Cho nửa đờng tròn tâm O , đờng kính BC .Điểm A thuộc nửa đờng tròn đó D-ng hình vuôD-ng ABCD thuộc nửa mặt phẳD-ng bờ AB, khôD-ng chứa đỉnh C.. Gọi Flà giao điểm của Aevà nửa đờng tròn
Trang 1K
F E
D
C B
A
Lê Duy Thiện-Trờng THPT Lang Chánh
Đề 1Câu1 : Cho biểu thức
A=
2
) 1 ( : 1
1 1
1
2
2 2 3
x x x
x
Với x 2;1 .a, Ruý gọn biểu thức A
.b , Tính giá trị của biểu thức khi cho x= 6 2 2
c Tìm giá trị của x để A=3
2
4 ) (
3 )
y x
y x y
2 3
x x
Câu3 Cho phơng trình (2m-1)x2-2mx+1=0
Xác định m để phơng trình trên có nghiệm thuộc khoảng (-1,0)
Câu 4 Cho nửa đờng tròn tâm O , đờng kính BC Điểm A thuộc nửa đờng tròn đó
D-ng hình vuôD-ng ABCD thuộc nửa mặt phẳD-ng bờ AB, khôD-ng chứa đỉnh C Gọi Flà giao
điểm của Aevà nửa đờng tròn (O) Gọi Klà giao điểm của CFvà ED
a chứng minh rằng 4 điểm E,B,F,K nằm trên một đờng tròn
b Tam giác BKC là tam giác gì ? Vì sao ?
2 2 4
2
4 ) (
3 )
y x
y x y
2
1
y x
2
4
y x
y
x
(2)Giải hệ (1) ta đợc x=3, y=2
= m2-2m+1= (m-1)20 mọi m=> pt có nghiệm với mọi m
ta thấy nghiệm x=1 không thuộc (-1,0)
với m 1/2 pt còn có nghiệm x=
1 2
=
1 2
0 1 1 2
0 1 2
2
m m
m
=>m<0 Vậy Pt có nghiệm trong khoảng (-1,0) khi và chỉ khi m<0
1
Trang 2Lê Duy Thiện-Trờng THPT Lang Chánh
Câu 4:
a Ta có KEB= 900
mặt khác BFC= 900( góc nội tiếp chắn nữa đờng tròn)
do CF kéo dài cắt ED tại D
=> BFK= 900 => E,F thuộc đờng tròn đờng kính BK
hay 4 điểm E,F,B,K thuộc đờng tròn đờng kính BK
b BCF= BAF
Mà BAF= BAE=450=> BCF= 450
Ta có BKF= BEF
Mà BEF= BEA=450(EA là đờng chéo của hình vuông ABED)=> BKF=450
Vì BKC= BCK= 450=> tam giác BCK vuông cân tại B
x
x x x
x
x x x x
x x
Bài 4: Cho tam giác có các góc nhọn ABC nội tiếp đờng tròn tâm O H là trực tâm
của tam giác D là một điểm trên cung BC không chứa điểm A
a, Xác định vị trí của điẻm D để tứ giác BHCD là hình bình hành
b, Gọi P và Q lần lợt là các điểm đối xứng của điểm D qua các đờng thẳng AB
và AC Chứng minh rằng 3 điểm P; H; Q thẳng hàng
c, Tìm vị trí của điểm D để PQ có độ dài lớn nhất
Bài 5: Cho hai số dơng x; y thoả mãn: x + y 1
Tìm giá trị nhỏ nhất của: A = x2 1y2 501xy
Đáp án Bài 1: (2 điểm) ĐK: x 0 ;x 1
: 1
1 (
1 2
x
b P =
1
2 1 1
x
2
Trang 3Lê Duy Thiện-Trờng THPT Lang Chánh
Để P nguyên thì
) ( 1 2
1
9 3
2
1
0 0
1
1
4 2
1
1
Loai x
x
x x
x
x x
x
x x
Vậy với x= 0 ; 4 ; 9 thì P có giá trị nguyên
Bài 2: Để phơng trình có hai nghiệm âm thì:
0 6
0 6
4 1
2
2
1
2 2
1
2 2
m x
x
m m
x
x
m m
m
3 2
0 ) 3 )(
2
(
0 25
0 1 50
) 7 3
3 ( 5
2 1
2 2
m m
m m
m m
trình : ct2 + bt + a =0 cũng có hai nghiệm dơng phân biệt t1 ; t2 t1 =
a Giả sử đã tìm đợc điểm D trên cung BC sao cho tứ giác BHCD là hình bình hành
Khi đó: BD//HC; CD//HB vì H là trực tâm tam giác ABC nên
Q
D
C B
A
Trang 4Lê Duy Thiện-Trờng THPT Lang Chánh
Vậy AD là đờng kính của đờng tròn tâm O
Ngợc lại nếu D là đầu đờng kính AD
của đờng tròn tâm O thì
tứ giác BHCD là hình bình hành
a Vì P đối xứng với D qua AB nên APB = ADB
nhng ADB =ACB nhng ADB = ACB
Do đó: APB = ACB Mặt khác:
AHB + ACB = 1800 => APB + AHB = 1800
Tứ giác APBH nội tiếp đợc đờng tròn nên PAB = PHB
Mà PAB = DAB do đó: PHB = DAB
Chứng minh tơng tự ta có: CHQ = DAC
Vậy PHQ = PHB + BHC + CHQ = BAC + BHC = 1800
Ba điểm P; H; Q thẳng hàng
c) Ta thấy APQ là tam giác cân đỉnh A
Có AP = AQ = AD và PAQ = 2BAC không đổi nên cạnh đáy PQ
đạt giá trị lớn nhất AP và AQ là lớn nhất hay AD là lớn nhất
D là đầu đờng kính kẻ từ A của đờng tròn tâm O
y x
y y
y x
x P
) )
1 )(
(
a) Tìm điều kiện của x và y để P xác định Rút gọn P
b) Tìm x,y nguyên thỏa mãn phơng trình P = 2
Bài 2: Cho parabol (P) : y = -x2 và đờng thẳng (d) có hệ số góc m đi qua điểm M(-1 ;-2)
a) Chứng minh rằng với mọi giá trị của m (d) luôn cắt (P) tại hai điểm A , B phân biệt
b) Xác định m để A,B nằm về hai phía của trục tung
1 1
1
9
zx yz
xy
z y
x
z y
a) Chứng minh các tam giác BAN và MCN cân
Trang 5Lª Duy ThiÖn-Trêng THPT Lang Ch¸nh
y y
x
Ta cã: 1 + y 1 x 1 1 0 x 4 x = 0; 1; 2; 3 ; 4
Thay vµo ta cãc¸c cÆp gi¸ trÞ (4; 0) vµ (2 ; 2) tho¶ m·n
Bµi 2: a) §êng th¼ng (d) cã hÖ sè gãc m vµ ®i qua ®iÓm M(-1 ; -2) Nªn ph¬ng tr×nh
) 2 ( 1
1 1
1
1 9
xz yz
xy
z y
x
z y
x
§KX§ : x 0 , y 0 , z 0
5
Trang 6Lª Duy ThiÖn-Trêng THPT Lang Ch¸nh
z z y x xy
(
0 1
y
x
z y x xyz
xy z
zy zx
y
x
z y x z xy
§Ò 4
6
Trang 7Lê Duy Thiện-Trờng THPT Lang Chánh
Bài 1: 1) Cho đờng thẳng d xác định bởi y = 2x + 4 Đờng thẳng d/ đối xứng với ờng thẳng d qua đờng thẳng y = x là:
2) Một hình trụ có chiều cao gấp đôi đờng kính đáy đựng đầy nớc, nhúng chìmvào bình một hình cầu khi lấy ra mực nớc trong bình còn lại
3
2
bình Tỉ số giữa bánkính hình trụ và bán kính hình cầu là A.2 ; B.3 2 ; C 3 3; D một kết quả khác
Bìa2: 1) Giải phơng trình: 2x4 - 11 x3 + 19x2 - 11 x + 2 = 0
2) Cho x + y = 1 (x > 0; y > 0) Tìm giá trị lớn nhất của A = x + y
Bài 3: 1) Tìm các số nguyên a, b, c sao cho đa thức : (x + a)(x - 4) - 7
Phân tích thành thừa số đợc : (x + b).(x + c)
2) Cho tam giác nhọn xây, B, C lần lợt là các điểm cố định trên tia Ax, Ay sao
cho AB < AC, điểm M di động trong góc xAy sao cho
MB
MA
=
2 1
Xác định vị trí điểm M để MB + 2 MC đạt giá trị nhỏ nhất
Bài3 Câu 1Với mọi x ta có (x + a)(x - 4) - 7 = (x + b)(x + c)
Nên với x = 4 thì - 7 = (4 + b)(4 + c)
Có 2 trờng hợp: 4 + b = 1 và 4 + b = 7
4 + c = - 7 4 + c = - 1Trờng hợp thứ nhất cho b = - 3, c = - 11, a = - 10
Ta có (x - 10)(x - 4) - 7 = (x - 3)(x - 11)Trờng hợp thứ hai cho b = 3, c = - 5, a = 2
7
Trang 8M D
Lê Duy Thiện-Trờng THPT Lang Chánh
Do đó Δ AMB ~ Δ ADM => MD MB = MA AD = 2
=> MD = 2MD (0,25 điểm)
Xét ba điểm M, D, C : MD + MC > DC (không đổi)
Do đó MB + 2MC = 2(MD + MC) > 2DC
Dấu "=" xảy ra <=> M thuộc đoạn thẳng DC
Giá trị nhỏ nhất của MB + 2 MC là 2 DC
Tính giá trị của biểu thức :A x 2007 y2007 z2007
Bài 2) Cho biểu thức : M x2 5x y 2 xy 4y 2014
Với giá trị nào của x, y thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó
Bài 4 Cho đờng tròn tâm O đờng kính AB bán kính R Tiếp tuyến tại điểm M bbất
kỳ trên đờng tròn (O) cắt các tiếp tuyến tại A và B lần lợt tại C và D
8
Trang 9Lê Duy Thiện-Trờng THPT Lang Chánh
a.Chứng minh : AC BD = R2
b.Tìm vị trí của điểm M để chu vi tam giác COD là nhỏ nhất
Bài 5.Cho a, b là các số thực dơng Chứng minh rằng :
Trang 10Lê Duy Thiện-Trờng THPT Lang Chánh
Bài 4 a.Ta có CA = CM; DB = DM
Các tia OC và OD là phân giác của hai góc AOM và MOB nên OC OD
Tam giác COD vuông đỉnh O, OM là đờng cao thuộc cạnh huyền CD nên :
Chu vi COD chu vi AMB
Dấu = xảy ra MH1 = OM MO M là điểm chính giữa của cung AB
Bài 6 (1 điểm) Vẽ đờng tròn tâm O ngoại tiếp ABC
Gọi E là giao điểm của AD và (O)
x x
10
o h
d
c
m
b a
d
e
cb
a
Trang 11Lê Duy Thiện-Trờng THPT Lang Chánh
2
x
x f
7 2 ( ) 7 2 )(
3 (
) 4 )(
2 ( ) 2 (
y x y
x
y x y
1 1
1
x
x x x
x x
x x
với x > 0 và x 1a) Rút gọn A
b) Tìm giá trị của x để A = 3
Câu 4: Từ điểm P nằm ngoài đờng tròn tâm O bán kính R, kẻ hai tiếp tuyến PA; PB
Gọi H là chân đờng vuông góc hạ từ A đến đờng kính BC
a) Chứng minh rằng PC cắt AH tại trung điểm E của AH
2
10 2 10
)
(
x
x x
x x
f
c)
) 2 )(
2 (
2 4
) (
x x
x f
Với x < 2 suy ra x - 2 < 0 suy ra
1 1
1
x
x x x
x x
x x
) 1 ( : 1
1 )
1 )(
1
(
) 1 )(
1
(
x
x x
x x x
x x
x
x x
x
=
11
Trang 12Lê Duy Thiện-Trờng THPT Lang Chánh
1 1
1
x
x x x x
x x
1 1
x x
1
: 1
EH
Mặt khác, do PO // AC (cùng vuông góc với AB)
=> POB = ACB (hai góc đồng vị)
=> AHC POB
Do đó:
OB
CH PB
2 (
2PB
AH.CB 2PB
2 2
2 2 2
2 2
2 2
d
R d 2.R 4R
) R 4(d
R d 8R
(2R) 4PB
4R.2R.PB CB
4.PB
4R.CB.PB AH
3x
2 1 m x
x
2 1
2 m x
x
2 1
2 1 2 1
7 7m 4 7
4m - 13 3
8m - 26
7 7m x
7 4m - 13 x
1 1
12
O
E A P
Trang 13Lê Duy Thiện-Trờng THPT Lang Chánh
8m - 26
7 7m 4 7
4m - 13
a b
Tìm giá trị lớn nhất và giá trị bé nhất của Q = 6 a + 7 b + 2006 c
Câu 4: Cho ABC cân tại A với AB > BC Điểm D di động trên cạnh AB, ( D không trùng với A, B) Gọi (O) là đờng tròn ngoại tiếp BCD Tiếp tuyến của (O) tại C và D cắt nhau ở K
a/ Chứng minh tứ giác ADCK nội tiếp
b/ Tứ giác ABCK là hình gì? Vì sao?
c/ Xác định vị trí điểm D sao cho tứ giác ABCK là hình bình hành
Trang 14Lê Duy Thiện-Trờng THPT Lang Chánh
Dựng tia Cy sao cho BCy BAC Khi đó, D là giao điểm của AB và Cy
Với giả thiết AB > BC thì BCA > BAC > BDC
A
Trang 15Lê Duy Thiện-Trờng THPT Lang Chánh
Câu 1: a) Xác định x R để biểu thức :A =
x x
x x
2 1
z y
yz
y x
xy
x
Biết x.y.z = 4 , tính
P
Câu 2:Cho các điểm A(-2;0) ; B(0;4) ; C(1;1) ; D(-3;2)
1) Chứng minh 3 điểm A, B ,D thẳng hàng; 3 điểm A, B, C không thẳng hàng.2) Tính diện tích tam giác ABC
Câu 4 Cho đờng tròn (O;R) và một điểm A sao cho OA = R 2 Vẽ các tiếp tuyến
AB, AC với đờng tròn Một góc xOy = 450 cắt đoạn thẳng AB và AC lần lợt tại D
x x
x x
x x
x
) 1 ).(
1 (
1
2 2
2 2
(
2 2
z
z x
xy
xy x
xy
x
(1đ)
P 1 vì P > 0
Câu 2: a.Đờng thẳng đi qua 2 điểm A và B có dạng y = ax + b
Điểm A(-2;0) và B(0;4) thuộc đờng thẳng AB nên b = 4; a = 2
AB2 = AC2 + BC2 ABC vuông tại C
Vậy SABC = 1/2AC.BC = 10 10 5
3 2
O
CD
E
Trang 16Lê Duy Thiện-Trờng THPT Lang Chánh
3
2
R
Đề 9Câu 1: Cho hàm số f(x) = 2 4 4
x x
2
x
x f
7 2 ( ) 7 2 )(
3 (
) 4 )(
2 ( ) 2 (
y x y
x
y x y
1 1
1
x
x x x
x x
x x
với x > 0 và x 1a) Rút gọn A
2) Tìm giá trị của x để A = 3
Câu 4: Từ điểm P nằm ngoài đờng tròn tâm O bán kính R, kẻ hai tiếp tuyến PA; PB
Gọi H là chân đờng vuông góc hạ từ A đến đờng kính BC
a) Chứng minh rằng PC cắt AH tại trung điểm E của AH
Trang 17Lê Duy Thiện-Trờng THPT Lang Chánh
2
10 2 10
)
(
x
x x
x x
f
c)
) 2 )(
2 (
2 4
) (
x x
x f
Với x < 2 suy ra x - 2 < 0 suy ra
0
21 6 7 2
2 1 7 6 2
8 4 2 2
) 3 )(
7 2 ( ) 7 2 )(
3 (
) 4 )(
2 ( ) 2 (
y x
y x
x y xy x
y xy
x y xy x xy
y x y
x
y x y
1 1
1
x
x x x
x x
x x
) 1 ( : 1
1 )
1 )(
1 (
) 1 )(
1 (
x
x x
x x x
x x
x
x x x
1 1
1
x
x x x x
x x
x x
=
1
: 1
1 1
x x x
=
1
: 1
x
x x
EH
Mặt khác, do PO // AC (cùng vuông góc với AB)
=> POB = ACB (hai góc đồng vị)
17
O
E A P
Trang 18Lê Duy Thiện-Trờng THPT Lang Chánh
=> AHC POB
Do đó:
OB
CH PB
2 (
2PB
AH.CB 2PB
2 2
2 2 2
2 2
2 2
d
R d 2.R 4R
) R 4(d
R d 8R
(2R) 4PB
4R.2R.PB CB
4.PB
4R.CB.PB AH
3x
2 1 m x
x
2 1
2 m x
x
2 1
2 1 2 1
7 7m 4 7
4m - 13 3
8m - 26
7 7m x
7 4m - 13 x
1 1
8m - 26
7 7m 4 7
4m - 13
1
9 7
1
99 97
1
B = 35 + 335 + 3335 + +
3 99
35
Trang 19Lê Duy Thiện-Trờng THPT Lang Chánh
a Chứng minh : (ab+cd)2 (a 2 +c 2 )( b 2 +d 2 )
b áp dụng : cho x+4y = 5 Tìm GTNN của biểu thức : M= 4x2 + 4y 2
Câu 4 : Cho tam giác ABC nội tiếp đờng tròn (O), I là trung điểm của BC, M là một điểm
trên đoạn CI ( M khác C và I ) Đờng thẳng AM cắt (O) tại D, tiếp tuyến của đờng tròn ngoại tiếp tam giác AIM tại M cắt BD và DC tại P và Q.
a Chứng minh DM.AI= MP.IB
1
3 4
2
Tìm điều kiện để biểu thức có nghĩa, rút gọn biểu thức.
đáp án Câu 1 :
1) A =
5 3
1
+
7 5
1
9 7
1
99 97
35
Trang 20Lê Duy Thiện-Trờng THPT Lang Chánh
2
x
x x
) 3 )(
1 (
Đề 11
Câu 1 : a Rút gọn biểu thức
2 2
1
1 1
100
1 99
1 1
3
1 2
1 1 2
1 1
a Chứng minh rằng pt luôn luôn có nghiệm với m
b Gọi x1, x2 là hai nghiệm của pt Tìm GTLN, GTNN của bt
2
3 2
2 1
2 2
2 1
2 1
x
x x P
Câu 3 : Cho x 1 , y 1 Chứng minh.
xy y
x
2 1
1 1
1
2 2
Câu 4 Cho đờng tròn tâm o và dây AB M là điểm chuyển động trên đờng tròn,
từM kẻ MH AB (H AB) Gọi E và F lần lợt là hình chiếu vuông góc của H trên
MA và MB Qua M kẻ đờng thẳng vuông góc với è cắt dây AB tại D
1 Chứng minh rằng đờng thẳng MD luôn đi qua 1 điểm cố định khi M thay đổitrên đờng tròn
20
Trang 21Lª Duy ThiÖn-Trêng THPT Lang Ch¸nh
2 Chøng minh
BH
AD BD
AH MB
MA
2
2
H íng dÉn
a a
1 100
1
1 1 1
m x
x
m x
x
2
1 2 2
2 2
1
1 2
m GTLN
y x y xy
x
x y x
.
.
2
2 1
MB h HF
MA h HE BH
AH MB
E A
F F' B I
D H
Trang 22Lê Duy Thiện-Trờng THPT Lang Chánh
b a
1
2 1
a) Tìm điều kiện xác định của D và rút gọn Db) Tính giá trị của D với a =
3 2
2
x2- mx +
3 2
2
m2 + 4m - 1 = 0 (1)a) Giải phơng trình (1) với m = -1
b) Tìm m để phơng trình (1) có 2 nghiệm thoã mãn 1 2
2 1
1 1
x x x
Cos bc
2
(Cho Sin2 2SinCos)
Câu 4: Cho đờng tròn (O) đờng kính AB và một điểm N di động trên một nửa đờng
tròn sao cho N A N B.Vễ vào trong đờng tròn hình vuông ANMP
a) Chứng minh rằng đờng thẳng NP luôn đi qua điểm cố định Q
b) Gọi I là tâm đờng tròn nội tiếp tam giác NAB Chứng minh tứ giác ABMI nộitiếp
c) Chứng minh đờng thẳng MP luôn đi qua một điểm cố định
Câu 5: Cho x,y,z; xy + yz + zx = 0 và x + y + z = -1
Hãy tính giá trị của:
ab b
2
3 2 2
Trang 231 2
1
2 1
F
I
Q P
N
M
B A
c
b a
I
C B
A
2
2
Lê Duy Thiện-Trờng THPT Lang Chánh
1 1
10 1
2 8
2 3 4
0 1
4 2
1
2 1 2
m m
m m
0 0
) 1 )(
( 1
1
2 1
2 1 2
1 2 1 2 1 2
x x x
x x x x
19 4
cSin AI
SABI
2
2
bSin AI
S
c b
bcCos c
b Sin
bcSin
AI
c b AISin
) ( 2
) ( 2
Tứ giác ABMI nội tiếp
c) Trên tia đối của QB lấy điểm F sao cho QF = QB, F cố định
Tam giác ABF có: AQ = QB = QF
ABF vuông tại A Bˆ 45 0 A FˆB 45 0
Lại có Pˆ1 450 AFBPˆ1 Tứ giác APQF nội tiếp
z y
xyz xyz
23
Trang 24Lê Duy Thiện-Trờng THPT Lang Chánh
b) Xác định điểm M trên trục hoành để tam giác MAB cân tại M
Bài 3 : Tìm tất cả các số tự nhiên m để phơng trình ẩn x sau:
x2 - m2x + m + 1 = 0
có nghiệm nguyên
Bài 4 : Cho tam giác ABC Phân giác AD (D BC) vẽ đờng tròn tâm O qua A và D
đồng thời tiếp xúc với BC tại D Đờng tròn này cắt AB và AC lần lợt tại E và F.Chứng minh
Trang 25Lª Duy ThiÖn-Trêng THPT Lang Ch¸nh
§¸p ¸n Bµi 1:
a) §iÒu kiÖn x tháa m·n
x x x x
x x
A
B
C D
Trang 26Lª Duy ThiÖn-Trêng THPT Lang Ch¸nh
Trang 27Lê Duy Thiện-Trờng THPT Lang Chánh
b/ Tìm giá trị nguyên của x để A có giá trị nguyên
Câu 2: Xác định các giá trị của tham số m để phơng trình
x2-(m+5)x-m+6 =0
Có 2 nghiệm x1 và x2 thoã mãn một trong 2 điều kiện sau:
a/ Nghiệm này lớn hơn nghiệm kia một đơn vị
a/ Chứng minh rằng 5 điểm E, P, Q, F và C cùng nằm trên một đờng tròn
b/ Chứng minh rằng: SAEF=2SAQP
c/ Kẻ trung trực của cạnh CD cắt AE tại M tính số đo góc MAB biết CPD=CM
h ớng dẫn
Câu 1: a/ Biểu thức A xác định khi x≠2 và x>1
vậy với x = 5 thì A nhận giá trị nguyên bằng 1
Câu 2: Ta có ∆x = (m+5) 2 -4(-m+6) = m 2 +14m+1≥0 để phơng trìnhcó hai nghiệmphânbiệt khi vàchỉ khi m≤ -7-4 3 và m≥-7+4 3 (*)
a/ Giả sử x2>x1 ta có hệ x2-x1=1 (1)
x1+x2=m+5 (2)
x1x2 =-m+6 (3)
Giải hệ tađợc m=0 và m=-14 thoã mãn (*)
b/ Theo giả thiết ta có: 2x1+3x2 =13(1’)
Trang 281 1
Q
P M
F
E
B A
Lê Duy Thiện-Trờng THPT Lang Chánh
Q, P, C cùng nằm trên đờng tròn đờng kinh EF
b/ Từ câu a suy ra ∆AQE vuông cân
S = ( 2 )2 hay SAEF = 2SAQP
c/ Để thấy CPMD nội tiếp, MC=MD và APD=CPD
x x
1 2 6 5
9 2
a Tìm điều kiện của x để M có nghĩa và rút gọn M
2
Trang 29Lê Duy Thiện-Trờng THPT Lang Chánh
Bài 4: Cho hình vuông ABCD Kẻ tia Ax, Ay sao cho x ˆ A y = 450
Tia Ax cắt CB và BD lần lợt tại E và P, tia Ay cắt CD và BD lần lợt tại F và Q
a) Chứng minh 5 điểm E; P; Q; F; C cùng nằm trên một đờng tròn
c b a
ac a
bc c
ac
đáp án Bài 1:M =
x
x x
x x
1 2 6 5
9 2
a.ĐK x 0 ;x 4 ;x 9 0,5đ
2 3
2 1
2 3 3
9 2
x x
x x
x x
M =
1 2
3
2 1
x
x x
16 4
4 16
4 16
15 5
1
3 5
1
5 3
1 5
M b.
x
x x
x x
x x
c M =
3
4 1 3
4 3 3
x x
Lại có x + 2y và 3x + 4y có tích là 96 (Là số chẵn) có tổng 4x + 6y là số chẳn
do đó
29