1. Trang chủ
  2. » Giáo án - Bài giảng

THI HỌC KÌ II 09-10 toan9.4.doc

1 403 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 23,5 KB

Nội dung

THI HỌC KÌ II- Năm học 2009-2010 MÔN TOÁN- LỚP 9 Thời gian: 90 phút Bài 1: (2,0 điểm). Giải các hệ phương trình và phương trình sau: 1.    −=− =+ 2434 1674 yx yx 2. 3 2 2 2 0x x x+ − − = Bài 2 . (1,5 điểm) 1. Xác định hệ số a của hàm số y =ax 2 ,biết rằng đồ thị của nó đi qua điểm A(–2;1). 2. Vẽ đồ thị của hàm số với a tìm được ở câu a. Bài 3 (1.5 điểm) Cho phương trình ( ) 2 2 2 1 2 0x m x m m+ − + − − = (1) 1. Chứng tỏ rằng với mọi m phương trình (1) luôn có hai nghiệm phân biệt . 2. Tìm m để (x 1 + x 2 ) + x 1 x 2 = –1 Bài 4: (1,0 điểm) Tìm một số tự nhiên biết rằng tổng của nó với số nghịch đảo của nó bằng 26 5 Bài 5 (4,0 điểm) Cho nửa đường tròn (O) đường kính AB = 2R . Kẻ tiếp tuyến Bx với nửa đường tròn. Gọi C là điểm trên nửa đường tròn sao cho cung CB bằng cung CA, D là một điểm tuỳ ý trên cung CB ( D khác C và B ). Các tia AC, AD cắt tia Bx theo thứ tự ở E và F . 1. Chứng minh tam giác ABE vuông cân. 2. Chứng minh AC. AE = AD. AF = 4R 2 . 3. Chứng minh tứ giác CDFE là tứ giác nội tiếp . 4. Tính diện tích hình giới hạn bởi hai đoạn thẳng BE, CE và cung BC của đường tròn (O) theo R. HẾT . THI HỌC KÌ II- Năm học 2009-2010 MÔN TOÁN- LỚP 9 Thời gian: 90 phút Bài 1: (2,0 điểm). Giải các hệ phương trình và phương trình sau: 1.    −=− =+ 243 4 16 74 yx yx 2. 3 2 2. . 2. Tìm m để (x 1 + x 2 ) + x 1 x 2 = –1 Bài 4: (1,0 điểm) Tìm một số tự nhiên biết rằng tổng của nó với số nghịch đảo của nó bằng 26 5 Bài 5 (4, 0 điểm) Cho nửa đường tròn (O) đường kính. Chứng minh tam giác ABE vuông cân. 2. Chứng minh AC. AE = AD. AF = 4R 2 . 3. Chứng minh tứ giác CDFE là tứ giác nội tiếp . 4. Tính diện tích hình giới hạn bởi hai đoạn thẳng BE, CE và cung BC

Ngày đăng: 08/07/2014, 16:00

TỪ KHÓA LIÊN QUAN

w