Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 54 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
54
Dung lượng
1,62 MB
Nội dung
MỘT SỐ ĐÊÀ KIỂM TRA HỌC KÌ II MÔN: TOÁN 9 (thời gian: 90 phút) *ĐỀ 1* A/ Trắc nghiệm : Câu 1: Với x > 0 . Hàm số y = (m 2 +3) x 2 đồng biến khi m : A. m > 0 B. m ≤ 0 C. m < 0 D .Với mọi m ∈ ¡ Câu 2: Điểm M (-1;- 2) thuộc đồ thò hàm số y= ax 2 khi a bằng : A. a =2 B a = -2 C. a = 4 D a =-4 Câu 3: Giá trò của m để phương trình x 2 – 4mx + 11 = 0 có nghiệm kép là : A. m = 11 B . 11 2 C. m = ± 11 2 D. m = − 11 2 Câu 4 :Hệ phương trình có tập nghiệm là : A. S = ∅ B . S = ¡ C. S = D. S = Câu 5: Cho Ax là tiếp tuyến của (O) và dây AB biết · xAB = 70 0 . khi đó là : A.70 0 B. 140 0 C. 35 0 D . 90 0 Câu 6 : Diện tích hình quạt tròn co 4ùbán kính R ,số đo cung là 60 0 là : A. B. πR 2 C . D. B/ Tự luận : Bài 1:Cho biĨu thøc : 3 1 1 1 1 x x P x x x x x − = − − + + − − − ( x > 1) a) Rót gän biĨu thøc P. b) T×m gi¸ tri cđa x khi P= 1 Bài 2 :Cho phương trình : x 2 – (2m+1).x +m(m+1)=0 a/ Tìm m để phương trình có hai nghiệm phân biệt b/ Tìm m để phương trình có hai nghiệm trái dấu c/ Tìm m để phương trình có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia Bài 2 : 1/ Vẽ đồ thò hàm số y= 1 2 x 2 (P) 2/ Gọi A và B là hai điểm nằm trên (P) có hoành độ là 1 và 2. Chứng minh ba điểm A;B;O thẳng hàng 1 Bài 3 :Cho nửa đường tròn đường kính AB=2R. kẻ tiếp tuyến Ax với nửa đường tròn .C là một điểm trên nửa đường tròn sao cho cung AC bằng cung CB .Trên cung AC lấy điểm D tuỳ ý (D khác A và C).các tia BC,BD cắt Axx lần lượt tại E và F. a/ C.m ∆BAE vuông cân b/C/m tứ giác ECDF nội tiếp c/ Cho C đi động trên nửa đường tròn (C khác A và B ) và D di động trên cung AC (D khác A và C) C/m BC.BE+BD.BF có giá trò không đổi 2 * ĐỀ 2* A/ Trắc nghiệm : Câu 1 : Điểm M ( -2,5 ; 0) thuộc đồ thò hàm số nào sau đây : A. y = x 2 B. y = x 2 C. y = 5x 2 D. Không thuộc cả ba hàm số trên Câu 2: Cho phương trình 5x 2 – 7x + 13 = 0 . Khi đó tổng và tích hai nghiệm là : A. S = - ; P = B. S = ; P = - C. S = ; P = D. KQkhác Câu 3: Cho hàm số y = 2x 2 .Kết luận nào sau đây đúng: A.Hàm số đồng biến trên R. B. Hàm số nghòch biến trên R C. Hàm số đồng biến khi x < 0 và nghòch biến khi x > 0. D. Hàm số đồng biến khi x > 0 và nghòch biến khi x < 0. Câu 4: Cặp số nào sau đây là nghiệm của hệ phương trình: a. ( 0;– ) b. ( 2; – ) c. (0; ) d. ( 1;0 ) Câu 5:Hình nón có đường kính đáy bằng 24cm; chiều cao bằng16cm.Diện tích xung quanh hình nón bằng: A. 120 π (cm 2 ) B. 140 π (cm 2 ) C. 240 π (cm 2 ) D.Kết quả khác Câu 6 : Hai tiếp tuyến tại A và B của đường tròn (O;R) cắt nhau tại M . Nếu MA = R 3 thì góc ở tâm · AOB bằng : A. 120 0 B. 90 0 C. 60 0 D.45 0 B/ Tự luận : Bài 1 : 1/ Cho phương trình ; x 2 – 9x+ 20 =0 Không giải phương trình hãy tính : a/ x 1 2 + x 2 2 b/ (x 1 - x 2 ) 2 c/ 1 2 1 1 x x + 2/ Cho h m sà ố y= ( m-1) .x 2 ( P) a/ Với giá trị nào của m thì hàm số (P)đồng biến ; nghịch biến : b/Tìm giá trị của m để hàm số (P) đi qua (-2;1).Vẽ đồ thò hàm số với m vừa tìm được 3 Baứi 2 : Mt lp cú 40 hc sinh c xp ngi u trờn tt c cỏc bn (s hc sinh mi bn bng nhau ).Nu ly i hai bn thỡ mi bn cũn li phi xp thờm mt hc sinh mi ch .Tớnh s bn lỳc ban u ca lp . Baứi 3 : Cho ABC cú 3 gúc nhn .V (O) ng kớnh BC ct AB ti E v ct AC ti F. a/BF,CE v ng cao AK ca tam giỏc ABC ng quy ti H b/C/m : BH.HF=HC.HE c/Chng t 4 im : B;K;H;E cựng nm trờn mt ng trũn t ú suy ra EC l phõn giỏc ca ã KEF * 3* A/ Traộc nghieọm : 4 Câu 1: Phương trình nào dưới đây có thể kết hợp với phương trình 1x y+ = để được một hệ phương trình có nghiệm duy nhất: a. 1x y+ = − b. 0 1x y+ = c. 2 2 2y x= − d. 3 3 3y x= − + Câu2 : Cho hàm số 2 2 3 y x= , kết luận nào sau đây là đúng? a. 0y = là giá trò lớn nhất của hàm số trên. b. 0y = là giá trò nhỏ nhất của hàm số trên. c. Không xác đònh được giá trò lớn nhất của hàm số trên. d. Không xác đònh được giá trò nhỏ nhất của hàm số trên. Câu3: Biệt thức ' ∆ của phương trình 2 4 6 1 0x x− − = là: a. 5 b. –2 c. 4 d. –4 Câu 4: Tổng hai nghiệm của phương trình: 2 2 5 3 0x x− − = là: a. 5 2 b. – 5 2 c. – 3 2 d. 3 2 Câu 5 : Cho đường tròn tâm O bán kính R có góc ở tâm · MON bằng 60 0 . Khi đó độ dài cung nhỏ MN bằng : A. 3 R π B. 2 3 R π C. 6 R π D. 4 R π Câu 6: Một hình nón có bán kính đáy là 5cm , chiều cao bằng 12cm . Khi đó diện tích xung quanh bằng : A. 60πcm 2 B. 300πcm 2 C. 17πcm 2 D. 65πc B/Tự luận ; Bài 1 :Cho phương trình : x 2 – 2x + 2m – 1 =0 . Tìm m để a/ Phương trình vơ nghiệm b/ phương trình có nghiệm c/ Phương trình có một nghiệm bằng -1 .Tìm nghiệm còn lại Bài 2 :Cho hệ phương trình : 2 1 x ay ax y + = − = • Giải hệ phương trình với a= 2 • Tìm giá trị của a để hệ phương trình có nghiệm x>0 và y>0 Bài 3 : Cho nửa đường tròn tâm O đường kính BC=2a và một điểm A nằm trên nửa đường tròn sao cho AB=a, M là điểm trên cung nhỏ AC ,BM cắt AC tại I.Tia BA cắt CM tại D. a/ C/m ∆AOB đều b/Tứ giác AIMD nội tiếp đường tròn, xác định tâm K của đường tròn ngoại tiếp tứ giác đó c/ Tính · ADI 5 d/ Cho · ABM = 45 0 . Tính độ dài cung AI và diện tích hình quạt AKI của đường tròn tâm K theo a * Đề 4 * 6 I/ Phần trắc nghiệm(2điểm , mỗi câu 0.5 điểm) Chọn đáp án đúng trong các câu sau 1) Cho phơng trình:2x - y=1(*). Phơng trình nào dới đây kết hợp với phơng trình (*) để đợc hệ phơng trình vô nghiệm: A)x - y = 3 ; B)2x - 2y = 1: C) 6x = 3y + 3; D) 4x -2y = -2 2) Cho phơng trình:-x 2 - 6x - (1 - m ) = 0 Để phơng trình có 2 nghiệm trái dấu thì m có giá trị là: A/ 1 > m ; B/m > 1 : C/ m 1 ; D/ m 1 3)cho hình vẽ bên, biết AB là đờng kính, Góc ã APQ =60 0 . Số đo độ của góc BAQ bằng: A/30 0 ;B/ 20 0 ;C/ 60 0 ;D/ 75 0 4)Hình nào sau đây nối tiếp đợc đờng tròn: A/ Hình thoi có 1 góc tù. B/ Hình bình hành thờng C/ Hình thang thờng. D/ Hình chữ nhật. II.Phần tự luận: (8 điểm) Bài 1 (2 điểm). Cho biểu thức: A= x x x 4 x 2 x 5 : x 2 x 2 x x 4 x 2 x 8 + + ữ ữ + + a)Rút gọn biểu thức A. ( 1,5 điểm ) b)Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên. ( 0,5 điểm ) Bài 2 (2 điểm) Giải bài toàn bằng cách lập phơng trình: Một tổ công nhân đợc giao kế hoạch làm 800 sản phẩm. Thực tế tổ đó đã làm vợt mức 20 sản phẩm mỗi ngày nên đã hoàn thành kế hoạch trớc thời hạn hai ngày. Tình số sản phẩm tổ đó phải làm mỗi ngày theo kế hoạch ? Bài 3(4 điểm): Cho tứ giác ABCD nội tiếp đờng tròn (O,R), cạnh AB cố định. M là điểm chính giữa cung AB(Không chứa D,C).Tia CM cắt AB tại K và cắt tia DA tại E. Tia DM cắt AB tại Q và cắt tia CB tại F. a) Chứng minh: tứ giác DQKC nội tiếp b) Chứng minh: hệ thức: MB 2 =MK.MC c) Chứng minh: EF // AB d) Chứng minh: Khi điểm C di động trên cung AB (không chứa M) thì tâm của hai đờng tròn ngoại tiếp 2 tam giác ABC và BKC chạy trên 2 đoạn thẳng cố định. * 5 * B i 1 : (2) a) Gii phng trỡnh x 4 +x 2 -20 = 0 7 A P B Q b) Giải hệ phương trình =+− −= 024 2 1 yx y x Bài 2: (2đ) a) Trên mặt phẳng toạ độ Oxy,vẽ đồ thị củầ h/s số 2 1 −=y b) Gọi x 1 và x 2 là 2 nghiệm của phương trình bậc hai x 2 -2(m-1)x -1 = 0 ( m là tham số , x là ẩn số ) .Tính các giá trị của m để 2 nghiệm x 1 và x 2 của phương trình thoả mãn điều kiện 2 9 2 1 =− x x Bài 3 (2đ) Một mảnh đất hình chữ nhật có chiều rộng bé hơn chiều dài 4m và diện tích là 320m 2 . Tính chu vi hình chữ nhật đó ? Bài 4 : (4đ) Cho đường tròn (C ) tâm O đường kính AB = 2R . Trên đường tròn (C ) lấy điểm C sao cho AC = R. Vẽ OH ⊥ AC ( H∈ AC ) .Gọi E là điểm chính giữa cung nhỏ BC. Tia AE cắt OH tại F . Tia CF cắt đường tròn (C ) tại N ( N khác C ) a) Tính theo R diện tích hình quạt tròn OCEB b) C/minh FN ˆ A F ˆ =OA c) C/minh tứ giác AFON nội tiếp được trong 1 đường tròn . d) C/minh 3 điểm N,O,F thẳng hàng * Đề 6 * 8 I/ Phần trắc nghiệm : 4 điểm( Mỗi câu 0,4 đ ) Câu 1: Phương trình 2x - y = 3 nhận cặp số nào sau đây là nghiệm . A, ( 1; 1) B. ( 2; 1) C. (0;3) D. (2;4) Câu 2: Cặp số ( 1;-3) là nghiệm nào của phương trình nào sau đây. A. 3x- 2y=3 B.3x- y= 0 C.0x + 4y = 4 D. 0x -3y = 9 Câu 3: Cho phương trình x+ y = 1 (1) phương trình nào dưới đây có thể kết hợp với (1) để được một hệ phương trình bậc nhất hai ẩn có vô số nghiệm. A.2x- 2 = 2y B. 2x-2= - 2y C. 2y = 3 - 2x D. y = 2 + x Câu 4: Hàm số y = = -3x 2 đồng biến khi . A. x > 0 B. x > -1 C. x < 0 D. x < 2 Câu 5. Biệt thức ∆ ’ của phương trình 4x 2 - 6x -1 = 0 là : A. ∆ ’ = 5 B. ∆ ’ = 13 C. ∆ ’ = 52 D.∆ ’ = 20 Câu 6. Hãy điền vào chỗ trống để được ý đúng. Cho hàm số y = ax 2 ( a ≠ 0 ) a) Nếu a > 0 hàm số đồng biến khi nghịch biến khi b) Nếu a < 0 hàm số đồng biến khi nghịch biến khi Câu 7. Cho AB = R là dây cung của đường tròn( 0; R ) . Số đo của cung AB là: A. 60 0 B. 90 0 C. 120 0 D. 150 0 Câu 8 . Cho hình vẽ bên, At là tia tiếp tuyến của đường tròn tại A OBA = 25 0 . Số đo của góc BAt bằng : A. 130 0 B.65 0 C. 50 0 D. 115 0 Câu 9. Hãy đánh dấu (x) vào cột ( Đúng) ; (Sai ) cho thích hợp. Câu Nội dung Đúng Sai 1 Trong một đường tròn góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. 2 Tứ giác có tổng hai góc bằng 180 0 thì nội tiếp được đường tròn. Câu 10.Hãy nối mỗi ý ở cột trái với một ý ở cột phải để được kết luận đúng. 1. Công thức tính diện tích xung quanh của hình trụ là a) πR 2 h 2. Công thức tính thể tích của hình trụ là. b)4πR 2 3. Công thức tính thể tích của hònh nón là. c)2πRh 9 4. Công thức tính thể tích mặt cầu là. ( Chú ý) : R là bán kính đáy hình trụ, hình nón hoặc hình cầu h : là chiều cao hình trụ, hình nón d) 3 4 πR 3 e) 3 1 πR 2 h II/ Phần tự luận : ( 6đ) Bài 1/ (1đ) Cho phương trình 2x 2 + 3x - 14 = 0 có hai nghiệm là. x 1 , x 2 . Không giải phương trình hãy tính giá trị biêut thức. A = 21 11 xx + Bài 2/ (1đ) Giải phương trình sau: 7 16 2 1 2 1 = − − + xx Bài 3/ (1,5đ)Giải bài toán bằng cách lập phương trình. Một tam giác vuông có hai cạnh góc vuông hơn kém nhau 3cm và cạnh huyền bằng 15cm . Tính diện tích tam giác đó. Bài 4/ (2,5đ) Cho đường tròn (0) bán kính R và hai đường kính AB, CD vuông góc nhau. Gọi I là trung điểm của OC ; tia AI cắt đường tròn (0) tại M, tiếp tuyến của (0) tại C cắt đường thẳng AM tại E . a) Chứng minh tứ giác IOBM nội tiếp. b) Chứng minh CE = R c) Chứng minh EB là tiếp tuyến của (0) d) Tính diện tích tam giác BME theo R . 10 [...]... có đơng chéo AC và MN cắt nhau tại trung điểm của mỗi đờng và vuông góc với nhau nên là hình thoi b) ã ANB = 90 0 (góc nội tiếp chắn 1/2 đờng tròn tâm (O) ) BN AN AN// MC (cạnh đối hình thoi AMCN) BN MC (1) ' ã BDC = 90 0 (góc nội tiếp chắn 1/2 đờng tròn tâm (O ) ) BD MC (2) ã Từ (1) và (2) N,B,D thẳng hàng do đó NDC = 90 0 (3) ã NIC = 90 0 (vì AC MN) (4) Từ (3) và (4) N,I,D,C cùng nằm trên đờng... nằm giữa O và O' do đó ta có OO'=OB + O'B đờng tròn (O) và đờng tròn (O') tiếp xúc ngoài tại B 1 VMDN vuông tại D nên trung tuyến DI = MN =MI VMDI cân 2 ã ã IMD = IDM ã ã ã ã ã Tơng tự ta có O ' DC = O ' CD mà IMD + O ' CD = 90 0 (vì MIC = 90 0 ) ã ã ã ã IDM + O ' DC = 90 mà MDC = 180 IDO ' = 90 do đó ID DO ID là tiếp tuyến của đờng tròn (O') 0 0 x3 1 x 3 + 1 x (1 x 2 ) 2 + x x : x + 1... AmD =80 S cung BnC = 200 m D O n C Thỡ s o ca gúc AID bng : A 500 B 300 B 600 D Mt kt qu khỏc Cõu 9 T giỏc MNPQ l t giỏc ni tip nu: A Gúc M + Gúc N = 1800 B Gúc M + Gúc P = 1800 C Gúc M + Gúc Q = 1800 D Tt c cỏc cõu trờn u sai I 12 0 Cõu 10 Mt hỡnh qut cú bỏn kớnh 2cm , s o cung bng 90 cú din tớch bng: A /2 B C D Mt kt qu khỏc II T LUN : ( 6 im) Cõu 1 : Gii phng trỡnh x2 + 5x -6 =0 Cõu 2: Mt tam giỏc... thấy nghiệm x=1 không thuộc (-1,0) m m +1 1 = 2m 1 2m 1 (-1,0)=> -1< 1 0 >0 => 2m 1 =>m E,F thuộc... Chú ý: Nếu thí sinh làm cách khác đúng vẫn cho điểm tối đa Câu1 : 0.5 Với x 6+2 2 2 ;1 19 Câu3 Cho phơng trình (2m-1)x -2mx+1=0 Xác định m để phơng trình trên có nghiệm thuộc khoảng (-1,0) Câu 4 Cho nửa đờng tròn tâm O , đờng kính BC Điểm A thuộc nửa đờng tròn đó Dng hình vuông ABCD thuộc nửa mặt phẳng bờ AB, không chứa đỉnh C Gọi Flà giao điểm của Aevà nửa đờng tròn (O) Gọi Klà giao điểm của CFvà... t2 t1 = 1 x1 ; t2 = 1 x2 b Do x1; x1; t1; t2 đều là những nghiệm dơng nên t1+ x1 = 1 x1 + x1 2 Do đó x1 + x2 + t1 + t2 t 2 + x2 = 1 x2 + x2 2 4 Bài 4 a Giả sử đã tìm đợc điểm D trên cung BC sao cho tứ giác BHCD là hình bình hành Khi đó: BD//HC; CD//HB vì H là trực tâm tam giác ABC nên A CH AB và BH AC => BD AB và CD AC Do đó: ABD = 90 0 và ACD = 90 0 Vậy AD là đờng kính của đờng tròn tâm O... 2 = 0 (*) Vì phơng trình (*) có = m 2 4m + 8 = ( m 2) 2 + 4 > 0 m nên phơng trình (*) luôn có hai nghiệm phân biệt , do đó (d) và (P) luôn cắt nhau tại hai điểm phân biệt A và B b) A và B nằm về hai phía của trục tung phơng trình : x2 + mx + m 2 = 0 có hai nghiệm trái dấu m 2 < 0 m < 2 x + y + z = 9 (1) 1 1 1 Bài 3 : + + = 1 (2) x y z xy + yz + xz = 27 ( 3) ĐKXĐ : x 0 , y 0 , z 0 ... + x -2=0 => x = 2/3 Câu 4 Do HA // PB (Cùng vuông góc với BC) a) nên theo định lý Ta let áp dụng cho CPB ta có EH CH = PB CB ; P A (1) E Mặt khác, do PO // AC (cùng vuông góc với AB) => POB = ACB (hai góc đồng vị) => AHC Do đó: B O H POB AH CH = PB OB (2) Do CB = 2OB, kết hợp (1) và (2) ta suy ra AH = 2EH hay E là trung điểm của AH b) Xét tam giác vuông BAC, đờng cao AH ta có AH2 = BH.CH = (2R... P = b P = ( 2 x( x 1) 2 x 1 z : x( x 1) x 1 x +1 = 1+ x 1 ) 2 P= x 1 ( x 1) 2 = x +1 x 1 2 x 1 Để P nguyên thì x 1 = 1 x =2 x=4 x 1 = 1 x = 0 x = 0 x 1 = 2 x = 3 x = 9 x 1 = 2 x = 1( Loai ) Vậy với x= { 0;4 ;9} thì P có giá trị nguyên Bài 2: Để phơng trình có hai nghiệm âm thì: ( = 25 > 0 (m 2)(m + 3) > 0 m < 3 1 m < 2 ) = ( 2m + 1) 2 4 m 2 + m 6 0 2 x1 x 2 = m + m 6... điểm) : Cho phơng trình x 2 + 2mx + m 1 = 0 a) Giải phơng trình với m = 2 với x 0 15 b) CM : phơng trình luôn có hai nghiệm phân biệt, với mọi m Hãy xác định m để phơng trình có nghiệm dơng Bài iV (3 điểm) : Cho đờng tròn (O,R) có đờng kính AB ; điểm I nằm giữa hai điểm A và O Kẻ đờng thẳng vuông góc với AB tại I , đờng thẳng này cắt đờng tròn (O;R) tại M và N Gọi S là giao điểm của hai đờng thẳng . MỘT SỐ ĐÊÀ KIỂM TRA HỌC KÌ II MÔN: TOÁN 9 (thời gian: 90 phút) *ĐỀ 1* A/ Trắc nghiệm : Câu 1: Với x > 0 . Hàm số y = (m 2 +3) x 2 đồng biến. đúng. 1. Công thức tính diện tích xung quanh của hình trụ là a) πR 2 h 2. Công thức tính thể tích của hình trụ là. b)4πR 2 3. Công thức tính thể tích của hònh nón là. c)2πRh 9 4. Công thức tính. B 0.5 V MDN vuông tại D nên trung tuyến DI = 1 2 MN =MI V MDI cân ã ã IMD IDM= . Tơng tự ta có ã ã ' 'O DC O CD= mà ã ã 0 ' 90 IMD O CD+ = (vì ã 0 90 MIC = ) 0.25 ã ã 0 ' 90 IDM