1. Trang chủ
  2. » Giáo án - Bài giảng

tuyen tap cac de thi vao 10

45 548 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 45
Dung lượng 0,9 MB

Nội dung

Sở giáo dục - đào tạo nam định Đề chính thức đề thi tuyển sinh năm học 2009 - 2010 Môn : Toán - Thời gian làm bài 120 phút, không kể thời gian giao đề Bài1 (2,0 điểm)Trong mỗi Câu từ 1 đến Câu 8 đều có bốn phơng án trả lời A, B, C, D; Trong đó chỉ có một phơng án đúng. Hãy chọn phơng án đúng để viết vào bài làm. Câu 1. Trên mặt phẳng tọa độ Oxy, đồ thị các hàm số y = x 2 và y = 4x + m cắt nhau tại hai điểm phân biệt khi và chỉ khi A. m > 1. B. m > - 4. C. m < -1. D. m < - 4 Câu 2. Cho phơng trình3x 2y + 1 = 0. Phơng trình nào sau đay cùng với phơng trình đã cho lập thành một hệ phơng trình vô nghiệm A. 2x 3y 1 = 0 B. 6x 4y + 2 = 0 C. -6x + 4y + 1 = 0 D. -6x + 4y 2 = 0 Câu 3. Phơng trình nào sau đây có ít nhất một nghiệm nguyên ? A. 2 ( 5) 5x = B . 9x 2 - 1 = 0 C. 4x 2 4x + 1 = 0 D. x 2 + x + 2 = 0 Câu 4. Trên mặt phẳng tọa độ Oxy góc tạo bởi đờng thẳng y = 3 x + 5 và trục Ox bằng A. 30 0 B. 120 0 C. 60 0 D. 150 0 Câu 5. Cho biểu thức P = a 5 với a < 0. Đ thừa số ở ngoài dấu căn vào trong dấu căn, ta đợc P bằng: A. 2 5a B. - 5a C. 5a D. - 2 5a Câu 6. Trong các phơng trình sau đây phơng trình nào có hai nghiệm dơng: A. x 2 - 2 2 x + 1 = 0 B. x 2 4x + 5 = 0 C. x 2 + 10x + 1 = 0 D.x 2 - 5 x 1 = 0 Câu 7. Cho đờng tròn (O; R) ngoại tiếp tam giác MNP vuông cân ở M . Khi đó MN bằng: A. R B. 2R C.2 2 R D. R 2 Câu 8.Cho hònh chữ nhật MNPQ có MN = 4cm; MQ = 3 cm. Khi quay hình chữ nhật đã cho một vòng quanh cạn MN ta đợc một hình trụ có thể tích bằng A. 48 cm 3 B. 36 cm 3 C. 24 cm 3 D.72 cm 3 Bài 2 (2,0 điểm) 1) Tìm x biết : 2 (2 1) 1 9x + = 2) Rút gọn biểu thức : M = 4 12 3 5 + + 3) Tìm điều kiện xác định của biểu thức: A = 2 6 9x x + Bài 2 (1,5 điểm) Cho phơng trình: x 2 + (3 - m)x + 2(m - 5) = 0 (1), với m là tham số. 1) Chứng minh rằng với mọi giá trị của m phơng trình (1) luôn có nghiệm x 1 = 2. 2) Tìm giá trị của m để phơng trình (1) có nghiệm x 2 = 1 + 2 2 Bài 3. ( 3,0 điểm) Cho đờng tròn (O; R) Và điểmA nằm ngoài (O; R) .Đờng tròn đờng kính AO cắt đờng tròn (O; R) Tại M và N. Đờng thẳng d qua A cắt (O; R) tại B và C ( d không đi qua O; điểm B nằm giữa A và C). Gọi H nlà trung điểm của BC. 1) Chứng minh: AM là tiếp tuyến của (O; R) và H thuộc đờng tròn đờng kính AO. 2) Đờng thẳng qua B vuông góc với OM cắt MN ở D. Chứng minh rằng: a) Góc AHN = góc BDN b) Đờng thẳng DH song song với đờng thẳng MC. c) HB + HD > CD Bài 5 (1,5 điểm) 1) Giải hệ phơng trình: 2 2 2 2 0 ( 1) 1 x y xy x y x y xy + = + = + 2) Chứng minh rằng với mọi x ta luôn có: 2 2 (2 1) 1 (2 1) 1x x x x x x+ + > + + Sở GD&ĐT Hà Nội Đề thi tuyển sinh lớp 10 Năm học: 2009 - 2010. Môn: Toán. Ngày thi: 23 - 6 - 2009. Thời gian làm bài: 120 phút. Câu I(2,5đ): Cho biểu thức A = 1 1 4 2 2 x x x x + + + , với x 0 và x 4. 1/ Rút gọn biểu thức A. 2/ Tính giá trị của biểu thức A khi x = 25. 3/ Tìm giá trị của x để A = -1/3. Câu II (2,5đ): Giải bài toán bằng cách lập phơng trình hoặc hệ phơng trình: Hai tổ sản xuất cùng may một loại áo. Nếu tổ thứ nhất may trong 3 ngày, tổ thứ hai may trong 5 ngày thì cả hai tổ may đợc 1310 chiếc áo. Biết rằng trong một ngày tổ thứ nhất may đợc nhiều hơn tổ thứ hai là 10 chiếc áo. Hỏi mỗi tổ trong một ngày may đợc bao nhiêu chiếc áo? Câu III (1,0đ): Cho phơng trình (ẩn x): x 2 2(m+1)x + m 2 +2 = 0 1/ Giải phơng trình đã cho khi m = 1. 2/ Tìm giá trị của m để phơng trình đã cho có nghiệm phân biệt x 1 , x 2 thoả mãn hệ thức x 1 2 + x 2 2 = 10. Câu IV(3,5đ): Cho đờng tròn (O;R) và điểm A nằm bên ngoài đờng tròn. Kẻ tiếp tuyến AB, AC với đờng tròn (B, C là các tiếp điểm). 1/ Chứng minh ABOC là tứ giác nội tiếp. 2/ Gọi E là giao điểm của BC và OA. Chứng minh BE vuông góc với OA và OE.OA = R 2 . 3/ Trên cung nhỏ BC của đờng tròn (O;R) lấy điểm K bất kỳ (K khác B và C). Tiếp tuyến tại K của đờng tròn (O;R) cắt AB, AC theo thứ tự tại P, Q. Chứng minh tam giác APQ có chu vi không đổi khi K chuyển động trên cung nhỏ BC. 4/ Đờng thẳng qua O và vuông góc với OA cắt các đờng thẳng AB, AC theo thứ tự tại các điểm M, N. Chứng minh PM + QN MN. Câu V(0,5đ): Giải phơng trình: 2 2 3 2 1 1 1 (2 2 1) 4 4 2 x x x x x x + + + = + + + S GIO DC V O TO QUNG NINH K THI TUYN SINH LP 10 THPT NM HC 2009 - 2010 THI CHNH THC MễN : TON Ngày thi : 29/6/2009 Thời gian làm bài : 120 phút (không kể thời gian giao đề) Chữ ký GT 1 : Chữ ký GT 2 : (Đề thi này có 01 trang) Bài 1. (2,0 điểm) Rút gọn các biểu thức sau : a) 2 3 3 27 300+ b) 1 1 1 : 1 ( 1)x x x x x + ữ Bài 2. (1,5 điểm) a). Giải phơng trình: x 2 + 3x 4 = 0 b) Giải hệ phơng trình: 3x 2y = 4 2x + y = 5 Bài 3. (1,5 điểm) Cho hàm số : y = (2m 1)x + m + 1 với m là tham số và m # 1 2 . Hãy xác định m trong mỗi trờng hơp sau : a) Đồ thị hàm số đi qua điểm M ( -1;1 ) b) Đồ thị hàm số cắt trục tung, trục hoành lần lợt tại A , B sao cho tam giác OAB cân. Bài 4. (2,0 điểm): Giải bài toán sau bằng cách lập phơng trình hoặc hệ phơng trình: Một ca nô chuyển động xuôi dòng từ bến A đến bến B sau đó chuyển động ngợc dòng từ B về A hết tổng thời gian là 5 giờ . Biết quãng đờng sông từ A đến B dài 60 Km và vận tốc dòng nớc là 5 Km/h . Tính vận tốc thực của ca nô (( Vận tốc của ca nô khi nớc đứng yên ) Bài 5. (3,0 điểm) Cho điểm M nằm ngoài đờng tròn (O;R). Từ M kẻ hai tiếp tuyến MA , MB đến đờng tròn (O;R) ( A; B là hai tiếp điểm). a) Chứng minh MAOB là tứ giác nội tiếp. b) Tính diện tích tam giác AMB nếu cho OM = 5cm và R = 3 cm. c) Kẻ tia Mx nằm trong góc AMO cắt đờng tròn (O;R) tại hai điểm C và D ( C nằm giữa M và D ). Gọi E là giao điểm của AB và OM. Chứng minh rằng EA là tia phân giác của góc CED. Hết (Cán bộ coi thi không giải thích gì thêm) Họ và tên thí sinh: . Số báo danh: SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI PHÒNG KỲ THI TUYỂN SINH LỚP 10 THPT Năm học 2009 – 2010 MÔN THI : TOÁN Thời gian làm bài 120 phút ( Không kể thời gian giao đề ) Ngày thi : 24 tháng 6 năm 2009 A. TRẮC NGHIỆM:( 2 ĐIỂM) (Đã bỏ đi đáp án, xem như bài tập lí thuyết để luyện tập) 1.Tính giá trị biểu thức ( ) ( ) M 2 3 2 3= − + ? 2. Tính giá trị của hàm số 2 1 y x 3 − = tại x 3= − . 3.Có đẳng thức x(1 x) x. 1 x− = − khi nào? 4. Viết phương trình đường thẳng đi qua điểm M( 1; 1 ) và song song với đường thẳng y = 3x. 5. Cho (O; 5cm) và (O’;4cm) cắt nhau tại A, B sao cho AB = 6cm. Tính độ dài OO′? 6. Cho biết MA , MB là tiếp tuyến của đường tròn (O), BC là đường kính · 0 BCA 70= . Tính số đo · AMB ? 7.Cho đường tròn (O ; 2cm),hai điểm A, B thuộc đường tròn sao cho · 0 AOB 120= .Tính độ dài cung nhỏ AB? 8. Một hình nón có bán kính đường tròn đáy 6cm ,chiều cao 9cm thì thể tích bằng bao nhiêu? B. TỰ LUẬN :( 8,0 ĐIỂM) Bài 1 : (2 điểm) 1. Tính 1 1 A 2 5 2 5 = − + − 2. Giải phương trình (2 x)(1 x) x 5− + = − + 3. Tìm m để đường thẳng y = 3x – 6 và đường thẳng 3 y x m 2 = + cắt nhau tại một điểm trên trục hoành . Bài 2 ( 2 điểm) Cho phương trình x 2 + mx + n = 0 ( 1) 1.Giải phương trình (1) khi m =3 và n = 2 2.Xác định m ,n biết phương trình (1) có hai nghiệm x 1 .x 2 thoả mãn 1 2 3 3 1 2 x x 3 x x 9 − =    − =   Bài 3 : (3 điểm) Cho tam giác ABC vuông tại A .Một đường tròn (O) đi qua B và C cắt các cạnh AB , AC của tam giác ABC lần lượt tại D và E ( BC không là đường kính của đường tròn tâm O).Đường cao AH của tam giác ABC cắt DE tại K . 1.Chứng minh · · ADE ACB= . 2.Chứng minh K là trung điểm của DE. 3.Trường hợp K là trung điểm của AH .Chứng minh rằng đường thẳng DE là tiếp tuyến chung ngoài của đường tròn đường kính BH và đường tròn đường kính CH. Bài 4 :(1điểm) Cho 361 số tự nhiên 1 2 3 361 a ,a ,a , ,a thoả mãn điều kiện 1 2 3 361 1 1 1 1 37 a a a a + + + + = Chứng minh rằng trong 361 số tự nhiên đó, tồn tại ít nhất 2 số bằng nhau. Sở GD&ĐT Hà Tĩnh ĐỀ CHÍNH THỨC ĐỀ TUYỂN SINH LỚP 10 THPT NĂM HỌC 2009-2010 Môn: Toán Thời gian là bài:120 phút Bàì 1: 1. Giải phương trình: x 2 + 5x + 6 = 0 2. Trong hệ trục toạ độ Oxy, biết đường thẳng y = ax + 3 đi qua điểm M(-2;2). Tìm hệ số a Bài 2: Cho biểu thức:         −         + + + = xxxx x x xx P 1 2 1 2 với x >0 1.Rút gọn biểu thức P 2.Tìm giá trị của x để P = 0 Bài 3: Một đoàn xe vận tải nhận chuyên chở 15 tấn hàng. Khi sắp khởi hành thì 1 xe phải điều đi làm công việc khác, nên mỗi xe còn lại phải chở nhiều hơn 0,5 tấn hàng so với dự định. Hỏi thực tế có bao nhiêu xe tham gia vận chuyển. (biết khối lượng hàng mỗi xe chở như nhau) Bài 4: Cho đường tròn tâm O có các đường kính CD, IK (IK không trùng CD) 1. Chứng minh tứ giác CIDK là hình chữ nhật 2. Các tia DI, DK cắt tiếp tuyến tại C của đường tròn tâm O thứ tự ở G; H a. Chứng minh 4 điểm G, H, I, K cùng thuộc một đường tròn. b. Khi CD cố định, IK thay đổỉ, tìm vị trí của G và H khi diện tích tam giác DỊJ đạt giá trị nhỏ nhất. Bài 5: Các số [ ] 4;1,, −∈cba thoả mãn điều kiện 432 ≤++ cba chứng minh bất đẳng thức: 3632 222 ≤++ cba Đẳng thức xảy ra khi nào? …………… HẾT…………… §Ò thi tuyÓn sinh líp 10 tØnh NghÖ An N¨m häc: 2009-2010 Môn: Toán Thời gian: 120 phút (không kể thời gian giao đề) Câu I: (3,0đ). Cho biểu thức A = 1 1 1 1 x x x x x + + 1. Nêu điều kiện xác định và rút gọn biểu thức A. 2. Tính giá trị biểu thức A khi x = 9/4. 3. Tìm tất cả các giá trị của x để A <1. CâuII: (2,5đ). Cho phơng trình bậc hai, với tham số m: 2x 2 (m+3)x + m = 0 (1). 1. Giải phơng trình (1) khi m = 2. 2. Tìm các giá trị của tham số m để phơng trình (1) có hai nghiệm x 1 , x 2 thoả mãn: x 1 + x 2 = 5 2 x 1 x 2 . 3. Gọi x 1 , x 2 là hai nghiệm của phơng trình (1). Tìm giá trị nhỏ nhất của biểu thức P = 1 2 x x Câu III: (1,5đ). Một thửa ruộng hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m. Tính diện tích thửa ruộng, biết rằng nếu chiều dài giảm đi 2 lần và chiều rộng tăng 3 lần thì chu vi thửa ruộng không thay đổi. Câu IV: (3,0đ). Cho đờng tròn (O;R), đờng kính AB cố định và CD là một đờng kính thay đổi không trùng với AB. Tiếp tuyến của đờng tròn (O;R) tại B cắt các đờng thẳng AC và AD lần lợt tại E và F. 1. Chứng minh rằng BE.BF = 4R 2 . 2. Chứng minh tứ giác CEFD nội tiếp đờng tròn. 3. Gọi I là tâm đờng tròn ngoại tiếp tứ giác CEFD. Chứng minh rằng tâm I luôn nằm trên một đờng thẳng cố định. S GIO DC V O TO K THI TUYN SINH VO LP 10 THI BèNH NM HC: 2009 - 2010 Môn thi: TOÁN Ngày thi: 24 tháng 6 năm 2009 Bài 1 (2,5 điểm) (Thời gian làm bài: 120 phút) Cho biểu thức 1 1 4 2 2 x A x x x = + + - - + , với x≥0; x ≠ 4 1) Rút gọn biểu thức A. 2) Tính giá trị của biểu thức A khi x=25. 3) Tìm giá trị của x để 1 3 A = - . Bài 2 (2 điểm) Cho Parabol (P) : y= x 2 và đường thẳng (d): y = mx-2 (m là tham số m ≠ 0) a/ Vẽ đồ thị (P) trên mặt phẳng toạ độ xOy. b/ Khi m = 3, hãy tìm toạ độ giao điểm (P) và (d) . c/ Gọi A(x A ; y A ), B(x A ; y B ) là hai giao điểm phân biệt của (P) và ( d). Tìm các giá trị của m sao cho : y A + y B = 2(x A + x B ) -1 . Bài 3 (1,5 điểm)Cho phương trình: 2 2 2( 1) 2 0x m x m- + + + = (ẩn x) 1) Giải phương trình đã cho với m =1. 2) Tìm giá trị của m để phương trình đã cho có hai nghiệm phân biệt x 1 , x 2 thoả mãn hệ thức: 2 2 1 2 10x x+ = . Bài 4 (3,5 điểm) Cho đường tròn (O; R) và A là một điểm nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). 1)Chứng minh ABOC là tứ giác nội tiếp. 2)Gọi E là giao điểm của BC và OA. Chứng minh BE vuông góc với OA và OE.OA=R 2 . 3)Trên cung nhỏ BC của đường tròn (O; R) lấy điểm K bất kì (K khác B và C). Tiếp tuyến tại K của đường tròn (O; R) cắt AB, AC theo thứ tự tại các điểm P và Q. Chứng minh tam giác APQ có chu vi không đổi khi K chuyển động trên cung nhỏ BC. 4)Đường thẳng qua O, vuông góc với OA cắt các đường thẳng AB, AC theo thứ tự tại các điểm M, N. Chứng minh PM + QN ≥ MN. Bài 5 (0,5 điểm) Giải phương trình: ( ) 2 2 3 2 1 1 1 2 2 1 4 4 2 x x x x x x- + + + = + + + Hết SỞ GD & ĐT KỲ THI TUYỂN SINH LỚP 10 THPT [...]... AB.BC.CA 4R c) Gäi M lµ trung ®iĨm cđa BC Chøng minh EFDM lµ tø gi¸c néi tiÕp ®êng trßn d) Chøngminh r»ng OC vu«ng gãc víi DE vµ (DE + EF + FD).R = 2 S së gi¸o dơc vµ ®µo t¹o hng yªn ®Ị thi chÝnh thøc (§Ị thi cã 02 trang) kú thi tun sinh vµ líp 10 thpt n¨m häc 2009 - 2 010 M«n thi : to¸n Thêi gian lµm bµi: 120 phót phÇn a: tr¾c nghiƯm kh¸ch quan (2,0 ®iĨm) Tõ c©u 1 ®Õn c©u 8, h·y chän ph¬ng ¸n ®óng... t¹o B¾c giang §Ị thi chÝnh thøc (®ỵt 1) Kú thi tun sinh líp 10 THPT N¨m häc 2009-2 010 M«n thi: To¸n Thêi gian lµm bµi: 120 phót kh«ng kĨ thêi gian giao ®Ị Ngµy 08 th¸ng 07 n¨m 2009 (§Ị thi gåm cã: 01 trang) -C©u I: (2,0 ®iĨm) 1 TÝnh 4 25 2 x = 4 x + 3y = 5 2 Gi¶i hƯ ph¬ng tr×nh:  C©u II: (2,0 ®iĨm) 1.Gi¶i ph¬ng tr×nh x2-2x+1=0 2 Hµm sè y=2009x+2 010 ®ßng biÕn hay nghÞch biÕn... T×m gi¸ trÞ nhá nhÊt cđa biĨu thøc P = (x+y)(x+z) HÕt Së Gi¸o dơc vµ ®µo t¹o B¾c giang §Ị thi chÝnh thøc (®ỵt 2) Kú thi tun sinh líp 10 THPT N¨m häc 2009-2 010 M«n thi: To¸n Thêi gian lµm bµi: 120 phót kh«ng kĨ thêi gian giao ®Ị Ngµy 10 th¸ng 07 n¨m 2009 (§Ị thi gåm cã: 01 trang) -C©u I: (2,0 ®iĨm) 1 TÝnh 9 + 4 2 Cho hµm sè y = x -1 T¹i x = 4 th× y cã gi¸... trÞ nhá nhÊt cđa biĨu thøc: B = x 2 + 2xy − 2y 2 + 2y + 10 - HÕt -Hä vµ tªn thÝ sinh: Sè b¸o danh Ch÷ kÝ cđa gi¸m thÞ 1: Ch÷ kÝ cđa gi¸m thÞ 2: Së Gi¸o dơc vµ ®µo t¹o H¶i D¬ng Kú thi tun sinh líp 10 THPT N¨m häc 2009-2 010 M«n thi: To¸n Thêi gian lµm bµi: 120 phót kh«ng kĨ thêi gian giao ®Ị Ngµy 08 th¸ng 07 n¨m 2009 (§Ị thi gåm cã: 01 trang) Câu 1(2.0 điểm): x −1 x +1 + 1=... một tứ giác nội tiếp · · b Chứng minh: CDE = CBA c Gọi I là giao điểm của AC và ED, K là giao điểm của CB và DF Chứng minh IK//AB d Xác đònh vò trí điểm C trên cung nhỏ AB để (AC2 + CB2) nhỏ nhất Tính giá trò nhỏ nhất đó khi OM = 2R Hết - SỞ GIÁO DỤC ĐÀO TẠO BÌNH ĐỊNH Đề chính thức KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2009 - 2 010 Môn thi: Toán Ngày thi: 02/ 07/ 2009 Thời gian làm bài: 120... B), các đoạn thẳng AF và BE cắt nhau AE AF tại H Vẽ HD ⊥ OA (D ∈ OA; D ≠ O) Chứng minh tứ giác DEFO nội tiếp được đường tròn - HẾT SỞ GD & ĐÀO TẠO KIÊN GIANG ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2009 – 2 010 Mơn thi : Tốn Thời gian làm bài: 120 phút (khơng kể thời gian giao đề) Ngày thi: 25/6/2009 Bài 1: (1,5 điểm) Giải hệ phương trình và phương trình sau : 3x + 2y = 1 5x +... h = 30cm Mét h×nh trơ ®Ỉc b»ng kim lo¹i cã b¸n kÝnh ®¸y r = 10cm ®Ỉt võa khÝt trong h×nh nãn cã ®Çy níc (xem h×nh bªn) Ngêi ta nhÊc nhĐ h×nh trơ ra khái phƠu H·y tÝnh thĨ tÝch vµ chiỊu cao cđa khèi níc cßn l¹i trong phƠu Së GD vµ §T Thµnh phè Hå ChÝ Minh K× thi tun sinh líp 10 Trung häc phỉ th«ng N¨m häc 2009-2 010 Kho¸ ngµy 24-6-2009 M«n thi: to¸n C©u I: Gi¶i c¸c ph¬ng tr×nh vµ hƯ ph¬ng tr×nh sau:... Chứng minh tứ giác DEPN kà tứ giác nội tiếp c) Qua P kẻ đường thẳng vng góc với MN cắt đường tròn (O) tại K ( K khơng trùng với P) Chứng minh rằng: MN2 + NK2 = 4R2 Câu 5:(1,0 điểm) Tìm giá trị lớn nhất, nhỏ nhất của biểu thức: A = Së Gi¸o Dơc vµ ®µo t¹o B¾c Ninh 6 − 4x x2 + 1 k× thi tun sinh vµo líp 10 thpt n¨m häc 2009-2 010 Thêi gian : 120 phót (Kh«ng kĨ thêi gian giao ®Ị) Ngµy thi : 09 - 07 - 2009... định vị trí của điểm C sao cho diện tích tứ giác ABKI lớn nhất Hết -Lưu ý: Giám thị khơng giải thích gì thêm SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HĨA KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2009-2 010 Mơn thi : Tốn Ngày thi: 30 tháng 6 năm 2009 Thời gian làm bài: 120 phút Bài 1 (1,5 điểm) Cho phương trình: x2 – 4x + n = 0 (1) với n là tham số 1.Giải phương trình (1) khi n = 3 2 Tìm n... tõ N ®Õn t©m ®êng trßn ngo¹i tiÕp tam gi¸c MKE nhá nhÊt C©u VI:(0,5 ®iĨm) T×m sè nguyªn x; y tho¶ m·n ®¼ng thøc: x2+ xy +y2 - x2y2 = 0 SỞ GIÁO DỤC - ĐÀO TẠO THÁI BÌNH KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THƠNG Năm học 2009-2 010 Mơn thi: TỐN Thời gian làm bài: 120 phút (khơng kể thời gian giao đề) Bài 1 (2,0 điểm) 1 Rút gọn các biểu thức sau: a) b) 2 Giải phương trình: x + 3 13 6 + + 2+ 3 4− 3 3 x y−y . OC vuông góc với DE và (DE + EF + FD).R = 2 S. sở giáo dục và đào tạo hng yên đề thi chính thức (Đề thi có 02 trang) kỳ thi tuyển sinh và lớp 10 thpt năm học 2009 - 2 010 Môn thi : toán Thời gian. I luôn nằm trên một đờng thẳng cố định. S GIO DC V O TO K THI TUYN SINH VO LP 10 THI BèNH NM HC: 2009 - 2 010 Môn thi: TOÁN Ngày thi: 24 tháng 6 năm 2009 Bài 1 (2,5 điểm) (Thời gian làm bài:. K THI TUYN SINH LP 10 THPT NM HC 2009 - 2 010 THI CHNH THC MễN : TON Ngày thi : 29/6/2009 Thời gian làm bài : 120 phút (không kể thời gian giao đề) Chữ ký GT 1 : Chữ ký GT 2 : (Đề thi

Ngày đăng: 10/07/2014, 02:00

TỪ KHÓA LIÊN QUAN

w