1. Trang chủ
  2. » Giáo án - Bài giảng

một số đề ôn thi chuyên

44 381 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 44
Dung lượng 7,68 MB

Nội dung

Mét sè ®Ò «n thi vµo chuyªn to¸n ( cã ®¸p ¸n) §Ò 1   2 1 ( ) : 3 P y x=    !"#  $ (2;1)A  % &'()*$ (2;1)A +,-./,01! )*(2"34-5+6#7,$89 :!3*567 ; 3. <$895=>,,7?@ !"+   +A,+0. %B &C- 2 2 19 7 x y xy x y xy  + − =  + + = −  D E)F)79G/1HI7HE) FJ9G#+K+ALM+GN&&'GO#   !E)F  PQ7( RE)FS)*ML A$H/1+)*N&A$/17 % <$89!M+&7( RE)FS D <$89!L+N7( RE)FS HÕt T+ 1 Bµi 1 U Néi dung T 1. #=  (2,0 ®iÓm) Ph¬ng tr×nh ®êng th¼ng d 1 ®i qua A(2; 1) cã d¹ng: y = ax + b vµ 1 = 2a + b, suy ra b = 1 - 2a, do ®ã d 1 : y = ax - 2a+1. 0,50 Ph¬ng tr×nh cho hoµnh ®é giao ®iÓm cña d 1 vµ (P) lµ: 2 2 1 2 1 3 6 3 0 3 x ax a x ax a= − + ⇔ − + − = 0.50 §Ó d 1 lµ tiÕp tuyÕn cña (P) th× cÇn vµ ®ñ lµ: '∆ = 2 2 9 24 12 0 2 3 a a a a =   ∆ = − + = ⇔  =  2,0 VËy tõ A(2; 1) cã hai tiÕp tuyÕn ®Õn (P) lµ: 1 2 2 1 : 2 3; : 3 3 d y x d y x= − = − 0,50 % (4,0 ®iÓm) Ph¬ng tr×nh ®êng th¼ng d ®i qua A(2; 1) cã hÖ sè gãc m lµ: 1 2y mx m= + − 0,50 Ph¬ng tr×nh cho hoµnh ®é giao ®iÓm cña d vµ (P) lµ: 2 2 1 2 1 3 6 3 0 (2) 3 x mx m x mx m= − + ⇔ − + − = 0,50 §Ó d c¾t (P) t¹i 2 ®iÓm ph©n biÖt th× cÇn vµ ®ñ lµ: 2 2 8 4 9 24 12 0 9 0 3 3 m m m m   ∆ = − + > ⇔ − + >  ÷   2 4 4 4 2 0 3 9 3 3 m m   ⇔ − − > ⇔ − >  ÷   4 3 4 2 2 3 3 (*) 3 4 2 3 4 2 3 3 m m m m m m   ≥        − >    <   ⇔ ⇔     > <         − >     1,5 2 Với điều kiện (*), d cắt (P) tại 2 điểm M và N có hoành độ là x 1 và x 2 là 2 nghiệm của phơng trình (2), nên toạ độ trung điểm I của MN là: 1 2 2 2 2 2 2 ; 2 1; 3 3 3 3 3 3 2 2 2 4 1 2 1 3 3 x x x m x x x x m x I y mx m y x x = < > < > + ữ = = = + = + 1,0 Vậy khi m thay đổi, quĩ tích của I là phần của parabol 2 2 4 1 3 3 y x x= + , giới hạn bởi 1; 3x x< > . 0,50 D (2,0 điểm) Gọi 0 0 0 ( ; )M x y là điểm từ đó có thể vẽ 2 tiếp tuyến vuông góc đến (P). Ph- ơng trình đờng thẳng d' qua M 0 và có hệ số góc k là: y kx b= + , đờng thẳng này đi qua M 0 nên 0 0 0 0 y kx b b y kx= + = , suy ra pt của d': 0 0 y kx kx y= + . 0,50 Phơng trình cho hoành độ giao điểm của d và (P) là: 2 2 0 0 0 0 1 3 3 3 0 3 x kx kx y x kx kx y= + + = (**) 0,50 Để từ M 0 có thể kẻ 2 tiếp tuyến vuông góc tới (P) thì phơng trình: 2 0 0 9 12 12 0k kx y = + = có 2 nghiệm phân biệt 1 2 ,k k và 1 2 1k k = 0 0 12 3 1 9 4 y y = = 0,50 Vậy quĩ tích các điểm M 0 từ đó có thể vẽ đợc 2 tiếp tuyến vuông góc của (P) là đờng thẳng 3 4 y = 0,50 2. (4,0 điểm) ( ) 2 2 2 2 19 3 19 3 19 7 7 7 S x y x y xy S P x y xy P xy x y xy S P x y xy = + + = = + = ữ = + + = + = + + = (1) 1,0 Giải hệ (1) ta đợc: ( 1; 6), ( 2; 5)S P S P= = = = 1,0 Giải các hệ phơng trình tích, tổng: 1 6 x y xy + = = và 2 5 x y xy + = = ta có các nghiệm của hệ phơng trình đã cho là: 3 2 1 6 1 6 ; ; ; 2 3 1 6 1 6 x x x x y y y y = = = = + = = = + = 2,0 3 3. #= 3.1 Gọi K là giao điểm của Ax và GF, I là giao điểm của By và ED. Ta có: ã ã 0 90BEI BCA= = ã ã EBI CBA= (góc có các cạnh tơng ứng vuông góc) BE BC = , Do đó: BEI BCA BI BA = = mà By cố định, suy ra điểm I cố định. + Tơng tự, K ccố định. + Vậy khi C di chuyển trên nửa đờng tròn (O) thì dờng thẳng ED đi qua điểm I cố định và đờng thẳng GF đi qua điểm K cố định. 3,0 3.2 Suy ra quĩ tích của I là nửa đờng tròn đờng kính BI (bên phải By, ,C A E I C B E B ); quĩ tích của K là nửa đờng tròn đờng kính AK(bên trái Ax, ,C A G A C B G K ). 2,0 3.3 Xét 2 tam giác BEI và BDK, ta có: 1 2 BE BI BD BK = = ã ã ã ã ã ã 0 45EBI IBD KBD IBD EBI KBD + = + = = Do đó: ã ã 0 90 BEI BDK BDK BEI = = : + Vậy: Quĩ tích của D là nửa đờng tròn đờng kính BK. + Tơng tự, quĩ tích của F là nửa đờng tròn đờng kính AI. 3,0 4 §Ò 2 V  &C 4 4 1 2 9 6 2x x x x+ − + + − = % PQ##./7A4+./H! +, 1 1 2 a b b c c a + = + + + %W  <10I+1XI! 2 2 3 5 1 x x y x + + = +  % <- R! 2 2 2 3 2 4 3 0x y xy x y+ + − − + = DV )F4Y#79Z#)79G+L+A,+0M I7RGL6/M2YG35#/M2YL36  PQ9 OM ON AM DN × HQ./[ 1XI!; OM ON AM DN + #7,+19!M\ % &'&](4 /1!)F4Y79ZS+&] 7AC)79^ HR0&]_1+1 9!^+!&]^0I ] T+ 5 Bài U Nội dung T 1. V#= (2,0 điểm) 4 4 1 2 9 6 2x x x x+ + + = ( ) ( ) 2 2 4 4 1 3 2x x + = ( ) 4 4 4 1 3 2 (1) 1 3 2 0; 0 (2)x x y y y x x + = + = = (1) 1,0 0 1: 1 0, 3 0y y y < #nên (2) 1 3 2 1y y y + = = (thoả ĐK) 1x = là một nghiệm của phơng trình (1) 1 3: 1 0, 3 0y y y< > , nên pt (2) 1 3 2 0 0y y y + = = do đó pt (2) có vô số nghiệm y ( 1 3y< ), suy ra pt (1) có vô số nghiệm x ( 1 81x< ). 1,0 3: 1 0, 3 0y y y> > > , nên pt (2) 1 3 2 3y y y + = = , pt vô nghiệm. Vậy tập nghiệm của pt (1) là: [ ] 1; 81S = 1,0 % (3,0 điểm) 1 1 2 1 1 1 1 (*) a b b c c a a b c a c a b c + = + + + = + + + + 0,50 Ta có: ( ) ( ) ( ) ( ) ( ) 1 1 c b A a b c a a b c a c b a b c a b c = = + + + + = + + + 0,50 Theo giả thiết: 2 2 a c b a c b b a c b + = + = = , nên: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) b a b a b a A a b b c c a a b b c c a + = = + + + + + + 1,0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 b a b c c a A c a b c b c c a b c c a + + = = = + + + + + + Đẳng thức (*) đợc nghiệm đúng. 1,0 6 2. W#= % (3,0 điểm) 2 2 3 5 1 x x y x + + = + (xác định với mọi x R ) ( ) 2 1 3 5 0 (**)y x x y + = 0,5 1:y = pt (**) có nghiệm 4 3 x = 1:y để pt (**) có nghiệm thì: 2 9 4( 1)( 5) 4 24 11 0y y y y = = + 1,0 ( ) ( ) 2 25 5 5 5 1 11 3 0 3 3 1 4 2 2 2 2 2 y y y y y 1,0 Vậy tập giá trị của y là 1 11 ; 2 2 , do đó 11 1 ; 2 2 Max y Min y= = 0,5 %% (3,0 điểm) ( ) 2 2 2 2 2 3 2 4 3 0 3 2 2 4 3 0x y xy x y x y x y y+ + + = + + + = (***) 0,5 Để pt (***) có nghiệm nguyên theo x, thì: ( ) ( ) 2 2 2 3 2 4 2 4 3 4 8y y y y y = + = + là số chính phơng. ( ) ( ) 2 2 2 2 4 8 2 12y y k k y k + = + =Z ( 2 )( 2 ) 12 ( )y k y k a + + + = 1,0 Ta có: Tổng ( ) 2 ( 2 ) 2( 2)y k y k k+ + + + = + là số chẵn, nên ( ) 2 ; ( 2 )y k y k+ + + cùng chẵn hoặc cùng lẻ. Mà 12 chỉ có thể bằng tích 1.12 hoặc 2.6 hoặc 3.4, nên chỉ có các hệ phơng trình sau: 2 2 2 6 2 6 2 2 ; ; ; ; 2 6 2 2 2 2 2 6 y k y k y k y k y k y k y k y k + = + = + = + = + + = + + = + + = + + = 0,5 Giải các hệ pt trên ta có các nghiệm nguyên của pt (a): ( ) ( ) ( ) ( ) 2; 2 , 2; 2 , 6; 2 , 6; 2y k y k y k y k= = = = = = = = 0,5 Thay các giá trị 2; 6y y= = vào pt (***) và giải pt theo x có các nghiệm nguyên (x; y) là: ( 1; 2), ( 3; 2);( 11; 6),( 9; 6)x y x y x y x y= = = = = = = = 0,5 3. V#= (4 đ) 3.1 Ta có: COM CED : vì: à à 0 90O E= = ; à C chung. Suy ra: . (1) OM CO ED CO OM ED CE CE = = Ta có: AMC EAC : vì: à C chung , à à 0 45A E= = . Suy ra: . (2) AM AC EA AC AM EA EC CE = = Từ (1) và (2): . (3) . 2 OM OC ED ED AM AC EA EA = = 1,0 7 ONB EAB : à à à ( ) 0 90 ;O E B chung= = . (4) ON OB OB EA ON EA EB EB = = à à à 0 . ( , 45 ) (5) DN DB DB ED DNB EDB B chung D E DN ED EB EB = = = =: Từ (4) và (5): . (6) . 2 ON OB EA EA DN DB ED ED = = . Từ (3) và (6): 1 2 OM ON AM DN ì = 1,0 Đặt , OM ON x y AM DN = = . Ta có: x, y không âm và: ( ) 2 1 2 0 2 2 2 2 x y x y xy x y xy = + + = = Dấu "=" xẩy ra khi: 1 1 2 2 x y x y xy = = = = 1,0 Vậy: Tổng min 1 2 2 2 OM ON OM ED khi EA ED AM DN AM EA + = = = = ữ E là trung điểm của dây cung ằ AD . 1,0 D% (3,0 điểm) GKH có cạnh GH cố định, nên chu vi của nó lớn nhất khi tổng KG KH + lớn nhất. Trên tia đối của tia KG lấy điểm N sao cho KN = KH. Khi đó, HKN cân tại K. Suy ra ã ã 1 2 GNH GKH= và KG KH KG KN GN + = + = mà ã ẳ 1 2 GKH GH= (góc nội tiếp chắn cung nhỏ ẳ GH cố định), do đó ã GNH không đổi. Vậy N chạy trên cung tròn (O') tập hợp các điểm nhìn đoạn GH dới góc ã 1 4 GOH = không đổi. 1,5 GN là dây cung của cung tròn (O') nên GN lớn nhất khi GN là đờng kính của cung tròn, suy ra GHK vuông tại H, do đó ã ã KGH KHG= (vì lần lợt phụ với hai góc bằng nhau). Khi đó, K là trung điểm của cung lớn ẳ GH . Vậy: Chu vi của GKH lớn nhất khi K là trung điểm của cung lớn ẳ GH . 1,5 8 §Ò 3   2 2 2 2 2 0 (1).x mx m− + − =  B <1! m ,-(4- ` <1! m ,-4- 1 x + 2 x C S-P 3 3 1 2 5 2 x x+ =  W &C.E,-7A4<1! m -(a !310I %B &C 2 2 4 3 4x x x x− + = − % D G, · 0 60 ; ;ABC BC a AB c= = =  ,a c H(0#] bc56"d,e5R3G#6R3G#"+dJR3 @ 'bcHG  <+19!5R3Gbc56"d,(-90I <9(-90I, % Lf+AMN&]HGQ07?+a <9(-9!+A, ] 9 T+ Bài 1 U Nội dung T 1. #= (2,0 điểm) Để phơng trình (1) có hai nghiệm dơng phân biệt, cần và đủ là: 2 2 ' 4 0 2 0 2 0 m m P S m = > = > = > 0.5 2 2 2 2 0 m m m m < > < < > 1.5 % (3,0 điểm) Phơng trình có 2 nghiệm phân biệt 2 ' 4 0 2 2m m = > < < (*) 0,50 ( ) ( ) 2 3 3 1 2 1 2 1 2 1 2 5 5 3 2 2 x x x x x x x x + = + + = 0,50 2 2 3 3( 2) 5 6 5 0 2 2 m m m m m = + = 0,5 ( ) ( ) 2 1 2,3 1 21 1 5 0 1; 2 m m m m m + = = = m 0,5 Ta có: 2 1 21 3 21 1 21 2 0 2 2 2 2 x + = > = < 3 1 21 0 2 2 x + = > > và 3 3 5 21 2 0 2 2 x x = > < 0,5 Vậy: Có 2 giá trị của m thoả điều kiện bài toán: 1 21 1; 2 m m + = = 0,5 D (3,0 điểm) Phơng trình có hai nghiệm không âm khi và chỉ khi: 2 2 ' 4 0 2 0 2 2 (**) 2 0 m m P m S m = = = > 0,50 10 [...]... (4,0 điểm) Theo giả thi t diện tích của hình vuông có dạng S = abbb = k 2 ( k > 0, k Z) 0,5 1000 k 9999 33 k 99 , nên k chỉ gồm 2 chữ số: k = xy = 10 x + y k 2 = 100 x 2 + 20 xy + y 2 ( 3 x 9;0 y 9 ) 1,0 2 Nếu y lẻ: y = 1;3;5;7;9 y = 1;9; 25; 49;81 b = 1;5;9 Khi đó 2xy có chữ số tận cùng là số chẵn, nên chữ số hàng chục của k 2 phải là số chẵn khác với 1; 5; 9, do đó S không thể là abbb ... 0: k chỉ có thể là 1600; 2500; 3600; 4900; 6400; 8100 không thoả điều kiện bài toán Với y = 2: k 2 = 100 x 2 + 40 x + 4 Khi đó x chỉ có thể là 6 thì chữ số hàng chục của k2 mới là 4, suy ra k 2 = 3600 + 244 = 3844 abbb Với y = 4; 6: y 2 = 16;36 , khi đó 20xy có chữ số hàng chục là số chẵn, nên 0,5 chữ số hàng chục của k2 phải là số lẻ, do đó không thể bằng 4 hoặc 6, 2 nghĩa là k abbb Với y = 8:... hoặc 8 thì chữ số hàng chục của k2 mới bằng 4, suy ra k 2 = 382 = 1444 hoặc k 2 = 882 = 7744 (không thoả điều kiện bài toán) Vậy: bài toán có một lời giải duy nhất: Hình vuông cần xác định có cạnh k = 38 và diện tích S = 1444 0,5 2 2.2 (2,0 điểm) Theo giả thi t, cha của A có thể là B hoặc C: + Nếu B là cha của A thì C không thể song sinh với A, vì nếu nh thế thì C là con của B, trái giả thi t, do đó... tích hình vuông EFGH là: S = EF = 2a + c 3 EFGH là hình vuông, nên EF = EH ( ) 1,0 13 Đề 4 Bài 1: (7 điểm) 3 Giải hệ phơng trình: x4 + 3 = 4 y 4 y + 3 = 4x 4 Chứng minh rằng nếu a, b, c là các số thoả mãn các bất đẳng thức: a2 b2 c2 c2 a2 b2 b2 c2 a2 + + + + + + a +b b+c c+a a +b b+c c+a a +b b+c c +a Thì | a | = | b | = | c | Bài 2: (6 điểm) 3 Xác định hình vuông có độ dài cạnh là số nguyên và... vuông có độ dài cạnh là số nguyên và diện tích cũng là số nguyên gồm 4 chữ số, trong đó các chữ số hàng đơn vị, hàng chục và hàng trăm giống nhau 4 A, B, C là một nhóm ba ngời thân thuộc Cha của A thuộc nhóm đó, cũng vậy con gái của B và ngời song sinh của C cũng ở trong nhóm đó Biết rằng C và ngời song sinh của C là hai ngời khác giới tính và C không phải là con của B Hỏi trong ba ngời A, B, C ai là... suy ra EFGH là hình vuông BH ' 1 = cot g 600 = + Ta có: ; E 'H ' 3 BG ' BH '+ H ' G ' BH ' 1 ã cot g F ' BC = = = +1 = + 1 F 'G ' F 'G ' E 'H ' 3 Suy ra: Tia BF' cố định khi E' di động trên AB, cắt AC tại một điểm F duy nhất Trờng hợp hình vuông E'F'G'H' có đỉnh F' ở trên cạnh AC; G' và H' ở trên cạnh BC, lý luận tơng tự ta cũng có tia CE' cố định, cắt AB tại E Vậy bài toán có một nghiệm hình duy nhất... (gt), nên C là phái nữ Mặt khác, con gái của B không thể là C nên phải là A, do đó A là phái nữ Vậy B khác giới tính với hai ngời còn lại là A và C (cùng là phái nữ) 1,0 16 + Nếu C là cha của A thì C chỉ có thể là song sinh với B, theo giả thi t B phải là phái nữ Mặt khác, con gái của B không thể là C (gt) nên phải là A, suy ra C và B là vợ chồng chứ không phải là song sinh, dẫn đến mâu thuẫn Vậy chỉ... 2,0 12 3.2 + Giả sử đã dựng đợc hình vuông EFGH nội tiếp trong tam giác ABC Nối BF, trên đoạn BF lấy điểm F' Dựng hình chữ nhật: E'F'G'H' ( E ' AB; G ', H ' BC ) Ta có: E'F'//EF và F'G'//FG, nên: E ' F ' BE ' BF ' F ' G ' = = = EF BE BF FG Do đó E'F'G'H' là hình vuông E ' F ' = F 'G ' + Cách dựng và chứng minh: Trên cạnh AB lấy điểm E' tuỳ ý, dựng hình vuông E'F'G'H' (G', H' thuộc cạnh BC) Dựng... thẳng nối 2 tâm O và O2, chính là giao điểm của tia phân giác ã góc BOD với (O) r= 1,0 + Đờng thẳng qua T vuông góc với OT cắt 2 tia OB và OD tại B' và D' là tiếp tuyến chung của (O) và (O 2) Do đó (O2) là đờng tròn nội tiếp OB ' D ' + OB ' D ' có phân giác góc O vừa là đờng cao, nên nó là tam giác vuông cân và B ' D ' = 2OT = 2 R, OB ' = OD ' = R 2 , suy ra: OB ' D ' = ACD R 1+ 2 + Hai hình quạt OBC... hai ngời khác giới tính và C không phải là con của B Hỏi trong ba ngời A, B, C ai là ngời khác giới tính với hai ngời kia ? Bài 3: (7 điểm) Cho đờng tròn (O) tâm O, bán kính R, hai đờng kính AB và CD vuông góc với nhau Đờng tròn (O1) nội tiếp trong tam giác ACD Đờng tròn (O2) tiếp xúc với 2 cạnh OB và OD của tam giác OBD và tiếp xúc trong với đờng tròn (O) Đờng tròn (O3) tiếp xúc với 2 cạnh OB và OC . 1;9;25;49;81 1;5;9y y b= = = . Khi đó 2xy có chữ số tận cùng là số chẵn, nên chữ số hàng chục của 2 k phải là số chẵn khác với 1; 5; 9, do đó S không thể là abbb . 1,0 Nếu y chẵn: 2 0;2;4;6;8. abbb= + = . Với y = 4; 6: 2 16;36y = , khi đó 20xy có chữ số hàng chục là số chẵn, nên chữ số hàng chục của k 2 phải là số lẻ, do đó không thể bằng 4 hoặc 6, nghĩa là 2 k abbb . Với y = 8:. Mỗi tổ gồm có các bạn nam, các bạn nữ. - Số các bạn bạn nam, các bạn nữ được chia đều vào các tổ. - Số người trong mỗi tổ không quá 15 người nhưng cũng không ít hơn chín người. Em hãy tính xem

Ngày đăng: 08/07/2014, 16:00

TỪ KHÓA LIÊN QUAN

w