Hình 6.6. Minh họa một linker. (a) Đoạn 5’-CCGGATCCGG-3’ mang vị trí nhận biết cho BamHI. (b) Linker này được gắn vào cDNA đầu bằng nhờ DNA ligase. (c) Cấu trúc này sau đó được cắt bằng BamHI để tạo ra đầu 5’ lồi. Các phân tử DNA sợi đôi mang các đầu kết dính nhân tạo được cắt ở vị trí cắt hạn chế trong linker, tinh sạch, và sau đó gắn với vector cũng được cắt bằng RE tương ứng tạo ra các đầu dính tương đồng với các đầu của linker. Có thể hạn chế sự tái tạo lại vòng của plasmid vector (không tái tổ hợp) bằng cách xử lý các vector được cắt bằng enzyme phosphatase (calf intestinal alkaline phosphatase-CIAP) trước khi thực hiện phản ứng gắn với cDNA. Việc sử dụng adapter có hiệu quả hơn linker. Các adapter có kích thước ngắn, là các oligonucleotide sợi đôi mang một đầu bằng (để gắn với cDNA sợi đôi) và một đầu tận cùng kết dính (để gắn với đầu tận cùng tương ứng trong vector). Không giống như linker, các adapter không đòi hỏi phải cắt bằng các RE sau khi chúng được gắn với cDNA sợi đôi. Tuy nhiên, các phân tử cDNA mang các adapter được phosphoryl hóa (phosphorylation) có thể tạo thành các phân tử mạch vòng đóng bằng liên kết cộng hóa trị (dạng không thể tạo dòng) hoặc các phân tử mạch thẳng dạng khảm (dạng hoàn toàn không mong muốn) trong suốt phản ứng gắn tuần tự với sự có mặt của vector DNA đã được dephosphoryl hóa (Hình 6.7). Hình 6.7. Minh họa một adapter. (a) Adapter, có đầu tận cùng 5’ tương ứng với enzyme HindIII, được gắn vào cDNA đầu bằng nhờ DNA ligase. (b) Đầu 5’ của adapter có thể được dephosphoryl hóa để ngăn cản sự tự kết nối lại. Khi nối các linker hoặc adapter với các phân tử cDNA sợi đôi đầu bằng, phản ứng gắn cần được tiến hành trong một dung tích tối thiểu (để duy trì một nồng độ cao của linker/adapter). Nồng độ phân tử của linker/adapter phải lớn hơn nồng độ của đầu tận cùng của cDNA ít nhất là 100 lần. Cuối cùng, trước khi đoạn cDNA được gắn vào vector, các adapter không có phản ứng và các sản phẩm có trọng lượng phân tử thấp (do phản ứng cắt hạn chế tạo ra) cần được loại bỏ bằng sắc ký cột, điện di agarose hoặc polyacrylamide gel. IV. Các phương pháp tạo dòng cDNA khác 1. Tạo dòng mRNA-cDNA Một phương pháp khác để tạo dòng cDNA là biến nạp vào E. coli các thể lai mRNA-cDNA đã được gắn với các plasmid vector. Các vi khuẩn vật chủ loại bỏ mRNA và thay thế nó bằng DNA. Sau khi sợi cDNA đầu tiên được tổng hợp theo cách thông thường, các gốc dA được bổ sung cho thể lai mRNA-cDNA sau đó được ủ với plasmid mang các đuôi dT. Do đầu tận cùng 3’-OH của RNA kém ít nhất 10 lần trong phản ứng tương đồng với DNA nên hầu hết các gốc dA được bổ sung cho thể lai đều phối hợp ở đầu 3’ của DNA. Việc nối các đầu khác của thể lai với vector có khả năng thành công do mối liên kết hydrogen giữa poly(A) tự nhiên ở đầu 3’ của mRNA và plasmid có đuôi dT. Phương pháp này có một số thuận lợi sau: - Không cần tổng hợp sợi cDNA thứ hai. - Cắt vòng cặp tóc DNA bằng nuclease S1 là không cần thiết. Tuy nhiên, hạn chế của phương pháp này là có hiệu quả kém ít nhất 10 lần so với phương pháp tạo dòng cDNA sợi đôi và vì thế không thích hợp cho việc xây dựng một số lượng lớn các dòng cDNA. 2. Bổ sung tuần tự các linker khác nhau cDNA sợi đôi, được tổng hợp bằng cơ chế tự mồi (self-priming), được gắn vào một loại linker nhân tạo trước khi vòng cặp tóc trong cDNA bị cắt. Vì thế, các linker chỉ được bổ sung ở một đầu của cDNA sợi đôi (đầu tương ứng với đầu tận cùng 3’ của mRNA). Sau đó cDNA được tinh sạch khỏi các linker thừa, vòng cặp tóc được cắt bằng nuclease S1 và sửa chữa bằng đoạn Klenow của DNA polymerase I của E. coli trước khi loại linker thứ hai được gắn vào cDNA. Các linker này sẽ được gắn vào cả hai đầu của cDNA. cDNA được gắn linker kép sau đó được xử lý với các RE thích hợp và gắn vào trong vector bằng phương pháp tạo dòng định hướng (Hình 6.8). Phương pháp này được dùng để gắn cDNA theo hướng chính xác của các promoter cho phép biểu hiện các đoạn chèn (inserted sequences) trong vi khuẩn. Các bacteriophage vector cho phép tạo dòng định hướng cũng đã được phát triển trong thời gian gần đây. 3. Tạo dòng cDNA bằng các primer-adapter Ngày nay, việc sản xuất dễ dàng các oligonucleotide primer của các trình tự xác định đã cho phép phát triển các phương pháp tạo dòng sử dụng primer-adapter chứa một vùng của DNA đồng trùng hợp ở đầu tận cùng 3’ và một vị trí cắt hạn chế ở đầu tận cùng 5’. Các chuỗi đồng trùng hợp được dùng làm mồi để tổng hợp sợi thứ nhất và sợi thứ hai của cDNA, và các vị trí cắt hạn chế bên cạnh được sử dụng để đưa các phân tử cDNA sợi đôi cuối cùng vào trong một vector thích hợp. Trong mô hình đơn giản nhất, phương pháp này cho phép các cDNA được tạo dòng với hiệu suất cao (Hình 6.9). Hình 6.8. Tạo dòng cDNA bằng cách bổ sung tuần tự các linker nhân tạo. Đoạn Klenow tạo đầu bằng cho cDNA sợi đôi và enzyme nuclease S1 cắt vòng cặp tóc. Các linker thứ nhất và thứ hai được gắn tuần tự vào hai đầu của cDNA, sau đó đoạn cDNA này sẽ được cắt cùng enzyme hạn chế với vector tạo dòng có vị trí nhận biết trên hai linker nhân tạo. Cuối cùng, đoạn cDNA có hai đầu tương đồng được gắn với vector và biến nạp vào E. coli. Hình 6.9. Tổng hợp cDNA sợi đôi bằng phương pháp primer-adapter Đoạn cDNA được tổng hợp theo phương pháp trên khi gắn vào trong các vector biểu hiện như gt20 và gt22 chỉ có 1/6 cơ hội biểu hiện trong vi khuẩn, lý do: chỉ một nửa các phân tử cDNA được đưa vào trong vector theo hướng chính xác đối với promoter lacZ, và chỉ một trong ba phân tử được gắn ở hướng phải sẽ ở trong khung đọc chính xác để sản xuất protein hợp nhất. V. Các bacteriophage vector dùng trong tạo dòng cDNA 1. Các bacteriophage vector được dùng phổ biến Hai loại vector biểu hiện của bacteriophage thường dùng để xây dựng thư viện cDNA là gt10 và gt11. Vector gt10 dùng để xây dựng các thư viện chỉ được sàng lọc bằng các mẫu dò nucleic acid, trong khi vector gt11 dùng để xây dựng các thư viện được sàng lọc bằng các . cDNA sợi đôi cuối cùng vào trong một vector thích hợp. Trong mô hình đơn giản nhất, phương pháp này cho phép các cDNA được tạo dòng với hiệu suất cao (Hình 6.9). Hình 6.8. Tạo dòng cDNA. gel. IV. Các phương pháp tạo dòng cDNA khác 1. Tạo dòng mRNA-cDNA Một phương pháp khác để tạo dòng cDNA là biến nạp vào E. coli các thể lai mRNA-cDNA đã được gắn với các plasmid vector 10 lần trong phản ứng tương đồng với DNA nên hầu hết các gốc dA được bổ sung cho thể lai đều phối hợp ở đầu 3’ của DNA. Việc nối các đầu khác của thể lai với vector có khả năng thành công do