1. Trang chủ
  2. » Giáo án - Bài giảng

De thi thu DH Vinh- Lan 2- 2010

2 314 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 81 KB

Nội dung

ĐỀ THI THỬ ĐẠI HỌC LẦN 2 TRƯỜNG THPT CHUYÊN ĐẠI HỌC VINH NĂM 2010 Môn thi: Toán Thời gian làm bài: 180 phút A. PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7,0 điểm) Câu I ( 2,0 điểm) Cho hàm số có đồ thị , là tham số. 1. Khảo sát sự biến thiên và vẻ đồ thị hàm số tại . 2. Tìm để trên có hai điểm phân biệt thỏa mãn và tiếp tuyến của tại hai điểm đó vuông góc với đường thẳng . Câu II (2,0 điểm) 1. Giải phương trình . 2. Giải hệ phương trình: . Câu III (1,0 điểm) Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường sau quanh Câu IV (1,0 điểm) Cho hình lăng trụ có , khoảng cách giữa hai đường thẳng và là . Tính thể tích khối lăng trụ theo . Câu V (1,0 điểm) Cho các số thực không âm thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức: B.PHẦN RIÊNG ( 3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần a. Theo chương trình chuẩn Câu VIa. (2,0 điểm) 1. Trong mặt phẳng hệ tọa độ cho elip có hai tiêu điểm lần lượt nằm bên trái và bên phải trục tung. Tìm tọa độ điểm trên elip sao cho đạt giá trị nhỏ nhất. 2.Trong không gian cho đường thẳng và hai mặt phẳng . Viết phương trình mặt cầu có tâm thuộc , tiếp xúc với và cắt theo đường tròn chu vi bằng . Câu VIIa (1,0 điểm) Giả sử là hai số phức thỏa mãn phương trình và . Tính b. Theo chương trình nâng cao Câu VIb (2,0 điểm) 1. Trong mặt phẳng cho parabol . Lập phương trình đường thẳng đi qua tiêu điểm của và cắt tại có . 2.Trong không gian , cho mặt phẳng , đường thẳng và đường thẳng là giao tuyến của hai mặt phẳng . Viết phương trình mặt cầu có tâm thuộc đồng thời tiếp xúc với và . Câu VIIb (1,0 điểm) Tìm số phức thỏa mãn và có một argument là . . ĐỀ THI THỬ ĐẠI HỌC LẦN 2 TRƯỜNG THPT CHUYÊN ĐẠI HỌC VINH NĂM 2010 Môn thi: Toán Thời gian làm bài: 180 phút A. PHẦN CHUNG CHO TẤT CẢ. THÍ SINH ( 7,0 điểm) Câu I ( 2,0 điểm) Cho hàm số có đồ thị , là tham số. 1. Khảo sát sự biến thi n và vẻ đồ thị hàm số tại . 2. Tìm để trên có hai điểm phân biệt thỏa mãn và tiếp tuyến của. nhất. 2.Trong không gian cho đường thẳng và hai mặt phẳng . Viết phương trình mặt cầu có tâm thu c , tiếp xúc với và cắt theo đường tròn chu vi bằng . Câu VIIa (1,0 điểm) Giả sử là hai số phức

Ngày đăng: 08/07/2014, 02:00

TỪ KHÓA LIÊN QUAN

w