1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi học sinh giỏi huyện Mường Tè Lai Châu

3 931 3

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 222,5 KB

Nội dung

ĐỀ THI CHỌN HỌC SINH GIỎI HUYỆN NĂM HỌC 2008-2009 Môn thi: Toán 9 Thời gian làm bài: 120 phút (không kể thời gian giao đề) Câu 1: Rút gọn các biểu thức sau: a. A = 6 3 2 2 . 3 2 2. 6 3 2 2+ + + − + . b. B = ( ) ( ) 2 2 2008 2014 . 2008 4016 3 .2009 2005.2007.2010.2011 − + − Câu 2: Cho hàm số: y = mx – 3x + m + 1 a. Xác định điểm cố định của đồ thị hàm số? b. Tìm giá trị của m để đồ thị hàm số là một đường thẳng cắt hai trục tọa độ tạo thành tam giác có diện tích bằng 1(đơn vị diện tích). Câu 3. a. Chứng minh bất đẳng thức: 2 2 2 2 2 2 ( ) ( )a b c d a c b d+ + + ≥ + + + . Áp dụng giải phương trình: 2 2 2 5 6 10x x x x+ + + − + = 5 b. Cho Q = 16 3 x x + + . Tìm giá trị nhỏ nhất của Q Câu 4. Cho hình vuông ABCD, trên cạnh BC lấy điểm M, trên tia đối của tia BA lấy điểm N sao cho BN = BM. Chứng minh: các đường thẳng AM, CN và đường tròn ngoại tiếp hình vuông ABCD đồng quy tại một điểm. Câu 5. Cho tam giác ABC có · 0 ABC = 60 ; BC = a ; AB = c (a, c là hai độ dài cho trước). Hình chữ nhật MNPQ có đỉnh M trên cạnh AB, N trên cạnh AC, P và Q ở trên cạnh BC được gọi là hình chữ nhật nội tiếp trong tam giác ABC. Tìm vị trí của M trên cạnh AB để hình chữ nhật MNPQ có diện tích lớn nhất. Tính diện tích lớn nhất đó. PHÒNG GIÁO DỤC VÀ ĐÀO TẠO THANH CHƯƠNG Ghi chú: Cán bộ coi không được giải thích gì thêm. A m+1 m-3 B m+1 O PHÒNG GD&ĐT THANH CHƯƠNG ĐÁP ÁN ĐỀ THI HỌC SINH GIỎI KHỐI 9 - CẤP HUYỆN. NĂM HỌC 2008-2009 MÔN THI: TOÁN (Thời gian làm bài 120 phút) Câu Ý Nội dung Điểm Ghi chú 1 a A 2 2 3 2 2. ( 6) ( 3 2 2) 3 2 2. 6 (3 2 2)= + − + = + − + A = 2 (3 2 2)(3 2 2) 9 (2 2) 1+ − = − = 0.5 0.5 2.0 b B = ( ) ( ) 2 2 2008 2014 . 2008 4016 3 .2009 2005.2007.2010.2011 − + − . Đặt x = 2008, khi đó B = ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 x x 6 x 2x 3 x 1 x 3 x 1 x 2 x 3 − − + − + − − + + = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x 2 x 3 x 3 x 1 x 1 x 3 x 1 x 2 x 3 + − + − + − − + + = x + 1 = 2009 0.25 0.25 0.5 2 a y = (m – 3)x + (m + 1) Giả sử M(x 0 ; y 0 ) là điểm cố định của đồ thị hàm số, ta có: y 0 = mx 0 – 3x 0 + m+ 1 thỏa mãn với mọi giá trị của m 0 0 0 ( 1) (1 3 ) 0,m x x y m⇔ + + − − = ∀ 0 0 0 0 0 1 0 1 1 3 0 4 x x x y y + = = −   ⇔ ⇔   − − = =   Vậy điểm cố định cần tìm M(-1; 4) 0.25 0.25 1.5 b Ta có: Đồ thị là đường thẳng cắt hai trục tọa độ khi m – 3 0 3m ≠ ⇔ ≠ S ∆ ABO = 1 1 1 1 2 3 m m m + + = − 2 ( 1) 2 3m m⇔ + = − Nếu m> 3 ⇔ m 2 +2m +1 = 2m -6 ⇔ m 2 = -7 ( loại) Nếu m < 3 ⇔ m 2 +2m +1 = 6 – 2m ⇔ m 2 + 4m – 5 =0 ⇔ (m – 1)(m + +5) = 0 ⇔ m = 1; m = -5 0.5 0.5 3 a Hai vế BĐT không âm nên bình phương hai vế ta có: a 2 + b 2 +c 2 + d 2 +2 2 2 2 2 ( )( )a b c d+ + ≥ a 2 +2ac + c 2 + b 2 + 2bd + d 2 ⇔ 2 2 2 2 ( )( )a b c d+ + ≥ ac + bd (1) Nếu ac + bd < 0 thì BĐT được c/m Nếu ac + bd ≥ 0 (1) ⇔ ( a 2 + b 2 )(c 2 + d 2 ) ≥ a 2 c 2 + b 2 d 2 +2acbd ⇔ a 2 c 2 + a 2 d 2 + b 2 c 2 + b 2 d 2 ≥ a 2 c 2 + b 2 d 2 +2acbd ⇔ a 2 d 2 + b 2 c 2 – 2abcd ≥ 0 ⇔ (ad – bc) 2 ≥ 0 ( luôn đúng) Dấu “=” xẩy ra ⇔ ad = bc ⇔ a c b d = Áp dụng: xét vế trái VT = 2 2 2 2 2 2 ( 1) 2 (3 ) 1 ( 1 3 ) (2 1)x x x x+ + + − + ≥ + + − + + 0.5 0.5 1.5 H N C D A B M 16 9 5VT VT⇔ ≥ + ⇔ ≥ Mà VP = 5, vậy dấu bằng xẩy ra ⇔ 1 3 5 1 6 2 2 1 3 x x x x x + − = ⇔ + = − ⇔ = 0.25 0.25 b. Điều kiện: x ≥ 0 Q = ( 9) 25 25 3 6 3 3 x x x x − + = + + − + + 25 2 ( 3). 6 10 6 4 3 x Q x ≥ + − ⇔ ≥ − = + Vậy Q min = 4; Dấu “=” xẩy ra ⇔ 25 3 4 3 x x x + = ⇔ = + (TM điều kiện) 0.75 0.25 1.0 4 Hình vẽ chính xác Gọi H là giao của AM và CN Xét AMB∆ và ∆ CNB là hai tam giác vuông có: AB = CB (Cạnh hình vuông) BM = BN (gt) ⇒ AMB∆ = ∆ CNB (c-g-c) · · (1)BAM BCN= Xét trong AMB∆ và ∆ CMH có: · · AMB CMH= (đối đỉnh), kết hợp với (1) ⇒ · · 0 90CHM ABM= = hay · 0 90ACH = ⇒ H thuộc đường tròn có đường kính AC (tức H thuộc đường tròn ngoại tiếp ABCD) Vậy AM, CN và đường tròn ngoại tiếp ABCD đồng quy tại H 0.2 0.5 0.5 0.3 1.5 5 Hình vẽ Đặt AM = x (0 < x < c) . Ta có: MN AM ax = MN = BC AB c ⇔ ( ) 0 c - x 3 MQ = BM.sin60 = 2 . Suy ra diện tích của MNPQ là: ( ) ( ) ax c - x 3 a 3 S = = x c - x 2c 2c + Ta có bất đẳng thức: 2 a + b a + b ab ab (a > 0, b > 0) 2 2   ≥ ⇔ ≤  ÷   Áp dụng, ta có: 2 2 x + c - x c x(c - x) = 2 4   ≤  ÷   . Dấu đẳng thức xảy ra khi: c x = c - x x = 2 ⇔ . Suy ra: . 2 a 3 c ac 3 S = 2c 4 8 ≤ . Vậy: max ac 3 S = 8 khi c x = 2 hay M là trung điểm của cạnh AB 0.2 0.2 0.3 0.3 0.25 0.5 0.25 0.5 2.5 A B C M N P Q 0 60 x . ĐỀ THI CHỌN HỌC SINH GIỎI HUYỆN NĂM HỌC 2008-2009 Môn thi: Toán 9 Thời gian làm bài: 120 phút (không kể thời gian giao đề) Câu 1: Rút gọn các biểu thức sau: a gì thêm. A m+1 m-3 B m+1 O PHÒNG GD&ĐT THANH CHƯƠNG ĐÁP ÁN ĐỀ THI HỌC SINH GIỎI KHỐI 9 - CẤP HUYỆN. NĂM HỌC 2008-2009 MÔN THI: TOÁN (Thời gian làm bài 120 phút) Câu Ý Nội dung Điểm Ghi chú 1

Ngày đăng: 10/07/2014, 03:00

TỪ KHÓA LIÊN QUAN

w