1. Trang chủ
  2. » Giáo án - Bài giảng

He thong BT on vao 10

17 229 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 620,5 KB

Nội dung

Giải các bài toán bằng cách lập phơng trình, hệ phơng trình * Dạng bài làm chung làm riêng: Bài 1: Hai đội công nhân I và II đợc giao sửa một đoạn đờng. Nếu cả hai đội cùng làm thì sau 4 giờ là hoàn thành công việc. Nếu đội I làm một mình trong 2 giờ, sau đó đội II tiếp tục làm một mình trong 3 giờ thì họ đã hoàn thành đợc 7 12 công việc. Hỏi mỗi đội làm riêng thì sẽ hoàn thành công việc sau bao lâu? Bài 2: Hai vòi nớc cùng chảy vào một bể không có nớc trong 3 giờ thì đầy. Nếu vòi I chảy nửa bể rồi nghỉ và cho vòi II chảy tiếp cho đầy bể thì mất tổng cộng 8 giờ. Hỏi nếu để mỗi vòi chảy riêng sẽ đầy bể trong bao lâu? * Dạng bài về %: Bài 3: Theo kế hoạch hai tổ sản xuất 600 sản phẩm trong một thời gian nhất định. Do áp dụng kĩ thuật mới nên tổ I đã vợt mức 18% và tổ II đã vợt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vợt mức 120 sản phẩm. Hỏi số sản phẩm đợc giao của mỗi tổ theo kế hoạch là bao nhiêu? Bài 4: Trong một kì thi, hai trờng A và B có tổng cộng 350 học sinh dự thi. Kết quả là hai trờng đó có tổng cộng 338 học sinh trúng tuyển. Tính ra thì trờng A có 97% và trờng B có 96% số học sinh dự thi trúng tuyển. Hỏi mỗi trờng có bao nhiêu học sinh dự thi? Bài 5: Một hình chữ nhật có cạnh này bằng 2 3 cạnh kia. Nếu bớt mỗi cạnh đi 5m thì diện tích hình chữ nhật đó phải giảm đi 16%. Tính các kích thớc của hình chữ nhật đó lúc đầu. *Dạng bài về chuyển động: Bài 6: Hai ô tô khởi hành cùng một lúc trên quãng đờng từ A đến B dài 120 km. Mỗi giờ ô tô thứ nhất chạy nhanh hơn ô tô thứ hai 10 km nên đến B trớc ô tô thứ hai là 2 5 giờ. Tính vận tốc của mỗi xe. Bài 7: Một ô tô khởi hành từ A để đi đến B cách nhau 240km. Một giờ sau, ô tô thứ hai cũng khởi hành từ A đi đến B với vận tốc lớn hơn vận tốc ô tô thứ nhất 10km/h nên đã đuổi kịp ô tô thứ nhất ở chính giữa quãng đờng AB. Tính vận tốc của mỗi xe. Bài 8: Hai ngời đi xe đạp khởi hành cùng một lúc từ A và B cách nhau 60km và đi đến C hớng chuyển động của họ vuông góc với nhau và gặp nhau sau 2 giờ. Tính vận tốc của mỗi ngời biết vận tốc của ngời đi từ A nhỏ hơn vận tốc của ngời đi từ B 6km/h. Bài 9: Một ngời đi xe đạp từ A đến B cách nhau 108km. Cùng lúc đó một ô tô khởi hành từ B đến A với vận tốc hơn vận tốc xe đạp 18km/h. Sau khi hai xe gặp nhau, xe đạp phải đi mất 4 giờ nữa mới tới B. Tính vận tốc mỗi xe. Bài 10: Một ô tô dự định đi quãng đờng từ A đến B cách nhau 120km với một vận tốc và thời gian đã định. Nhng sau khi đi đợc 1 giờ thì xe hỏng, nên phải dừng lại 20 phút để sửa chữa. Vì vậy để đến B đúng thời gian đã định, ô tô phải tăng vận tốc thêm 8km/h trên quãng đờng còn lại. Tìm thời gian mà ô tô dự định để đi hết quãng đờng AB. Bài 11: Một ô tô dự định chuyển động đều trên quãng đờng dài 120km. Nhng khi đi đợc 1 3 quãng đờng xe phải nghỉ 20 phút. Để đến đúng giờ dự định xe phải tăng vận tốc thêm 8km/h trên quãng đờng còn lại. Tính vận tốc ô tô dự định đi. Bài 12: Một ô tô dự định đi từ A đến B với vận tốc 4km/h. Khi còn cách trung điểm quãng đờng 60km thì xe tăng vận tốc thêm 10km/h, nên đã đến sớm hơn dự định 1 giờ. Tính quãng đờng AB. Bài 13: Một ô tô đi trên quãng đờng dài 520km. Khi đi đợc 240km thì ô tô tăng vận tốc thêm 10km/h và đi hết quãng đờng còn lại. Tính vận tốc ban đầu của ô tô, biết thời gian đi hết quãng đờng là 8 giờ. 1 Bài 14: Một ngời dự định đi từ A đến B cách nhau 36km trong một thời gian nhất định. Đi đợc nửa đờng, ngời đó nghỉ 18 phút nên để đến B đúng hẹn phải tăng vận tốc 2km/h. Tính vận tốc ban đầu. Bài 15: Một máy bơm dùng để bơm đầy một bể nớc có thể tích 60m 3 với thời gian định trớc. Khi đã bơm đ- ợc 1 2 thì mất điện trong 48 phút. Đến lúc có điện trở lại ngời ta sử dụng thêm một máy bơm thứ hai có công suất 10m 3 /h. Cả hai máy bơm cùng hoạt động để bơm đầy bể đúng thời gian dự kiến. Tính công suất của máy bơm thứ nhất và thời gian máy bơm thứ nhất hoạt động *Dạng bài về chuyển động liên quan đến vận tốc dòng n ớc: Bài 16: Một chiếc thuyền đi trên dòng sông dài 50 km. Tổng thời gian xuôi dòng và ngợc dòng là 4 giờ 10 phút. Tính vận tốc thực của thuyền biết rằng một chiếc bè thả nổi phải mất 10 giờ mới xuôi hết dòng sông. Bài 17: Một ca nô xuôi dòng từ bến A đến bến B cách nhau 24 km; cùng lúc đó, một bè nứa trôi với vận tốc 4 km/h. Khi đến B ca nô quay lại ngay và gặp bè nứa tại địa điểm C cách A là 8 km. Tính vận tốc thực của ca nô. Bài 18: Một ca nô xuôi một khúc sông dài 100km rồi ngợc về 45km. Biết thời gian xuôi dòng nhiều hơn thời gian ngợc dòng là 2 giờ và vận tốc lúc xuôi dòng hơn vận tốc lúc ngợc dòng là 5km/h. Hỏi vận tốc ca nô lúc xuôi dòng và lúc ngợc dòng? Bài 19: Một chiếc thuyền khởi hành từ bến sông A. Sau đó 5 giờ 20 phút một ca nô cũng khởi hành từ A đuổi theo và gặp thuyền cách bến A 2km. Tìm vận tốc của thuyền, biết vận tốc ca nô nhanh hơn thuyền 12km/h. Dạng bài về số học: Bài 20: Tìm số có hai chữ số biết tổng các chữ số của nó bằng 1 4 số đó, tích các chữ số của nó bằng 1 2 số đó. *Các dạng khác: Bài 21: Một khu vờn hình chữ nhật có chiều rộng bằng 2 5 chiều dài và có diện tích bằng 360 m 2 . Tính chu vi của khu vờn ấy. Bài 22: Một miếng bìa hình chữ nhật có chu vi 20cm. Nếu giảm chiều rộng 2cm và tăng chiều dài 3cm thì diện tích giảm 6cm 2 . Tìm kích thớc của miếng bìa đó đã cho. Bài 23: Tính các kích thớc của hình chữ nhật có diện tích 40 cm 2 , biết rằng nếu tăng mỗi cạnh thêm 3cm thì diện tích tăng 48 cm 2 . Bài 24: Một tam giác vuông có cạnh huyền dài 10 m. Tính các cạnh goác vuông, biết chúng hơn kém nhau 2m. Bài 25: Một mảnh vờn hình chữ nhật có diện tích 320m 2 . Nếu tăng chiều rộng thêm 10m và giảm chiều dài đi 16m thì diện tích mảnh đất không thay đổi. Tính kích thớc đám đất. Bài 26: Một phòng họp có 360 chỗ ngỗi và đợc chia thành các dãy có số chỗ ngồi bằng nhau. Nếu thêm mỗi dãy 4 chỗ ngồi và bớt đi 3 dãy thì số chỗ ngồi trong phòng họp không thay đổi. Hỏi ban đầu số chỗ ngồi trong phòng họp đợc chia thành bao nhiêu dãy? Bài 27: Một phòng họp có 360 chỗ ngỗi và đợc chia thành các dãy có số chỗ ngồi bằng nhau nhng vì có 400 ngời họp nên phải kê thêm một dãy và mỗi dãy kê thêm 1 ghế. Hỏi ban đầu trong phòng họp có bao nhiêu dãy ghế? Bài 28: Một phòng họp có 240 chỗ ngỗi và đợc chia thành các dãy có số chỗ ngồi bằng nhau. Nếu thêm mỗi dãy 4 chỗ ngồi và bớt đi 4 dãy thì số chỗ ngồi trong phòng họp tăng thêm 16 chỗ ngồi. Hỏi ban đầu số chỗ ngồi trong phòng họp đợc chia thành bao nhiêu dãy? Bài 29: Lớp 9A đợc phân công trồng 480 cây xanh. Lớp dự định chia đều cho số HS, nhng khi lao động có 8 bạn vắng nên mỗi bạn có mặt phải trồng thêm 3 cây mới xong. Tính số HS lớp 9A. 2 Bài 30: Một công nhân cần trồng 210 cây bóng mát trong một thời gian đã định. Do thời tiết xấu nên mỗi ngày trồng đợc ít hơn 5 cây so với dự kiến. Vì vậy đã hoàn thành công việc chậm 3.5 ngày so với dự kiến. Hỏi theo dự kiến mỗi ngày ngời đó cần trồng bao nhiêu cây? Bài 31: Một đoàn xe chở 480 tấn hàng. Khi sắp khởi hành có thêm 3 xe nữa nên mỗi xe chở ít hơn 8 tấn. Hỏi lúc đầu đoàn xe có bao nhiêu chiếc. Chúc các em học tốt Phần 1: Các loại bài tập về biểu thức Bài 1: Cho biểu thức : + + + + = 6 5 3 2 aaa a P a 2 1 a) Rút gọn P b)Tìm giá trị của a để P<1 Bài 2: Cho biểu thức: P= + + + + + + + 65 2 3 2 2 3 : 1 1 xx x x x x x x x a) Rút gọn P b)Tìm giá trị của a để P<0 Bài 3: Cho biểu thức: P= + + + 13 23 1: 19 8 13 1 13 1 x x x x xx x a) Rút gọn P b)Tìm các giá trị của x để P= 6/5 Bài 4: Cho biểu thức : P= + + + 1 2 1 1 : 1 1 aaaa a a a a a)Rút gọn P b)Tìm giá trị của a để P<1 c)Tính P nếu 3819 = a Bài 5: Cho biểu thức; P= + + + + a a a a a a a aa 1 1 . 1 1 : 1 )1( 332 a)Rút gọn P b)Xét dấu của biểu thức M=a.(P- 2 1 ) Bài 6: Cho biểu thức: P= + + + + + + + + 12 2 12 1 1:1 12 2 12 1 x xx x x x xx x x a)Rút gọn P b)Tính giá trị của P khi x ( ) 223. 2 1 += Bài 7: Cho biểu thức: P= + + + 1 1: 1 1 1 2 x x xxxxx x a)Rút gọn P b)Tìm x để P 0 Bài 8: Cho biểu thức: P= + + ++ + a a a aa a a a 1 1 . 1 12 3 3 a)Rút gọn P b)Xét dấu của biểu thức P. a1 Bài 9: Cho biểu thức: P= . 1 1 1 1 1 2 :1 + ++ + + + x x xx x xx x a)Rút gọn P b)So sánh P với 3 Bài 10: Cho biểu thức : P= + + + a a aa a a aa 1 1 . 1 1 a)Rút gọn P b)Tìm a để P< 347 Bài 11: Cho biểu thức: P= + + + 1 3 22 : 9 33 33 2 x x x x x x x x a)Rút gọn P b) Tìm x để P<1/2 c)Tìm giá trị nhỏ nhất của P Bài 12: Cho biểu thức : P= + + 3 2 2 3 6 9 :1 9 3 x x x x xx x x xx a)Rút gọn P b)Tìm giá trị của x để P<1 Bài 13: Cho biểu thức : P= 3 32 1 23 32 1115 + + + + x x x x xx x a)Rút gọn P b)Tìm các giá trị của x để P=1/2 c)CM: P 3 2 Bài 14: Cho biểu thức:P= 2 2 44 2 mx m mx x mx x + + với m>0 a) Rút gọn P b)Tính x theo m để P=0. c)Tìm m để x tìm đợc ở câu b thoả mãn điều kiện x>1 3 Bài 15: Cho P= 1 2 1 2 + + + + a aa aa aa a)Rút gọn P b) Biết a>1 Hãy so sánh P với P c) Tìm a để P=2 d)Tìm GTNN của P Bài 16: Cho biểu thức P= + + + + + + + + 1 11 1 :1 11 1 ab aab ab a ab aab ab a a)Rút gọn P b)Tính P nếu a= 32 và b= 31 13 + c)Tìm giá trị nhỏ nhất của P nếu 4=+ ba Bài 17: Cho biểu thức : P= + + + + + + 1 1 1 1111 a a a a a a aa aa aa aa a)Rút gọn P b) Với giá trị nào của a thì P=7 c)Với giá trị nào của a thì P>6 Bài 18: Cho biểu thức: P= + + 1 1 1 1 2 1 2 2 a a a a a a a)Rút gọn P b)Tìm các giá trị của a để P<0 c)Tìm các giá trị của a để P=-2 Bài 19: Cho: P= ( ) ab abba ba abba + + . 4 2 a)Tìm điều kiện để P có nghĩa. b)Rút gọn P c)Tính P khi a= 32 và b= 3 Bài 20: Cho biểu thức : P= 2 1 : 1 1 11 2 + ++ + + x xxx x xx x a)Rút gọn P b)Chứng minh rằng P>0 x 1 Bài 21: Cho biểu thức : P= ++ + + 1 2 1: 1 1 1 2 xx x xxx xx a)Rút gọn P b) Tính P khi x= 325 + Bài 22: Cho biểu thức: P= xx x x x 24 1 : 24 2 4 2 3 2 1 :1 + + a)Rút gọn P b)Tìm giá trị của x để P=20 Bài 23: Cho biểu thức : P= ( ) yx xyyx xy yx yx yx + + + 2 33 : a)Rút gọn P b)Chứng minh P 0 Bài 24: Cho biểu thức : P= ++ + + + baba ba bbaa ab babbaa ab ba : 31 . 31 a)Rút gọn P b)Tính P khi a=16 và b=4 Bài 25: Cho : P= 12 . 1 2 1 12 1 + + + a aa aa aaaa a aa a)Rút gọn P b)Cho P= 61 6 + tìm giá trị của a c) Chứng minh rằng P>2/3 Bài 26: Cho biểu thức: P= + + + + 3 5 5 3 152 25 :1 25 5 x x x x xx x x xx a)Rút gọn P b)Với giá trị nào của x thì P<1 Bài 27: Cho P= ( ) ( ) baba baa babbaa a baba a 222 .1 : 133 ++ + ++ a)Rút gọn P b)Tìm a nguyên để P có giá trị nguyên Bài 28: Cho biểu thức: P= + + 1 2 2 1 : 1 1 1 a a a a aa a)Rút gọn P b)Tìm giá trị của a để P>1/6 Bài 29: Cho biểu thức: P= 33 33 : 112 . 11 xyyx yyxxyx yx yxyx + +++ ++ + + a)Rút gọn P b)Cho x.y=16. Xác định x,y để P có giá trị nhỏ nhất Bài 30: Cho biểu thức : P= x x yxyxx x yxy x + 1 1 . 22 2 2 3 a) Rút gọn P b) Tìm tất cả các số nguyên dơng x để y=625 và P<0,2 4 Phần 2: Các bài tập về hệ ph ơng trình bậc 2: Bài 31: Cho phơng trình : ( ) 2 2 2122 mxxm += a)Giải PT khi 12 +=m b)Tìm m để PT có nghiệm 23 =x c)Tìm m để phơng trình có nghiệm dơng duy nhất Bài 32: Cho phơng trình : ( ) 0224 2 =+ mmxxm (x là ẩn ) a)Tìm m để PT có nghiệm 2=x .Tìm nghiệm còn lại b)Tìm m để PT 2 có nghiệm phân biệt c)Tính 2 2 2 1 xx + theo m Bài 33: Cho phơng trình : ( ) 0412 2 =++ mxmx (x là ẩn ) a) Tìm m để phơng trình 2 có nghiệm trái dấu b) Chứng minh rằng phơng trình luôn có 2 nghiệm phân biệt với mọi m c) Chứng minh biểu thức M= ( ) ( ) 1221 11 xxxx + không phụ thuộc vào m. Bài 34: Tìm m để phơng trình : a) ( ) 012 2 =+ mxx có hai nghiệm dơng phân biệt b) 0124 2 =++ mxx có hai nghiệm âm phân biệt c) ( ) ( ) 012121 22 =+++ mxmxm có hai nghiệm trái dấu Bài 35: Cho phơng trình : ( ) 021 22 =+ aaxax a) Chứng minh rằng phơng trình trên có 2 nghiệm tráI dấu với mọi a b) Gọi hai nghiệm của phơng trình là x 1 và x 2 .Tìm giá trị của a để 2 2 2 1 xx + đạt giá trị nhỏ nhất Bài 36: Cho b và c: 2 111 =+ cb CMR ít nhất một trong hai phơng trình sau phải có nghiệm 0 0 2 2 =++ =++ bcxx cbxx Bài 37:Với giá trị nào của m thì hai phơng trình sau có ít nhất một nghiệm số chung: ( ) ( ) )2(036294 )1(012232 2 2 =+ =++ xmx xmx Bài 38: Cho phơng trình : 0222 22 =+ mmxx a) Tìm các giá trị của m để phơng trình có hai nghiệm dơng phân biệt b) Giả sử phơng trình có hai nghiệm không âm, tìm nghiệm dơng lớn nhất của phơng trình Bài 39: Cho phơng trình bậc hai tham số m : 014 2 =+++ mxx a) Tìm điều kiện của m để phơng trình có nghiệm b) Tìm m sao cho phơng trình có hai nghiệm x 1 và x 2 thoả mãn điều kiện 10 2 2 2 1 =+ xx Bài 40: Cho phơng trình ( ) 05212 2 =+ mxmx a) Chứng minh rằng phơng trình luôn có hai nghiệm với mọi m b) Tìm m để phơng trình có hai nghiệm cung dấu . Khi đó hai nghiệm mang dấu gì ? Bài 41: Cho phơng trình ( ) 010212 2 =+++ mxmx (với m là tham số ) a)Giải và biện luận về số nghiệm của phơng trình b) Trong trờng hợp PT có hai nghiệm phân biệt là 21 ; xx ; hãy tìm một hệ thức liên hệ giữa 21 ; xx mà không phụ thuộc vào m 5 c)Tìm giá trị của m để 2 2 2 121 10 xxxx ++ đạt giá trị nhỏ nhất Bài 42: Cho phơng trình ( ) 0121 2 =++ mmxxm với m là tham số a) CMR phơng trình luôn có hai nghiệm phân biệt 1m b) Xác định giá trị của m dể phơng trình có tích hai nghiệm bằng 5, từ đó hãy tính tổng hai nghiêm của phơng trình c) Tìm một hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m d) Tìm m để phơng trình có nghiệm 21 ; xx thoả mãn hệ thức: 0 2 5 1 2 2 1 =++ x x x x Bài 43: A) Cho phơng trình : 01 2 =+ mmxx (m là tham số) a) Cmr PT có nghiệm 21 ; xx với mọi m ; tính nghiệm kép ( nếu có) của phơng trình và giá trị của m tơng ứng b) Đặt 21 2 2 2 1 6 xxxxA += .Chứng minh 88 2 += mmA Tìm m để A=8 Tìm giá trị nhỏ nhất của A và giá trị của m tơng ứng c) Tìm m sao cho phơng trình có nghiệm này bằng hai lần nghiệm kia B) Cho phơng trình 0122 2 =+ mmxx a) Chứng tỏ rằng phơnh trình có nghiệm 21 ; xx với mọi m. b) Đặt A= 21 2 2 2 1 5)(2 xxxx + CMR A= 9188 2 + mm .Tìm m sao cho A=27 c)Tìm m sao cho phơng trình có nghiệm nay bằng hai nghiệm kia. Bài 44: Giả sử phơng trình 0. 2 =++ cbxxa có 2 nghiệm phân biệt 21 ; xx .Đặt nn n xxS 21 += (n nguyên dơng) a) CMR 0. 12 =++ ++ nnn cSbSSa b) áp dụng Tính giá trị của : A= 55 2 51 2 51 + + Bài 45: Cho f (x) = x 2 - 2 (m+2).x + 6m+1 a) CMR phơng trình f (x) = 0 có nghiệm với mọi m b) Đặt x=t+2 .Tính f (x) theo t, từ đó tìm điều kiện đối với m để phơng trình f (x) = 0 có 2 nghiệm lớn hơn 2 Bài 46: Cho phơng trình : ( ) 05412 22 =+++ mmxmx a) Xác định giá trị của m để phơng trình có nghiệm b) Xác định giá trị của m để phơng trình có hai nghiệm phân biệt đều dơng c) Xác định giá trị của m để phơng trình có hai nghiệm có giá trị tuyệt đối bằng nhau và trái dấu nhau d) Gọi 21 ; xx là hai nghiệm nếu có của phơng trình . Tính 2 2 2 1 xx + theo m Bài 47: Cho phơng trình 0834 2 =+ xx có hai nghiệm là 21 ; xx . Không giải phơng trình , hãy tính giá trị của biểu thức : 2 3 1 3 21 2 221 2 1 55 6106 xxxx xxxx M + ++ = Bài 48: Cho phơng trình ( ) 0122 =+++ mxmx x a) Giải phơng trình khi m=1/2 b) Tìm các giá trị của m để phơng trình có hai nghiệm trái dấu c) Gọi 21 ; xx là hai nghiệm của phơng trình . Tìm giá trị của m để : 2 1221 )21()21( mxxxx =+ Bài 49: Cho phơng trình 03 2 =++ nmxx (1) (n , m là tham số) Cho n=0 . CMR phơng trình luôn có nghiệm với mọi m Tìm m và n để hai nghiệm 21 ; xx của phơng trình (1) thoả mãn hệ : = = 7 1 2 2 2 1 21 xx xx Bài 50: Cho phơng trình: ( ) 05222 2 = kxkx ( k là tham số) a) CMR phơng trình có hai nghiệm phân biệt với mọi giá trị của k b) Gọi 21 ; xx là hai nghiệm của phơng trình . Tìm giá trị của k sao cho 18 2 2 2 1 =+ xx Bài 51: Cho phơng trình ( ) 04412 2 =+ mxxm (1) 6 a)Giải PT (1) khi m=1 b)Giải phơng trình (1) khi m bất kì c)Tìm giá trị của m để phơng trình (1) có một nghiệm bằng m Bài 52:Cho phơng trình : ( ) 0332 22 =+ mmxmx a) CMR phơng trình luôn có hai nghiệm phân biệt với mọi m b) Xác định m để phơng trình có hai nghiệm 21 , xx thoả mãn 61 21 <<< xx Phần 3: Hệ ph ơng trình: Bài53: Tìm giá trị của m để hệ phơng trình ; ( ) ( ) =+ +=+ 21 11 ymx myxm Có nghiệm duy nhất thoả mãn điều kiện x+y nhỏ nhất Bài 54: Giải hệ phơnh trình và minh hoạ bằmg đồ thị a) = =+ xy yx 52 1 b) =+ = 1 44 2 yx yx c) = =+ 123 11 xy xy Bài 55: Cho hệ phơng trình : = =+ 5 42 aybx byx a)Giải hệ phơng trình khi ba = b)Xác định a và b để hệ phơng trình trên có nghiệm : * (1;-2) * ( 2;12 ) *Để hệ có vô số nghiệm Bài 56:Giải và biện luận hệ phơng trình theo tham số m: += = mmyx mymx 64 2 Bài 57: Với giá trị nào của a thì hệ phơng trình : =+ =+ 2ã 1 yax ayx a) Có một nghiệm duy nhất b) Vô nghiệm Bài 58 :Giải hệ phơng trình sau: =+ =++ 1 19 22 yxyx yxyx Bài 59*: Tìm m sao cho hệ phơng trình sau có nghiệm: ( ) ( ) =++ =+ 01 121 2 yxyxmyx yx Bài 60 :GiảI hệ phơng trình: = =+ 624 1332 22 22 yxyx yxyx Bài 61*: Cho a và b thoả mãn hệ phơng trình : 7 =+ =++ 02 0342 222 23 bbaa bba .Tính 22 ba + Bài 61:Cho hệ phơng trình : =+ =+ ayxa yxa . 3)1( a) Giải hệ phơng rình khi a=- 2 b) Xác định giá trị của a để hệ có nghiệm duy nhất thoả mãn điều kiện x+y>0 Phần 4: Hàm số và đồ thị Bài 62: Cho hàm số : y= (m-2)x+n (d) Tìm giá trị của m và n để đồ thị (d) của hàm số : a) Đi qua hai điểm A(-1;2) và B(3;-4) b) Cắt trục tung tại điểm cótung độ bằng 1- 2 và cắt trục hoành tại điểm có hoành độ bằng 2+ 2 . c) Cắt đờng thẳng -2y+x-3=0 d) Song song vối đờng thẳng 3x+2y=1 Bài 63: Cho hàm số : 2 2xy = (P) a) Vẽ đồ thị (P) b) Tìm trên đồ thị các điểm cách đều hai trục toạ độ c) Xét số giao điểm của (P) với đờng thẳng (d) 1= mxy theo m d) Viết phơng trình đờng thẳng (d') đi qua điểm M(0;-2) và tiếp xúc với (P) Bài 64 : Cho (P) 2 xy = và đờng thẳng (d) mxy += 2 1.Xác định m để hai đờng đó : a) Tiếp xúc nhau . Tìm toạ độ tiếp điểm b) Cắt nhau tại hai điểm phân biệt A và B , một điểm có hoành độ x=-1. Tìm hoành độ điểm còn lại . Tìm toạ độ A và B 2.Trong trờng hợp tổng quát , giả sử (d) cắt (P) tại hai điểm phân biệt M và N. Tìm toạ độ trung điểm I của đoạn MN theo m và tìm quỹ tích của điểm I khi m thay đổi. Bài 65: Cho đờng thẳng (d) 2)2()1(2 =+ ymxm a) Tìm m để đờng thẳng (d) cắt (P) 2 xy = tại hai điểm phân biệt A và B b) Tìm toạ độ trung điểm I của đoạn AB theo m c) Tìm m để (d) cách gốc toạ độ một khoảng Max d) Tìm điểm cố định mà (d) đi qua khi m thay đổi Bài 66: Cho (P) 2 xy = a) Tìm tập hợp các điểm M sao cho từ đó có thể kẻ đợc hai đờng thẳng vuông góc với nhau và tiếp xúc với (P) b) Tìm trên (P) các điểm sao cho khoảng cách tới gốc toạ độ bằng 2 Bài 67: Cho đờng thẳng (d) 3 4 3 = xy a) Vẽ (d) b) Tính diện tích tam giác đợc tạo thành giữa (d) và hai trục toạ độ c) Tính khoảng cách từ gốc O đến (d) Bài 68: Cho hàm số 1= xy (d) a) Nhận xét dạng của đồ thị. Vẽ đồ thị (d) b) Dùng đồ thị , biện luận số nghiệm của phơng trình mx =1 Bài 69: Với giá trị nào của m thì hai đờng thẳng : 8 (d) 2)1( += xmy (d') 13 = xy a) Song song với nhau b) Cắt nhau c) Vuông góc với nhau Bài 70: Tìm giá trị của a để ba đờng thẳng : 12.)( 2)( 52)( 3 2 1 = += = xayd xyd xyd đồng quy tại một điểm trong mặt phẳng toạ độ Bài 71: CMR khi m thay đổi thì (d) 2x+(m-1)y=1 luôn đi qua một điểm cố định Bài 72: Cho (P) 2 2 1 xy = và đờng thẳng (d) y=a.x+b .Xác định a và b để đờng thẳng (d) đI qua điểm A(-1;0) và tiếp xúc với (P). Bài 73: Cho hàm số 21 ++= xxy a) Vẽ đồ thị hàn số trên b) Dùng đồ thị câu a biện luận theo m số nghiệm của phơng trình mxx =++ 21 Bài 74: Cho (P) 2 xy = và đờng thẳng (d) y=2x+m a) Vẽ (P) b) Tìm m để (P) tiếp xúc (d) Bài 75: Cho (P) 4 2 x y = và (d) y=x+m a) Vẽ (P) b) Xác định m để (P) và (d) cắt nhau tại hai điểm phân biệt A và B c) Xác định phơng trình đờng thẳng (d') song song với đờng thẳng (d) và cắt (P) tại điẻm có tung độ bằng -4 d) Xác định phơng trình đờng thẳng (d'') vuông góc với (d') và đi qua giao điểm của (d') và (P) Bài 76: Cho hàm số 2 xy = (P) và hàm số y=x+m (d) a) Tìm m sao cho (P) và (d) cắt nhau tại hai điểm phân biệt A và B b) Xác định phơng trình đờng thẳng (d') vuông góc với (d) và tiếp xúc với (P) c) Thiết lập công thức tính khoảng cách giữa hai điểm bất kì. áp dụng: Tìm m sao cho khoảng cách giữa hai điểm A và B bằng 23 Bài 77: Cho điểm A(-2;2) và đờng thẳng ( 1 d ) y=-2(x+1) a) Điểm A có thuộc ( 1 d ) ? Vì sao ? b) Tìm a để hàm số 2 .xay = (P) đi qua A c) Xác định phơng trình đờng thẳng ( 2 d ) đi qua A và vuông góc với ( 1 d ) d) Gọi A và B là giao điểm của (P) và ( 2 d ) ; C là giao điểm của ( 1 d ) với trục tung . Tìm toạ độ của B và C . Tính diện tích tam giác ABC Bài 78: Cho (P) 2 4 1 xy = và đờng thẳng (d) qua hai điểm A và B trên (P) có hoành độ lầm lợt là -2 và 4 a) Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số trên b) Viết phơng trình đờng thẳng (d) c) Tìm điểm M trên cung AB của (P) tơng ứng hoành độ [ ] 4;2x sao cho tam giác MAB có diện tích lớn nhất. (Gợi ý: cung AB của (P) tơng ứng hoành độ [ ] 4;2x có nghĩa là A(-2; A y ) và B(4; B y ) tính BA yy ; ; ) 9 Bài 79: Cho (P) 4 2 x y = và điểm M (1;-2) a) Viết phơng trình đờng thẳng (d) đi qua M và có hệ số góc là m b) CMR (d) luôn cắt (P) tại hai điểm phân biệt A và B khi m thay đổi c) Gọi BA xx ; lần lợt là hoành độ của A và B .Xác định m để 22 BABA xxxx + đạt giá trị nhỏ nhất và tính giá trị đó d) Gọi A' và B' lần lợt là hình chiếu của A và B trên trục hoành và S là diện tích tứ giác AA'B'B. *Tính S theo m *Xác định m để S= )28(4 22 +++ mmm Bài 80: Cho hàm số 2 xy = (P) a) Vẽ (P) b) Gọi A,B là hai điểm thuộc (P) có hoành độ lần lợt là -1 và 2. Viết phơng trình đờng thẳng AB c) Viết phơng trình đờng thẳng (d) song song với AB và tiếp xúc với (P) Bài 81: Trong hệ toạ độ xoy cho Parabol (P) 2 4 1 xy = và đờng thẳng (d) 12 = mmxy a) Vẽ (P) b) Tìm m sao cho (P) và (d) tiếp xúc nhau.Tìm toạ độ tiếp điểm c) Chứng tỏ rằng (d) luôn đi qua một điểm cố định Bài 82: Cho (P) 2 4 1 xy = và điểm I(0;-2) .Gọi (d) là đờng thẳng qua I và có hệ số góc m. a) Vẽ (P) . CMR (d) luôn cắt (P) tại hai điểm phân biệt A và B Rm b) Tìm giá trị của m để đoạn AB ngắn nhất Bài 83: Cho (P) 4 2 x y = và đờng thẳng (d) đi qua điểm I( 1; 2 3 ) có hệ số góc là m a) Vẽ (P) và viết phơng trình (d) b) Tìm m sao cho (d) tiếp xúc (P) c) Tìm m sao cho (d) và (P) có hai điểm chung phân biệt Bài 84: Cho (P) 4 2 x y = và đờng thẳng (d) 2 2 += x y a) Vẽ (P) và (d) b) Tìm toạ độ giao điểm của (P) và (d) c) Tìm toạ độ của điểm thuộc (P) sao cho tại đó đờng tiếp tuyến của (P) song song với (d) Bài 85: Cho (P) 2 xy = a) Vẽ (P) b) Gọi A và B là hai điểm thuộc (P) có hoành độ lần lợt là -1 và 2 . Viết phơng trình đờng thẳng AB c) Viết phơng trình đờng thẳng (d) song song với AB và tiếp xúc với (P) Bài 86: Cho (P) 2 2xy = a) Vẽ (P) b) Trên (P) lấy điểm A có hoành độ x=1 và điểm B có hoành độ x=2 . Xác định các giá trị của m và n để đờng thẳng (d) y=mx+n tiếp xúc với (P) và song song với AB Bài 87: Xác định giá trị của m để hai đờng thẳng có phơng trình 1)( )( 2 1 =+ =+ ymxd myxd cắt nhau tại một điểm trên (P) 2 2xy = Phần 5: Giải toán bằng cách lập ph ơng trình 1. chuyển động 10 [...]... tren quãng đờng đã đi lúc đầu 2 Năng xuất Bài 108 : Hai đội công nhân cùng làm một công việc thì làm xong trong 4 giờ Nếu mỗi đội làm một mình để làm xong công việc ấy , thì đội thứ nhất cần thời gian ít hơn so với đội thứ hai là 6 giờ Hỏi mỗi đội làm một mình xong công việc ấy trong bao lâu? Bài 109 : Một xí nghiệp đóng giầy dự định hoàn thành kế hoạch trong 26 ngày Nhng do cải tiến kỹ thuật nên mỗi... mức khoán Nếu làm chung trong 4 giờ thì hoàn thành đ ợc Nếu để mỗi tổ làm riêng thì tổ này sẽ làm xong mức khoán thì mỗi tổ phải làm trong bao lâu ? 2 mức khoán 3 Bài 113: Hai tổ công nhân làm chung trong 12 giờ sẽ hoàn thành xong công việc đã định Họ làm chung với nhau trong 4 giờ thì tổ thứ nhất đợc điều đi làm việc khác , tổ thứ hai làm nốt công việc còn lại trong 10 giờ Hỏi tổ thứ hai làm một... Bài 102 : Một ca nô chạy trên sông trong 7 giờ , xuôi dòng 108 Km và ng ợc dòng 63 Km Một lần khác , ca nô đó cũng chạy trong 7 giờ, xuôi dòng 81 Km và ngợc dòng 84 Km Tính vận tốc dòng nớc chảy và vận tốc riêng ( thực ) của ca nô Bài103: Một tầu thuỷ chạy trên một khúc sông dài 80 Km , cả đi và về mất 8 giờ 20 phút Tính vận tốc của tầu khi nớc yên lặng , biết rằng vận tốc dòng nớc là 4 Km/h Bài 104 :... công việc trong 16 giờ thì xong Nếu ngời thứ nhất làm 3 giờ và ngời thứ hai làm 6 giờ thì họ làm đợc 25% côngviệc Hỏi mỗi ngời làm công việc đó trong mấy giờ thì xong 3 Thể tích Bài 115: Hai vòi nớc cùng chảy vào một cái bể không chứa nớc đã làm đầy bể trong 5 giờ 50 phút Nếu chảy riêng thì vòi thứ hai chảy đầy bể nhanh hơn vòi thứ nhất là 4 giờ Hỏi nếu chảy riêng thì mỗi vòi chảy trong bao lâu... 6000 đôi giầy do đó chẳng những đã hoàn thành kế hoạch đã định trong 24 ngày mà còn vợt mức 104 000 đôi giầy Tính số đôi giầy phải làm theo kế hoạch Bài 110: Một cơ sở đánh cá dự định trung bình mỗi tuần đánh bắt đợc 20 tấn cá , nhng đã vợt mức đợc 6 tấn mỗi tuần nên chẳng những đã hoàn thành kế hoạch sớm 1 tuần mà còn vợt mức kế hoạch 10 tấn Tính mức kế hoạch đã định Bài 111: Một đội xe cần chuyên... quãng đ ờng còn lại Tính thời gian xe lăn bánh trên đờng 11 Bài 106 : Một ôtô dự định đi từ A đén B cách nhau 120 Km trong một thời gian quy định Sau khi đi đ ợc 1 giờ ôtô bị chắn đờng bởi xe hoả 10 phút Do đó , để đến B đúng hạn , xe phải tăng vận tốc thêm 6 Km/h Tính vận tốc lúc đầu của ôtô Bài107: Một ngời đi xe đạp từ A đến B trong một thời gian đã định Khi còn cách B 30 Km , ngời đó nhận thấy... ngắn hơn đoạn đờng bằng là 110km và thời gian để ngời đó đi cả quãng đờng là 3 giờ 30 phút Tính chiều dài quãng đờng ngời đó đã đi Bài 92: Một xe tải và một xe con cùng khởi hành từ A đến B Xe tảI đi với vận tốc 30 Km/h , xe con đi với vận tốc 45 Km/h Sau khi đi đợc 3 quãng đờng AB , xe con tăng vận tốc thêm 5 Km/h trên quãng đờng còn lại Tính quãng đờng AB biết rằng xe 4 con đến B sớm hơn xe tải 2giờ... có nớc và chảy đầy bể mất 1 giờ 48 phút Nếu chảy riêng , vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai trong 1 giờ 30 phút Hỏi nếu chảy riêng thì mỗi vòi sẽ chảy đầy bể trong bao lâu ? Bài 117: Một máy bơm muốn bơm đầy nớc vào một bể chứa trong một thời gian quy định thì mỗi giờ phải bơm đợc 10 m3 Sau khi bơm đợc 1 thể tích bể chứa , máy bơm hoạt động với công suất lớn hơn , mỗi giờ bơm đ ợc 15... tốc thêm 10 Km/h trên quãng đờng còn lại Do đó ô tô đến tỉnh B sớm hơn 1 giờ so với dự định Tính quãng đờng AB Bài 100 : Hai ca nô khởi hành cùng một lúc và chạy từ bến A đến bến B Ca nô I chạy với vận tốc 20 Km/h , ca nô II chạy với vận tốc 24 Km/h Trên đờng đi ca nô II dừng lại 40 phút , sau đó tiếp tục chạy Tính chiều dài quãng đờng sông AB biết rằng hai ca nô đến B cùng một lúc Bài 101 : Một... thuyền khởi hành từ bến sông A Sau đó 5 giờ 20 phút một chiếc ca nô chạy từ bến sông A đuổi theo và gặp chiếc thuyền tại một điểm cách bến A 20 Km Hỏi vận tốc của thuyền , biết rằng ca nô chạy nhanh hơn thuyền 12 Km/h Bài 105 : Một ôtô chuyển động đều với vận tốc đã định để đi hết quãng đờng dài 120 Km trong một thời gian đã định Đi đợc một nửa quãng đờng xe nghỉ 3 phút nên để đến nơi đúng giờ , xe . máy gấp 2,5 lần vận tốc xe đạp. Bài 102 : Một ca nô chạy trên sông trong 7 giờ , xuôi dòng 108 Km và ngợc dòng 63 Km. Một lần khác , ca nô đó cũng chạy trong 7 giờ, xuôi dòng 81 Km và ngợc dòng. quãng đờng đã đi lúc đầu. 2. Năng xuất Bài 108 : Hai đội công nhân cùng làm một công việc thì làm xong trong 4 giờ . Nếu mỗi đội làm một mình để làm xong công việc ấy , thì đội thứ nhất cần thời. thứ hai là 6 giờ . Hỏi mỗi đội làm một mình xong công việc ấy trong bao lâu? Bài 109 : Một xí nghiệp đóng giầy dự định hoàn thành kế hoạch trong 26 ngày . Nhng do cải tiến kỹ thuật nên mỗi

Ngày đăng: 09/07/2014, 20:00

TỪ KHÓA LIÊN QUAN

w