1.5. pH của dung dịch phản ứng Giá trị pH 8,3 là tối ưu để sản xuất hiệu quả các sản phẩm phiên mã cDNA hoàn chỉnh. Trong quá trình sản xuất các sản phẩm phiên mã, một số đệm đã được thử nghiệm nhưng không tốt hơn đệm Tris.HCl. 2. Tổng hợp sợi cDNA thứ hai Gây biến tính (đun sôi) thể lai mRNA-cDNA để cắt RNA bằng RNase H của E. coli. Thông thường, đầu tận cùng 3’ của các cDNA sợi đơn có khả năng tạo thành các cấu trúc vòng cặp tóc (hairpin loop) 1 và vì thế có thể được sử dụng để làm mồi (primer) cho quá trình tổng hợp sợi cDNA thứ hai bằng DNA polymerase I của E. coli hoặc reverse transcriptase (Hình 6.4). Mặc dù người ta đã dự đoán cấu trúc vòng đôi ở đầu tận cùng của các cDNA và cơ chế phát sinh của chúng, nhưng hiện tượng tổng hợp sợi cDNA thứ hai vẫn chưa được nghiên cứu một cách hệ thống. Tổng hợp sợi cDNA thứ hai bằng DNA polymerase I đã được sử dụng rộng rãi. Đoạn Klenow của DNA polymerase I thiếu hoạt tính exonuclease 5' 3' cũng được sử dụng thành công để tổng hợp sợi cDNA thứ hai. Nhiều tác giả đã sử dụng reverse transcriptase để tổng hợp sợi cDNA thứ hai. Mặc dù có tác giả cho rằng AMV reverse transcriptase không thể dùng để tổng hợp sợi thứ hai của cDNA immunoglobulin, nhưng thành công của nhiều thí nghiệm dùng reverse transcriptase để tổng hợp sợi cDNA thứ hai đã cho thấy việc sử dụng cả hai enzyme đều có thể cho kết quả tốt. DNA polymerase I và reverse transcriptase có thể tạm ngừng hoặc ngừng lại ở các chuỗi khác nhau. Vì vậy, các sợi thứ hai được tổng hợp một cách đặc biệt, chúng được sản xuất nhờ một enzyme và được mở rộng hoàn toàn nhờ một enzyme khác. Hình 6.4. Sơ đồ tổng hợp đoạn cDNA từ khuôn mẫu mRNA 3. Cắt vòng cặp tóc nhờ nuclease S1 Sau khi tổng hợp cDNA hoàn toàn, sợi thứ nhất và thứ hai được liên kết cộng hóa trị bởi vòng cặp tóc và vòng cặp tóc dễ bị cắt bởi nuclease S1. Sau đó, đoạn cDNA được sửa chữa bằng enzyme Klenow, kết quả là hai đầu tận cùng là đầu bằng. Sợi đôi cDNA sau đó được tách thành các tiểu phần theo kích thước và các phân tử lớn nhất được gắn vào các plasmid của vi khuẩn. Hoặc là một tập hợp đầy đủ các kích thước của cDNA sợi đôi được tạo dòng trong bacteriophage để xây dựng thư viện cDNA (cDNA library). Tuy nhiên, việc đưa các đầu bằng vào vector sẽ gây khó khăn trong việc lấy chúng ra khỏi vector một cách nguyên vẹn sau này. Do đó các linker thường được nối vào hai đầu của các cDNA nhờ DNA ligase. Linker là những đoạn nucleotide ngắn có chứa vị trí nhận biết của một loại RE (ví dụ: EcoRI) được tổng hợp nhân tạo tương ứng với vị trí nhận biết RE (ví dụ: EcoRI) của vector. Sau đó, các cDNA mang linker và vector sẽ được cắt bởi cùng một enzyme (ví dụ: EcoRI). Nhờ đó các cDNA và vector đều có đầu sole tương đồng (đầu dính) và cDNA sẽ dễ dàng gắn cũng như lấy ra khỏi vector một cách nguyên vẹn. III. Tạo dòng phân tử của cDNA sợi đôi Có nhiều phương pháp khác nhau được dùng để liên kết cDNA sợi đôi với các plasmid vector. Đa số được dùng theo các phương pháp sau: - Bổ sung các đuôi đồng trùng hợp (homopolymetric tailing) cho cDNA sợi đôi và cho DNA của plasmid vector. DNA vector và cDNA sau đó được nối bằng liên kết hydrogen giữa các đuôi đồng trùng hợp bổ sung. Sự tạo thành vòng DNA đóng bằng enzyme gắn in vitro (DNA ligase) là cần thiết để hình thành nên các plasmid tái tổ hợp trong E. coli. - Bổ sung các đoạn nối nhân tạo (synthetic linkers) cho đầu tận cùng của DNA sợi đôi. Sau khi phân cắt bằng RE thích hợp, các phân tử DNA được chuyển vào trong plasmid DNA cũng đã được cắt với cùng một enzyme. 1. Đuôi đồng trùng hợp 1.1. Đuôi dA:dT Enzyme terminal transferase xúc tác cho sự bổ sung của các deoxyrinucleotide triphosphate (dNTP) vào đầu 3’-OH của DNA sợi đôi hoặc sợi đơn, được dùng để đưa DNA tái tổ hợp vào trong E. coli bằng cách nối dA:dT. Thông thường từ 50-150 gốc dA được bổ sung vào vector DNA và một số tương ứng của các gốc dT vào cDNA sợi đôi, cDNA sợi đôi được đưa vào trong các plasmid vector qua phương thức nối dA:dT. Tuy nhiên, đuôi đồng trùng hợp dA:dT ít khi được dùng để tạo dòng cDNA, lý do chính là không có phương thức thích hợp để cắt cDNA gắn trong plasmid nhờ đuôi dA:dT. 1.2. Đuôi dC:dG Phương pháp được sử dụng rộng rãi hơn để tạo dòng các cDNA bằng đuôi đồng trùng hợp đòi hỏi bổ sung các đuôi dC cho cDNA sợi đôi và các đuôi dG được bổ sung vào plasmid vector đã được cắt hạn chế bằng PstI. Enzyme PstI cắt chuỗi 5’…CTGCAG…3’ tạo ra đầu 3’ tận cùng là cơ chất lý tưởng cho việc bổ sung các đuôi đồng trùng hợp. Các dòng cDNA mang các đuôi dC:dG có thể dễ dàng tách ra khỏi plasmid bằng cách thủy phân nhờ PstI (Hình 6.5). Số lượng các gốc dA:dT và dC:dG cần thiết để cho hiệu suất gắn tối thích cDNA vào plasmid vector đã được xác định, số lượng các gốc trên plasmid và cDNA phải xấp xỉ nhau, với khoảng 100 gốc được bổ sung tới mỗi DNA để nối dA:dT và khoảng 20 gốc để nối dC:dG. 2. Các linker và adapter nhân tạo Các linker chứa một hoặc nhiều vị trí cắt hạn chế cho phép nối cDNA sợi đôi với các plasmid vector hoặc bacteriophage vector. cDNA sợi đôi được xử lý với DNA polymerase của bacteriophage T4 hoặc DNA polymerase I của E. coli, các enzyme này loại bỏ đầu tận cùng 3’ sợi đơn so le bằng hoạt tính exonuclease 3’ 5’ và lấp đầy các đầu tận cùng 3’-OH bị khuyết bằng hoạt tính trùng hợp (polymerization). Sự phối hợp của các hoạt tính này đã tạo ra các phân tử DNA đầu bằng, sau đó các cDNA này được ủ với một số lượng lớn các phân tử linker với sự có mặt của bacteriophage T4 DNA ligase (enzyme xúc tác cho quá trình gắn của các phân tử DNA đầu lồi với linker) (Hình 6.6). Hình 6.5. Tạo dòng cDNA sợi đôi bằng đuôi đồng trùng hợp dG:dC. Enzyme terminal transferase có hoạt tính tạo nhóm homopolymer ở đầu 3’-OH của DNA sợi đôi làm lồi ra một đầu ở cuối cơ chất của nó là DNA sợi đơn. . các kích thước của cDNA sợi đôi được tạo dòng trong bacteriophage để xây dựng thư viện cDNA (cDNA library). Tuy nhiên, việc đưa các đầu bằng vào vector sẽ gây khó khăn trong việc lấy chúng. (homopolymetric tailing) cho cDNA sợi đôi và cho DNA của plasmid vector. DNA vector và cDNA sau đó được nối bằng liên kết hydrogen giữa các đuôi đồng trùng hợp bổ sung. Sự tạo thành vòng DNA đóng bằng enzyme. hiện tượng tổng hợp sợi cDNA thứ hai vẫn chưa được nghiên cứu một cách hệ thống. Tổng hợp sợi cDNA thứ hai bằng DNA polymerase I đã được sử dụng rộng rãi. Đoạn Klenow của DNA polymerase I thiếu