1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Hộp Điện Trong Công Nghệ DNA part 10 docx

5 384 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 228,44 KB

Nội dung

- Ứng dụng chính + Loại bỏ RNA trong các chế phẩm DNA hay protein. + Loại bỏ các vùng không bắt cặp trên RNA trong thể lai RNA:DNA. 5. RNase H Enzyme RNase H là một loại ribonuclease có khả năng cắt liên kết 3’-O-P của RNA trong sợi đôi của thể lai DNA:RNA để tạo ra các sản phẩm có đầu tận cùng 3’-OH và 5’-PO 4 . RNase H là một endonuclease không đặc hiệu, xúc tác cắt RNA thông qua cơ chế thủy phân nhờ một ion kim loại hóa trị 2 liên kết với enzyme. Trong tạo dòng phân tử, RNase H xúc tác cắt đặc hiệu RNA trong thể lại RNA:DNA mà không cắt DNA hoặc RNA không ở trong thể lai, enzyme này thường được dùng để phá hủy khuôn mẫu RNA sau khi tổng hợp sợi cDNA thứ nhất bằng phiên mã ngược, để tiếp tục tổng hợp sợi cDNA thứ hai tạo thành một sợi đôi cDNA. V. Các protein liên kết DNA sợi đơn Các protein liên kết DNA sợi đơn (single stranded DNA-binding proteins, SSB) kết hợp với DNA sợi đơn nhưng không kết hợp với DNA sợi đôi. Chúng được xem như là các chất phản ứng trong tạo dòng phân tử xuất phát từ chỗ chúng có khả năng phá vỡ sự ổn định của các cấu trúc thứ cấp bên trong sợi nucleotide; tăng nhanh sự tái ủ của các polynucleotide bổ sung và tăng hoạt tính của các enzyme DNA polymerase bằng cách loại bỏ các cấu trúc thứ cấp bên trong sợi là những yếu tố ngăn cản sự tiến triển của các enzyme này. Nhờ tính chất này, các protein SSB trở thành các chất phản ứng hữu ích trong xác định trình tự DNA. - Ứng dụng chính + Phát sinh đột biến điểm trực tiếp bao gồm D-loops. + Tăng chiều dài chuỗi của sản phẩm trong mọi phản ứng được xúc tác bởi DNA polymerase trên các khuôn mẫu dài. Các protein SSB đặc biệt có thể kích thích các DNA polymerase đặc hiệu dùng trong các phản ứng phân tích trình tự chuỗi DNA. Tài liệu tham khảo/đọc thêm 1. Hồ Huỳnh Thùy Dương. 1998. Sinh học phân tử. NXB Giáo dục, Hà Nội. 2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA and Struhl K. 2002. Short Protocol in Molecular Biology. Vol 1 and 2. 5 th ed. John Wiley & Sons, Inc. USA. 3. Brown TA. 2001. Gene Cloning-An Introduction. 4 th ed. Blackwell Science, Oxford, UK. 4. Glick BR and Pasternak JJ. 2003. Molecular Biotechnology: Principles and Applications of Recombinant DNA. 3 rd ed. ASM Press, USA. 5. Maniatis T, Fritsch EF and Sambrook J. 1989. Molecular Cloning-A Laboratory Manual. Cold Spring Habor Laboratory Press, USA. 6. Ohman DE. 1989. Experiments in Gene Manipulation. Prentice Hall, Englewood Cliffs, New Jersey, USA. 7. Primrose SB, Twyman R and Old RW. 2001. Principles of Gene Manipulation. 6 th ed. Blackwell Science, Oxford, UK. Chương 2 Điện di gel I. Nguyên lý chung Điện di là kỹ thuật được dùng để phân tách và một đôi khi để tinh sạch các đại phân tử-đặc biệt là các protein và các nucleic acid-trên cơ sở kích thước/khối lượng, điện tích và cấu hình của chúng. Khi các phân tử tích điện được đặt trong một điện trường, chúng sẽ dịch chuyển hướng đến cực dương (+) hoặc cực âm (-) tùy theo điện tích của chúng. Ngược với protein, loại phân tử có điện tích thực hoặc dương hoặc âm, các nucleic acid có một điện tích âm không đổi nhờ khung phosphate của mình, và vì thế chỉ dịch chuyển hướng đến cực dương. Các phân tử protein và nucleic acid có thể được chạy điện di trên một khuôn đỡ (support matrix) như giấy, cellulose acetate, gel tinh bột, agarose hoặc polyacrylamide gel. Trong đó gel của agarose và polyacrylamide được sử dụng phổ biến nhất. Thông thường, gel là một khuôn đúc dạng phiến mỏng có các giếng để nạp (loading) mẫu. Gel được ngâm trong đệm điện di cung cấp các ion để dẫn truyền dòng điện và một vài loại đệm để duy trì pH ở một giá trị không đổi tương đối. II. Điện di agarose gel Agarose (polysaccharide) có khối lượng phân tử xấp xỉ 120.000 Da (Hình 2.1) là một trong hai thành phần chính của agar 1 chiếm khoảng 70%, phần kia là agaropectin chiếm khoảng 30%. Agarose là một polymer mạch thẳng không bị sulphate hóa chứa hai gốc xen kẽ nhau là D-galactose và 3,6-anhydro-L-galactose. Agarose gel là một chất trong suốt (transparent) hoặc trong mờ (transluent) giống như agar, được tạo thành khi hỗn hợp agarose và nước (hoặc đệm điện di) được đun nóng tới >100 o C và sau đó được làm lạnh; dạng gel xuất hiện ở khoảng 40- 45 o C. Agarose gel được ứng dụng rộng rãi để làm giá thể cho các nucleic acid trong kỹ thuật điện di ngang (horizontal electrophoresis) hoặc làm giá thể cho môi trường nuôi cấy bacteriophage (top agarose). Hình 2.1. Cấu trúc phân tử của agarose. Đơn vị agarobiose (ví dụ: hai phân tử đường) là một monomer trong agarose polymer. Có khoảng 400 monomer trên một chuỗi polymer. Các phân tử nucleic acid có khối lượng và điện tích khác nhau được tách ra khi di chuyển từ cực âm sang cực dương của hệ điện di trong một điện trường có điện thế và cường độ thích hợp. Kỹ thuật này đơn giản và thực hiện nhanh. Hơn nữa, vị trí của DNA trong gel được xác định trực tiếp: các băng DNA trong gel được nhuộm ở nồng độ thấp của thuốc nhuộm huỳnh quang ethidium bromide (EtBr) và có thể phát hiện dưới ánh sáng tử ngoại (ultraviolet-UV). Điện di agarose gel được sử dụng trong các trường hợp sau: - Ước lượng kích thước của các phân tử DNA sau khi thực hiện phản ứng cắt hạn chế (ví dụ: lập bản đồ hạn chế của DNA được tạo dòng…). - Phân tích các sản phẩm PCR (ví dụ: trong chẩn đoán di truyền phân tử hoặc in dấu di truyền…). - Phân tách DNA hệ gen đã được cắt hạn chế trước khi thẩm tích Southern, hoặc RNA trước khi thẩm tích Northern. Ưu điểm của phương pháp này là gel được rót dễ dàng, không gây biến tính mẫu, và bền vững vật lý hơn polyacrylamide. Mẫu cũng dễ thu hồi. Nhược điểm là agarose gel có thể bị nóng chảy trong quá trình điện di, đệm có thể bị tiêu hao, và các dạng khác nhau của nucleic acid có thể chạy không ổn định. 1. Các yếu tố ảnh hưởng đến tốc độ dịch chuyển điện di trong agarose gel 1.1. Kích thước của phân tử Các phân tử DNA mạch thẳng sợi đôi đi qua bản gel ở các tốc độ tỷ lệ nghịch với hàm log 10 của khối lượng phân tử của chúng (Hình 2.2). Do đó, các phân tử DNA có kích thước càng lớn (khối lượng phân tử lớn) thì tốc độ dịch chuyển càng chậm. Hình 2.2. Mối quan hệ giữa kích thước DNA và độ linh động điện di của nó 1.2. Nồng độ agarose Đoạn DNA mang kích thước nhất định sẽ dịch chuyển ở các tốc độ khác nhau qua các bản gel chứa các nồng độ agarose khác nhau. Mối quan hệ tuyến tính giữa hàm logarithm của độ linh động điện di của DNA () và nồng độ gel () được biểu diễn bằng biểu thức: Trong đó  o : độ linh động điện di tự do. K r : hệ số trì hoãn điện di (retardation), được thiết lập thông qua mối liên quan giữa các tính chất của gel với hình dạng và kích thước của các phân tử dịch chuyển. Như vậy, dùng gel ở các nồng độ khác nhau có thể phân tách được các đoạn DNA có kích thước khác nhau (Bảng 2.1). Nồng độ agarose cao có khả năng phân tách các đoạn DNA nhỏ, trong khi đó nồng độ agarose thấp lại cho phép phân tách các đoạn DNA lớn hơn. Bảng 2.1. Các thông số điện di DNA bằng agarose gel Hình 2.3 minh họa sự dịch chuyển của tập hợp các đoạn DNA trong hai mẫu ở ba nồng độ khác nhau của agarose, tất cả chúng ở trong một khay gel và được điện di ở cùng một điện áp (voltage) trong một thời gian xác định. . của hệ điện di trong một điện trường có điện thế và cường độ thích hợp. Kỹ thuật này đơn giản và thực hiện nhanh. Hơn nữa, vị trí của DNA trong gel được xác định trực tiếp: các băng DNA trong. số điện di DNA bằng agarose gel Hình 2.3 minh họa sự dịch chuyển của tập hợp các đoạn DNA trong hai mẫu ở ba nồng độ khác nhau của agarose, tất cả chúng ở trong một khay gel và được điện. thước/khối lượng, điện tích và cấu hình của chúng. Khi các phân tử tích điện được đặt trong một điện trường, chúng sẽ dịch chuyển hướng đến cực dương (+) hoặc cực âm (-) tùy theo điện tích của

Ngày đăng: 08/07/2014, 14:20

TỪ KHÓA LIÊN QUAN