tròn (C) tâm I bán kính R=4cm, điểm I cách đều A, B một đoạn 13cm Điểm M nằm trên (C) cách xa A nhất dao động với biên độ bằng: A 6,67mm B 10mm C 5mm D 9,44mm Câu 6: Trong buổi hoà nhạc, giả sử có 5 chi c kèn đồng giống nhau phát ra sóng âm có L = 50dB, Để L = 60dB thì số kèn cần là: A 6 B 50 C 60 D 10 CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG... D 26 Câu 18: Hai nguồn sóng kết hợp giống hệt nhau được đặt cách nhau một khoảng cách x trên đường kính của một vòng tròn bán kính R ( x  R ) và đối xứng qua tâm của vòng tròn Biết rằng mỗi nguồn đều phát sóng có bước sóng và x = 5,2λ Tính số điểm dao động cực đại trên vòng tròn A 20 B 22 C 24 D 26 CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG Câu 19: Trong thí nghiệm giao thoa sóng nước, khoảng cách giữa... 1m B 0,8 m C 0,2 m D 2m 2 max Giải: Điều kiện để có sóng dừng trong ống: l = (2k + 1)  4 ⇒ = 4l (*) 2k + 1 (l là chi u dài của cột khí trong ống, đầu kín là nút đầu hở là bụng của sóng dừng trong ống khí) v v ( f 0 = : tần số âm cơ bản) = (2k + 1) f 0  4l 4l v v Bài ra ta có: f 0 = 112 Hz ⇒ = 112 ⇒ l = = 0,75m 4l 4.112 Âm cơ bản ứng với k = 0 Từ (*) ta thấy các hoạ âm có  max khi (2k + 1)min = 3... 6 60 f 10 λ = 12 cm ; Câu 44: Trên mặt nước có hai nguồn kết hợp AB cách nhau một đoạn 12cm đang dao động vuông góc với mặt nước tạo ra sóng với bước sóng 1,6cm Gọi C là một điểm trên mặt nước cách đều hai nguồn và cách trung điểm O của đoạn AB một khoản 8cm Hỏi trên đoạn CO, số điểm dao động ngược pha với nguồn là: A 2 B 3 C 4 D 5 Giải: CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG Do hai nguồn dao động cùng... u(cm) 3 α M ∆ϕ N M2 ∆ϕ’ -3 -A t CHUYÊN DỀ SÓNG CƠ HỌC ∆ NGUYỄN VĂN TRUNG 11 2 ; =  6 T 11 T 11T 11T Vậy: t 2 = ∆t − t1 = ⇒ ∆t = t 2 − t 1 = = 6 2 12 12 Ta có ∆t = t 2 − t1 = / với ∆ / = 2 −  = Bài 24: Sóng dừng trên một sợi dây có biên độ ở bụng là 5cm Giữa hai điểm M, N có biên độ 2,5cm cách nhau x = 20cm các điểm luôn dao động với biên độ nhỏ hơn 2,5cm Bước sóng là A 60 cm B 12 cm C 6 cm... giá trị lớn nhất của L để tại Q có cực đại nghĩa là tại Q đường AQ cắt đường cực đại bậc 1 (k = 1) CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG Thay các giá trị đã cho vào biểu thức trên ta nhận được: L + 64 − L max = 1,5 ⇒ L max  20, 6(cm) Câu 35: Một ống khí có một đầu bịt kín, một đàu hở tạo ra âm cơ bản có tần số 112Hz Biết tốc độ truyền âm trong không khí là 336m/s Bước sóng dài nhất của các họa âm... nhau khoảng AB = 10 cm đang dao động vuông góc với mặt nước tạo ra sóng có bước sóng λ= 0,5 cm C và D là hai điểm khác nhau trên mặt nước, CD vuông góc với AB tại M sao cho MA = 3 cm; MC = MD = 4 cm Số điểm dao động cực đại trên CD là: A 3 B 4 C 5 D 6 CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG Câu 40: Ở mặt thoáng của chất lỏngcó hai nguồn sóng kết hợp A và B cách nhau 20cm, dao động theo phương thẳngđứng... nhau 0.75m và sóng truyền theo chi u từ M đến N Chọn trục biểu diễn li độ cho các điểm có chi u dương hướng lên trên Tại một thời điểm nào đó M có li độ âm và đang chuyển động đi xuống Tại thời điểm đó thì N có li độ và chi u chuyển động như thế nào? A Âm, đi xuống B Dương, đi xuống C Âm, đi lên D Dương, đi lên Câu 11: Một sợi dây căng giữa hai điểm cố định cách nhau 75cm Người ta tạo sóng dừng trên... trí điểm O trên đoạn thẳng nối hai nguồn đang có biên độ dao động cực đại chuyển thành có biên độ cực tiểu Bước sóng bằng A 5cm B 10cm C 1,25cm D 2,5cm Câu 17: Hai nguồn sóng kết hợp giống hệt nhau đặt cách nhau một khoảng cách x trên đường kính của một vòng tròn bán kính R ( x  R ) và đối xứng qua tâm của vòng tròn Biết rằng mỗi nguồn đều phát sóng có bước sóng λ và x = 6λ Số điểm dao động cực đại trên . CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG SÓNG CƠ HỌC NÂNG CAO Câu 1: Ở mặt thoáng của một chất lỏng có hai nguồn kết hợp A, B cách nhau 10 cm, dao. 26,67k− < + < Vậy : -6,02<k<12,83. Kết luận có 19 điểm cực đại. A B D C O CHUYÊN DỀ SÓNG CƠ HỌC NGUYỄN VĂN TRUNG Câu 10: Hai nguồn sóng kết hợp giống hệt nhau được đặt cách nhau một khoảng. lượng sóng cơ tỉ lệ với bình phương biên độ, tại một điểm trên mặt phẳng chất lỏng có một nguồn dao động tạo ra sóng ổn định trên mặt chất lỏng thì năng lượng sóng truyền đi sẽ được phân bố đều

Ngày đăng: 19/07/2014, 12:09

TỪ KHÓA LIÊN QUAN

w