SỞ GD& ĐT NGHỆ AN KỲ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 12 NĂM HỌC 2009 - 2010 Môn thi: TOÁN HỌC - THPT BẢNG A Thời gian: 180 phút (không kể thời gian giao đề) Câu 1 (4,0 điểm). Giải phương trình: ( ) 2 2009 1 x x x+ − = 1. Câu 2 (4,0 điểm). Tìm m để hệ phương trình sau có 3 nghiệm phân biệt: ( ) 2 ( 1) 1 x y m y x xy m x + = + + = + Câu 3 (2,0 điểm). Cho ba số dương , ,x y z . Chứng minh rằng: ` 2 2 2 2 2 2 1 1 1 36 9x y z x y y z x z + + ≥ + + + Câu 4 (2,0 điểm). Cho dãy số ( ) n x thỏa mãn đồng thời hai điều kiện: i, 1 x = 2 ii, 1 2 1 2 2 ( 1) ( 1) n n x x n x x n n − + + + − = − với n là số tự nhiên lớn hơn 1. Tính limu n với u n = (n+1) 3 . n x Câu 5 (3,0 điểm). Cho tứ diện ABCD, M là một điểm bất kì nằm trong tam giác ABC. Các đường thẳng qua M song song với AD, BD, CD tương ứng cắt các mặt phẳng (BCD), (ACD), (ABD) tại A’, B’, C’. Tìm vị trí điểm M sao cho MA’.MB’.MC’ đạt giá trị lớn nhất. Câu 6 (3,0 điểm). Cho tứ diện đều ABCD có độ dài các cạnh bằng 1. Gọi M, N lần lượt là trung điểm của BD và AC. Trên đường thẳng AB lấy điểm P, trên đường thẳng DN lấy điểm Q sao cho PQ song song với CM. Tính độ dài đoạn PQ và thể tích khối tứ diện AMNP. Câu 7 (2,0 điểm). Cho hàm số f(x) liên tục trên R thỏa mãn: f(x).f(y) – sinx.siny = f(x+y) với mọi số thực x, y. Chứng minh rằng 2f(x) + x 2 ≥ 2 với mọi số thực x thuộc ; 2 2 π π − . - - - Hết - - - Họ và tên thí sinh: Số báo danh: Đề thi chính thức . SỞ GD& ĐT NGHỆ AN KỲ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 12 NĂM HỌC 2009 - 2010 Môn thi: TOÁN HỌC - THPT BẢNG A Thời gian: 180 phút (không kể thời gian giao đề) Câu 1 (4,0 điểm). Giải. diện ABCD, M là một điểm bất kì nằm trong tam giác ABC. Các đường thẳng qua M song song với AD, BD, CD tương ứng cắt các mặt phẳng (BCD), (ACD), (ABD) tại A , B’, C’. Tìm vị trí điểm M sao cho MA’.MB’.MC’. (3,0 điểm). Cho tứ diện đều ABCD có độ dài các cạnh bằng 1. Gọi M, N lần lượt là trung điểm c a BD và AC. Trên đường thẳng AB lấy điểm P, trên đường thẳng DN lấy điểm Q sao cho PQ song song với