ðề tự ôn số 02 – Khóa LTðH ñảm bảo - thầy Phan Huy Khải Hocmai.vn – Ngôi trường chung của học trò Việt 1 ðỀ TỰ ÔN TẬP SỐ 2 Thời gian: 90 phút ðỀ BÀI Câu 1.(3 ñiểm): Trong hệ trục tọa ñộ Oxyz cho 2 mặt phẳng: ( ) :2 2 0 à ( ) : 4 2 3 0 − + − = + + + = P x y z v Q x y z a) CMR: ( ) ( ) P Q ⊥ b) Viết phương trình mặt phẳng (R) ñi qua gốc tọa ñộ O và giao tuyến d của (P) và (Q). c) Viết phương trình ñường thẳng d’ song song với d và ñi qua diểm M (1;2;3). Câu 2.( 3 ñiểm): Trong hệ trục tọa ñộ Oxyz cho ñường thẳng d và mặt phẳng (P) có phương trình: 12 9 1 : ; ( ) :3 5 2 0 4 3 1 − − − = = + − − = x y z d P x y z a) CMR: d và (P) c ắ t nhau. Tìm t ọ a ñộ giao ñ i ể m. b) Vi ế t ph ươ ng trình m ặ t ph ẳ ng (Q) ñ i qua M(1;2;-1) và vuông góc v ớ i d c) Vi ế t ph ươ ng trình hình chi ế u vuông góc c ủ a d lên m ặ t ph ẳ ng (P). Câu 3.( 3 ñiểm) : Trong h ệ tr ụ c t ọ a ñộ Oxyz cho m ặ t ph ẳ ng (P): y+2z=0; ñ i ể m A(1;2;3), B( 1;1;1) và 2 ñườ ng th ẳ ng: 1 2 1 2 ' : ; : 4 2 ' 4 1 = − = − = = + = = x t x t d y t d y t z t z a) CMR: d 1 và d 2 chéo nhau. b) Vi ế t ph ươ ng trình ñườ ng th ẳ ng d n ằ m trong (P) c ắ t c ả d 1 và d 2 c) Tìm M trên (P) sao cho chu vi tam giác MAB ñạ t giá tr ị bé nh ấ t. Câu 4.(1 ñiểm) : Vi ế t ph ươ ng trình ñườ ng phân giác t ạ o b ở i 2 ñườ ng th ẳ ng sau: 1 2 1 3 1 2 ( ) : 2 à ( ) : 3 2 2 x t x s d y t v d y s z t z s = + = − = = = − = + ………………….Hết………………… Nguồn: Hocmai.vn . ðề tự ôn số 02 – Khóa LTðH ñảm bảo - thầy Phan Huy Khải Hocmai.vn – Ngôi trường chung của học trò Việt 1 ðỀ TỰ ÔN TẬP SỐ 2 Thời gian: 90 phút ðỀ BÀI . b) Vi ế t ph ươ ng trình m ặ t ph ẳ ng (Q) ñ i qua M(1;2;-1) và vuông góc v ớ i d c) Vi ế t ph ươ ng trình hình chi ế u vuông góc c ủ a d lên m ặ t ph ẳ ng (P). Câu 3.( 3 ñiểm) : Trong. Câu 2.( 3 ñiểm): Trong hệ trục tọa ñộ Oxyz cho ñường thẳng d và mặt phẳng (P) có phương trình: 12 9 1 : ; ( ) :3 5 2 0 4 3 1 − − − = = + − − = x y z d P x y z a) CMR: d và (P) c ắ t nhau.