Bài9:Ghpt x y 3x 2y 6 3x 2y 6 1 a) 2 3 2x y 11 4x 2y 22 2x y 11 28 7x 28 x 4 x 4 7 2x y 11 y 3 y 11 2x (x 1)(y 2) xy 8 xy 2x y 2 xy 8 b) (x 1)(y 3) xy 1 xy 3x y 3 xy 1 2x y 6 5x 3x y 4 − = − = − = ⇔ ⇔ + = + = + = = = = = ⇔ ⇔ ⇔ + = = = − + + = + + + + = + ⇔ − + = + + − − = + + = = ⇔ ⇔ − = 10 x 2 3x y 4 y 2 = ⇔ − = = o 2 1 2 o 2 o 1 2 o Bài10(21) Ghpt x y 5 Theo viet x, y là n pt : xy 4 t 5t 4 0 a b c 0 t 1; t 4 Hpt có n : (x 1, y 4);(x 4, y 1) x y 1 x ( y) 1 b) xy 6 x( y) 6 Theo viet x, y là n pt : t t 6 0 t 2; t 3 Hpt có n : (x 2, y 3);(x 3, y 2) + = = − + = ⇔ + + = ⇔ = = = = = = − = + − = ⇔ = − = − − − − = ⇔ = − = = − = − = = a) + + = + = + = = ⇔ + + = ⇔ + = − + = + = + − = ⇔ ⇔ ⇔ − = − = + = = = = ⇔ ⇔ − = − = − = 2 2 2 2 2 2 2 2 2 2 2 B i11(21)à x y xy 5 (1) x y 5 § Æt x y a;xy b x y 2xy a x y a 2b a b 5 2a 2b 10 a 2a 15 0 Pt (1) a 2b 5 a 2b 5 a b 5 a 3 3 b 2 a 5 a 5 b 5 a b 10 − = − + = − = ⇔ ⇔ − = − + = + = + = − = − = = + = + = + = ⇔ ⇔ ⇔ − = − − = − = − + = + = + = = = ⇔ 2 2 2 Bµi12 :Ghpt 2x y 3 4x 4xy y 9 (2x y) 9 2x y 3 x 3y 5 x 3y 5 x 3y 5 2x y 3 6x 3y 9 7x 14 x 3y 5 x 3y 5 x 3y 5 2x y 3 6x 3y 9 7x 4 x 3y 5 x 3y 5 x 3y 5 x 2 y − = = 1 4 x 7 13 y 7 − + = − − + + − = ⇔ + = + = − − − + − = ⇔ + = − − − + − = − − + = ⇔ ⇔ + = + = − = + = ⇔ − + = + = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Bµi13 : Ghpt 6x 3xy x 1 y 6x 3xy x y 1 0 1) x y 1 x y 1 (6x 2x) (3xy y) (3x 1) 0 x y 1 2x(3x 1) y(3x 1) (3x 1) 0 (3x 1)(2x y 1) 0 x y 1 x y 1 3x 1 0 x y 1 2x y 1 0 x y 1 = = = + = ⇔ ⇔ = + = + + = + + = = = ± = ± = ⇔ = = + = + − ⇔ ⇔ = + + = + = − = 2 2 2 2 2 2 2 2 2 2 1 1 x x 3 3 8 y x y 1 9 y 2x 1 y 2x 1 x y 1 x (2x 1) 1 1 x 3 8 2 2 y 9 3 x 0 y 1 y 2x 1 y 2x 1 4 x x (2x 1) 1 5x 4x 0 5 3 y 5 + + − = + = − ⇔ + − + = − + − = < ⇔ = ⇔ = ≥ ⇔ = ⇔ = + = = = ⇔ + = ⇔ ⇔ + = − = − = Bµi14.Ghpt x 1 y 1 5 x 1 4y 4 x 1 4y 4 0 4y 4 y 1 5(1) 8 Víi y 1, (1) 3y 8 y (lo¹i) 3 Víi y 1, (1) 5y 10 y 2 x 1 4 x 3, y 2 x 1 4 x 1 4 x 5, y 2 2 2 2 2 2 0 Bài15 :Ghpt 2x 2x xy y 0 (1) x 3xy 4 0 (2) (1) 2x(x 1) y(x 1) 0 (2x y)(x 1) 0 x 1 0 x 1 2x y 0 y 2x 5 *x 1thay vào (2) 1 3y 4 0 y 3 *y 2x thay vào (2) x 6x 4 0 7x 4(Vô lý) ptvn 5 Pt có n là : x 1; y 3 − + − = − + = ⇔ − + − = ⇔ + − = − = = ⇔ ⇔ + = = − = ⇔ − + = ⇔ = = − ⇔ + + = ⇔ = − ⇔ = = 2 2 2 2 2 2 2 2 2 2 2 2 Bài16 :Ghpt 2x 3xy y 3x 1(1) 2y 3xy x 3y 1(2) (1) (2) 2x 2y y x 3x 3y 3x 3y 3x 3y 0 3(x y)(x y) 3(x y) 0 3(x y)(x y 1) 0 *x y 0 x y ta có (1) 2y 3y 1 0 3 17 y 4 *x y 1 ta có (1) 4y 4y 0 y 0; y 1 − = − − − = − − − ⇔ − = − − + ⇔ − + − = ⇔ − + + − = ⇔ − + + = − = ⇔ = ⇔ − − = ± ⇔ = = − − ⇔ + = ⇔ = = − + 0 y 0 x 1 y 1 x 0 3 17 3 17 3 17 3 17 Hpt có n là : (x, y) , ; , ;( 1,0);(0, 1) 4 4 4 4 = ⇔ = − + = − ⇔ = + + − − = − − ÷ ÷ ÷ ÷ . 2 o 2 o 1 2 o Bài10(21) Ghpt x y 5 Theo viet x, y là n pt : xy 4 t 5t 4 0 a b c 0 t 1; t 4 Hpt có n : (x 1, y 4);(x 4, y 1) x y 1 x ( y) 1 b) xy 6 x( y) 6 Theo viet x, y là n pt : t t 6 0 t 2;