Công nghệ sinh học ( phần 1 ) microRNA kiểm soát chức năng của các tế bào gốc máu Tế bào gốc tạo máu cung cấp cho cơ thể nguồn tế bào máu ổn định, bao gồm hồng cầu – tế bào vận chuyển oxy và bạch cầu – tế bào tạo nên hệ thống miễn dịch. Tế bào gốc tạo máu (tế bào Hematopoitic) có thể tự tạo nhiều bản sao để chắc chắn rằng nó có đủ số lượng để cung cấp máu trong suốt một đời người. Điều này đòi hỏi nó phải đạt được sự cân bằng tinh tế giữa việc tự tái tạo và việc phát triển thành những dòng tế bào máu khác nhau. Sự mất cân bằng sẽ dẫn đến một số bệnh như bệnh bạch cầu (Leukemia) và bệnh thiếu máu (Anemia). Một yếu tố quan trọng để chống lại các căn bệnh liên quan đến rối loạn tế bào gốc máu là gia tăng sự hiểu biết về các gene và phân tử kiểm soát hoạt động của các tế bào gốc máu. Các nhà sinh học thuộc Viện Kỹ thuật California (Caltech, Mỹ) đã đạt được một bước tiến lớn trong quá trình nghiên cứu. Họ đã tìm ra một nhóm mới các phân tử có nồng độ cao trong tế bào gốc máu và nó có tác dụng điều tiết sử sản xuất tế bào gốc máu. David Baltimore, Giáo sư Sinh học Robert Andrews Millikan, người nhận giải Nobel năm 1975 Sinh lý và Y khoa, nghiên cứu chính của đề tài nói “khi những đoạn nhỏ bé của RNA (còn được gọi là microRNA hay miRNA) được kích thích biểu hiện ở nồng độ cao trong tế bào gốc máu của chuột thí nghiệm, các miRNA sẽ cản trở hoặc thú đẩy chức năng của những tế bào này”. Bài báo về nghiên cứu này đã được công bố vào ngày 26/6/2010 trên phiên bản trực tuyến của Kỷ yếu của Viện Hàn lâm khoa học Quốc gia (The Proceedings of the National Academy of Sciences (PNAS)). Ngạc nhiên hơn nữa, các nhà nghiên cứu đã tìm thấy một phần của miRNA, gọi là miR-125b, có một vai trò nổi bật. Khi nồng độ miR-125b hơi cao, nó sẽ đẩy mạnh việc sản xuất các tế bào máu trưởng thành từ các tế bào gốc máu tốt hơn nhiều so với các loại miRNA khác. “Nhưng khi mức biểu hiện của nó được đẩy lên mức cao hơn, nó sẽ nhanh chóng dẫn đến ung thư trong vòng 6 tháng”, Baltimore nói. Cơ chế chính xác của việc chuyển đổi công dụng này hiện nay vẫn chưa được làm rõ, nó được cho là có khả năng liên quan đến sự ức chế của miR-125b đến những gene đặc biệt đàn áp sự phát triển của khối u. “Chúng tôi ngạc nhiên khi thấy rằng ở nồng độ cao, miR-125b gây ra bệnh máu trắng cấp tính ở chuột” Aadel Chaudhuri, cử nhân thuộc Caltech, đồng tác giả của bài báo, nói. Bệnh máu trắng là bệnh mà các tế bào máu bình thường (bao gồm hồng cầu, tiểu cầu, bạch cầu) được thay thế bởi các tế bào bạch cầu bất thường phát triển liện tục không thể kiểm soát được, cuối cùng dẫn đến tử vong nếu không được điều trị. “Những nghiên cứu này được tiến hành trên chuột nhưng chúng tôi đã phân tích trên tế bào gốc máu của người và đã đã tìm thấy các miRNA với hàm lượng cao tương tự như trong chuột” theo Ryan O'Connell - người đang làm postdoc ở Caltech và là tác giả chính của bài báo đăng trên PNAS. Thêm vào đó, các nhà nghiên cứu đã tìm ra rằng sự biểu hiện của phân tử miRNA quan trọng đó tăng khả năng cấy ghép tế bào gốc máu của người khi nó đươc chuyển vào trong chuột. “Điều này chứng tỏ rằng sự biểu hiện và chức năng của các miRNA này được bảo tồn trong suốt quá trình tiến hóa” O’Connell nói. Aadel Chaudhuri nói “Điều này có nghĩa là hoàn toàn khả thi khi các bệnh về bạch cầu ở con người có thể được chữa trị bằng cách sử dụng các microRNA trong tế bào gốc mới được xác định này” “Các khám phá này khi kết hợp với báo cáo tương tự của bác sĩ David Scadden thuộc Bệnh viện Đa khoa Massachusetts và Viện Tế bào gốc Harvard cho thấy rằng các miRNA là những phân tử quan trọng kiểm soát chức năng của tế bào gốc máu” Aadel Chaudhuri nói “Những sự quan sát này có sự liên kết chặc chẽ giữ chẩn đoán và điều trị ung thư và bệnh thiếu máu – căn bệnh do sự khiếm khuyết của tế bào gốc máu. Việc cấy ghép tế bào gốc máu đã trở thành phương pháp phổ biến trong điều trị ung thư, bệnh tự miễn dịch và thậm chí cả một số loại bệnh truyền nhiễm. Việc sử dụng các mức độ biểu hiện của miRNA trong tế bào gốc máu thông qua liệu pháp điều trị mục tiêu có thể được dùng để chứng minh thêm hiệu quả của cách tiếp cận này” “Hai nghiên cứu bổ sung cung cấp thêm bằng chứng rằng các miRNA là bộ phận điều khiển then chốt trong việc kiểm soát tỷ lệ các loại tế bào máu được tạo từ tủy xương của chuột và con người.” Baltimore nói. “Trong công việc này, chúng tôi đã chứng minh cơ chế này là có thật trong các tế bào gốc. Trong khi những nghiên cứu trước đó của chúng tôi và các nhà khoa học khác đã cho thấy mức độ của miRNA xác định nồng độ của các loại tế bào máu trưởng thành. Tuy nhiên liệu pháp miRNA mục tiêu (The targeting miRNAs therapy) vẫn là một thách thức lớn cho ngành Công nghệ sinh học”. Ngoài Baltimore, O'Connell và Chaudhuri, bài báo “MicroRNAs gia tăng trong quá trình biệt hóa tế bào gốc tạo máu điều tiết dài hạn việc sản xuất các tế bào gốc tạo máu” (MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output) còn có các đồng tác giả như Dinesh Rao, nhà khoa học trước đây làm việc tại Caltech và hiện nay thuộc Trường Y khoa David Geffen tại UCLA, William S. Gibson – Kỹ thuật viên của Caltech và Alejandro B. Balazs – nghiên cứu sinh hậu tiến sĩ của Caltech. Công việc nghiên cứu được tài trợ bởi Viện nghiên cứu Ung thư, Viện Tim, Phổi và Máu Quốc gia; Quỹ khoa học Quốc gia và Viện Ung thư Quốc gia. Tinh sạch protein I. Giới thiệu chung Sự tinh sạch của protein rất quan trọng vì từ protein tinh sạch chúng ta có thể xác định được trình tự acid amin, mối liên hệ về tiến hóa giữa các protein trong những cá thể khác nhau và khảo sát các chức năng sinh hóa của các protein đó. Hơn thế nữa, việc tinh thể hóa protein chỉ có thể thực hiện với những protein tinh sạch và từ những tinh thể đó chúng ta sẽ biết được cấu trúc bậc 4 cũng như các đơn vị chức năng của protein thông qua dữ liệu chiếu xạ tia X. II. Nhận biết protein mục tiêu Kết quả của sự tinh sạch là một mẫu protein chỉ chứa đúng một loại phân tử, ở đây là một loại protein mà nhà sinh hóa quan tâm. Mẫu protein này chỉ là một phân đoạn chiếm 1% vật liệu ban đầu, vốn có thể là dịch nuôi cấy tế bào hay một cơ quan riêng biệt lấy của thực vật hay động vật. Để xác định được protein mục tiêu từ hỗn hợp protein, nhà sinh hóa cần thực hiện một thử nghiệm dựa vào đặc tính của protein đó. Nếu protein mục tiêu là một enzyme thì thử nghiệm sẽ được thực hiện dựa trên hoạt tính của enzyme đó. Cụ thể như với enzyme lactate dehydrogenase, một enzyme có vai trò trong việc sản xuất năng lượng từ glucose cũng như tổng hợp glucose từ lactate, để xác định enzyme này thì dựa trên phản ứng của nó trong tế bào Sau đó, dựa vào khả năng hấp thụ ánh sáng mạnh ở bước sóng 340nm của Nicotinamide adenine dinucleotide (NADH), ta có thể đo được lượng ánh sáng được hấp thụ ở bước sóng 340nm trong một đơn vị thời gian để xác định hoạt tính của enzyme lactate dehydrogenase. Trên thực tế việc tìm ra một thử nghiệm hiệu quả thường rất khó, nhưng nếu có được một cách thử nghiệm càng đặc hiệu thì quá trình tinh sạch càng hiệu quả. Tuy nhiên, để chắc chắn quá trình tinh sạch hoạt động tốt, chúng ta còn cần một thông số là lượng protein có trong hỗn hợp được thử nghiệm. Hiện nay có rất nhiều phương pháp phát hiện nhanh và chính xác nồng độ protein. Dựa vào 2 thông số thực nghiệm là hoạt tính enzyme và nồng độ protein, ta có thể xác định hoạt tính riêng của enzyme tức là tỉ lệ hoạt tính enzyme với hàm lượng protein có trong mẫu thử nghiệm. Hoạt tính riêng càng cao thì quá trình tinh sạch càng hiệu quả hay nói cách khác, mục tiêu của việc tinh sạch là làm tăng tối đa hoạt tính riêng. III. Ly trích protein từ tế bào Khi đã tìm ra thử nghiệm phù hợp và chọn được nguồn protein, chúng ta cần phân đoạn dịch tế bào thành nhiều phần và xác định xem phần nào chứa nhiều protein mục tiêu. Quá trình tìm phân đoạn mục tiêu được phát triển bằng sự mày mò qua từng thí nghiệm. Bước đầu tiên là phá vỡ màng tế bào, tạo thành hỗn hợp đồng chất. Sau đó phân đoạn hỗn hợp bằng ly tâm, dịch nổi chứa phân tử có trọng lượng thấp, những phân tử có trọng lượng cao hơn lắng xuống đáy ống ly tâm. Dịch nổi lại được ly tâm lần nữa với lực mạnh hơn để tạo cặn và dịch nổi mới. Tiến trình này, được gọi là ly tâm phân đoạn, sẽ tạo được nhiều phân đoạn khác nhau với tỉ trọng giảm dần, mỗi phân đoạn này chứa hàng trăm phân tử protein khác nhau, sẽ được tinh sạch sau khi đã qua thử nghiệm hoạt tính. Thông thường, một phân đoạn có hoạt tính cao sẽ là nguồn vật liệu cho các kỹ thuật tinh sạch hiệu quả. IV. Thu nhận protein mục tiêu dựa trên độ hoà tan, kích thước, điện tích, và liên kết ái lực Hàng ngàn protein đã được tinh sạch ở dạng có hoạt tính dựa trên những đặc tính căn bản như độ hòa tan, kích thước, điện tích và liên kết ái lực. Thông thường, một hỗn hợp protein sẽ trải qua nhiều giai đoạn phân tách, mỗi giai đoạn dựa trên một đặc tính nhất định, để cuối cùng là một protein tinh sạch. Ở mỗi bước phân tách, thử nghiệm xác định hoạt tính và xác định nồng độ protein đều được thực hiện. Lượng đáng kể protein tinh sạch, khoảng vài miligram, có thể giúp ta biết được cấu trúc không gian ba chiều và cơ chế phản ứng của nó. Vì vậy, sản lượng toàn phần là một điểm quan trọng của quá trình tinh sạch. Các kỹ thuật tinh sạch thường dùng: tủa bằng muối, màng bán dẫn, sắc ký. IV.1. Tủa bằng muối Ở nồng độ muối cao, phần lớn protein sẽ giảm tính hòa tan, hiện tượng này gọi là tủa bằng muối (salting out). Mỗi loại protein sẽ kết tủa ở một nồng độ muối nhất định. Vì vậy, hiện tượng tủa bởi muối có thể được dùng để phân đoạn protein. Ví dụ như fibrinogen tủa ở nồng độ muối ammonium sulfate 0.8 M trong khi phải đến nồng độ 2.4 M, albumin mới kết tủa. Hiện tượng này được sử dụng để tăng nồng độ của một dung dịch protein loãng chứa các phân đoạn có hoạt tính của các bước tinh sạch trước. Nếu cần thiết, lượng muối có thể được loại bỏ bằng sự thẩm tách IV.2. Sự thẩm tách Protein có thể được phân tách bằng sự thẩm tách thông qua màng bán dẫn, chẳng hạn màng cellulose với nhiều lỗ. Những phân tử có cấu trức không gian nhất định lớn hơn dường kính của lỗ sẽ bị giữ lại bên trong túi thẩm tách, trong khi đó, những phân tử nhỏ hơn và các ion sẽ đi qua các lỗ đó ra ngoài túi. Kỹ thuật này dùng để loại bỏ muối hay tách những phân tử nhỏ, nhưng với kỹ thuật này không phân biệt được các loại protein với nhau. IV.3 Sắc ký Sắc ký là một phương pháp phân tách quan trọng nhất trong sinh học phân tử vì nó thích hợp với nhiều loại hợp chất và sản phẩm tinh sạch có thể được sử dụng ngay cho việc định lượng và định danh. Một hệ sắc ký gồm pha tĩnh, pha động và mẫu cần phân tách. Trong đó, tùy vào loại mẫu cần phân tách ta có thể lựa chọn loại sắc ký cũng như nguyên liệu cho pha cố định và pha di động. Trong tinh sạch protein, có bốn phương pháp được ứng dụng nhiều nhất là sắc ký lọc gel dựa vào kích thước của phân tử (size exclusion chromagraphy), sắc ký trao đổi ion dựa vào điện tích của phân tử (ion exchange chromagraphy), sắc ký ái lực dựa vào ái lực của phân tử với một loại phân tử khác (affinity chromagraphy) và sắc ký lỏng cao áp dựa vào kích thước của phân tử nhưng có độ phân giải cao nhờ vào áp suất (high pressure liquid chromagraphy). IV.3.1 Sắc ký lọc gel Phương pháp này tốt hơn các phương pháp trên vì nó dựa vào kích thước phân tử. Mẫu sẽ được nạp vào đầu một cột chứa nhiều hạt có lỗ làm từ polymer không tan nhưng có tính hydrate hóa cao như dextran, agarose (những dạng cabohydrate) hay polyacrylamide. Sephadex, Sepharose, và Bio-gel là những loại gel phổ biến trên thị trường có sẵn những hạt có lỗ với đường kính chuẩn là 100µm (0.1mm). Những phân tử nhỏ có thể ở cả bên trong lẫn giữa các hạt, trong khi đó những phân tử lớn hơn chỉ có thể ở bên ngoài các hạt. Vì vậy, những phân tử có kích thước lớn trong cột sẽ chảy nhanh hơn và ra ngoài trước . Phân tử có kích thước trung bình, có thể thỉnh thoảng vào được bên trong hạt sẽ rời khỏi cột ở vị trí giữa; còn những phân tử nhỏ sẽ phải đi qua đoạn đường dài hơn, quanh co nên sẽ ra sau cùng. IV.3.2 Sắc ký trao đổi ion Tại bất kỳ một điểm pH nào trừ điểm đẳng điện, các protein đều có mang một điện tích tương ứng với điểm pH đó. Dựa vào điện tích thực của chúng tại một điểm pH nhất định, ta có thể phân tách hỗn hợp protein. Phương pháp này gọi là phương pháp sắc ký trao đổi ion. Trong phương pháp này, pha tĩnh là những hạt mang sẵn một điện tích nhất định, những hạt này sẽ tương tác với các phân tử (protein) mang điện tích trái dấu với chúng. Cụ thể, nếu hạt mang điện âm (như cột carboxymethyl-cellulose (CM-cellulose)), tiến trình được gọi là sắc ký trao đổi ion dương, thì sẽ tương tác với những phân tử mang điện tích dương. Ngược lại, nếu hạt mang điện tích dương (như cột diethylaminoethyl-cellulose (DEAE- cellulose)), gọi là sắc ký trao đổi ion âm, thì tương tác với phân tử mang điện tích âm. Vì thế, những protein cùng dấu với cột sẽ chạy ra khỏi cột trong khi những protein trái dấu bị giữ lại cột. Để phóng thích những protein này, ta tăng nồng độ ion của pha động, những ion này sẽ thế phân tử protein tương tác với các hạt mang điện tích. Ví dụ, trong sắc ký trao đổi ion dương, ta thêm muối natri clorua hay muối khác trong dung dịch tách giải bởi vì ion natri sẽ tranh bám vào cột với các protein có điện tích dương, do đó, những protein mang điện tích dương được phóng thích ra ngoài cột lần lượt theo độ lớn về điện tích. Hình 1: minh họa sắc ký trao đổi ion Hình 2: minh họa cơ chế giữa protein trong hệ sắc ký trao đổi ion (a) Những hạt mang điện tích dương sẽ trao đổi ion âm với dung dịch đệm. Protein tích điện âm cũng ion dương tương tác với nó (b) Khi protein gắn với hạt, protein thay thế những ion âm tương tác với hạt cũng như hạt thay thế những ion dương tương tác với protein IV.3.3 Sắc ký ái lực Đây là một phương pháp rất hiệu quả và được ứng dụng rộng rãi trong việc tinh sạch protein. Kỹ thuật này dựa trên ái lực cao của nhiều protein với những nhóm hóa học chuyên biệt. Ví dụ, concanavalin A, một loại protein thực vật, có thể được tinh sạch khi cho qua cột mang những phân tử glucose bằng liên kết cộng hóa trị. Concanavalin A gắn vào cột bởi vì nó có ái lực cao với glucose, trong khi đó những protein khác thì không. Concanavalin A có thể được tách giải khỏi cột khi ta cho thêm dung dịch glucose đậm đặc vào. Phân tử đường trong dung dịch sẽ gắn với Concanavalin A thay thế những phân tử glucose nối với cột. Hình 3: minh họa cho cơ chế tinh sạch Concanavalin A bằng sắc ký ái lực Sắc ký ái lực còn là một công cụ hữu hiệu trong việc tách các yếu tố phiên mã, những protein điều hòa sự biểu hiện gen thông qua việc gắn đặc hiệu với trình tự DNA. Hỗn hợp protein thấm qua cột có chứa những trình tự DNA đặc hiệu được gắn vào thể mang; những protein có ái lực cao với trình tự DNA sẽ bắt vào các trình tự và được giữ lại. Trong thí dụ này, yếu tố phiên mã sẽ được phóng thích khi rửa cột với dung dịch có hàm lượng muối cao. Ngoài ra, hiện nay người ta dựa vào tính đặc hiệu giữa kháng nguyên và kháng thể để tinh sạch kháng nguyên hay kháng thể. Nhìn chung, sắc ký ái lực có thể được dùng để tách một protein vốn có khả năng nhận biết một nhóm X bằng nối cộng hóa với nhóm này hay những chất dẫn xuất của nó được gắn trên một cái cột, sau đó nạp hỗn hợp protein vào cột, cột này sẽ được rửa lại để loại bỏ những protein không tạo được nối, cuối cùng là tách giải protein mục tiêu bằng dung dịch X với nồng độ cao hay thay đổi điều kiện để làm giảm lực liên kết. Sắc ký ái lực là phương pháp tinh sạch hiệu quả nhất khi tương tác giữa protein và phân tử được dùng như mồi bắt protein có độ chuyên biệt cao. IV.3. Sắc ký lỏng cao áp Kỹ thuật sắc ký lỏng cao áp là một dạng mở rộng của kỹ thuật sắc ký cột có khả năng phân tách protein được cải thiện đáng kể. Bản thân vật liệu tạo cột vốn đã có sự phân chia rõ ràng và như thế sẽ có nhiều vị trí tương tác dẫn đến khả năng phân tách được tăng lên đáng kể. Bởi vì cột được làm từ vật liệu mịn hơn nên phải có một áp lực tác động lên cột để có được một tốc độ chảy thích hợp. Kết quả thực có sự phân giải cao và phân tách nhanh. . Công nghệ sinh học ( phần 1 ) microRNA kiểm soát chức năng của các tế bào gốc máu Tế bào gốc tạo máu cung cấp. cứu này đã được công bố vào ngày 26/6/2 010 trên phiên bản trực tuyến của Kỷ yếu của Viện Hàn lâm khoa học Quốc gia (The Proceedings of the National Academy of Sciences (PNAS )) . Ngạc nhiên hơn. sư Sinh học Robert Andrews Millikan, người nhận giải Nobel năm 19 75 Sinh lý và Y khoa, nghiên cứu chính của đề tài nói “khi những đoạn nhỏ bé của RNA (còn được gọi là microRNA hay miRNA) được