Trung Tâm Ôn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xuân—Đà Lạt GV:Lê Quang Điệp Đáp Án Đề 1: Luyện thi Đại Học,CĐ Môn Toán 0974.200.379—3755.711 (Giải toán theo chương trnh mi nht ca b giáo dc) Câu I: 1) Học Sinh Tự Làm. 2) Gọi M(x o ; 0 0 2 3 2 x x − − )∈ (C) . Phương trình tiếp tuyến tại M: (∆) y = 2 0 0 2 2 0 0 2 6 6 ( 2) ( 2) x x x x x − + − + − − (∆ ) ∩ TCĐ = A (2; 0 0 2 2 2 x x − − ) ⇔ (∆ ) ∩ TCN = B (2x 0 –2; 2) 0 0 2 (2 4; ) 2 AB x x − = − − uuur ⇒ AB = 2 0 2 0 4 4( 2) 2 2 ( 2) cauchy x x − + − ≥ ⇒ AB min = 2 2 ⇔ 0 3 (3;3) 1 (1;1) o x M x M = → = → Câu II:(cosx –sinx)(cox 2 + sin 2 -sinxcosx) = m ⇔ (cosx –sinx)(1- sinxcosx) = m đặt t = cosx –sinx [- ⇔ sinxcosx= (1) ⇔ t( 1- )= m 1) khi m= -1 t( 1- ) = -1. ⇔ t = 1,t=2 (loại) vậy với t= -1⇔ ⇔ x 1 =- ,x 2 = (k 2) t( 1- )= m để pt có nghiêm x[-] thì t Câu III: 2) Đk x ≥ 0. đặt t = x ; t ≥ 0 (1)trở thành (m–3)t+(2-m)t 2 +3-m = 0 ⇔ 2 2 2 3 3 1 t t m t t − + = − + (2) Xét hàm số f(t) = 2 2 2 3 3 1 t t t t − + − + (t ≥ 0) Lập bảng biến thiên ⇒ (1)có nghiệm ⇔ (2) có nghiệm t ≥ 0 ⇔ 5 3 3 m≤ ≤ Câu IV:Gọi (∆) là đường thẳng cần tìm ta có:(P) ∩ (d 1 ) = A(1;1;2); (P) ∩ (d 2 ) = B(3;3;2) ⇒ (∆) 1 2 1 2 ( ) 2 x t y t t z = − = − ∈ = ¡ Sử dụng công thức tính khoảng cách và cm hai đường thẳng chéo nhau. Câu V: GV:Lê Quang Điệp Đáp Án Đề 2: Luyện thi Đại Học,CĐ Môn Toán 0974.200.379—3755.711 (Giải toán theo chương trnh mi nht ca b giáo dc) Câu I: 1)Học sinh tự làm. 2)Phương trình hoành độ điểm chung của (C m ) và d là: = + + + + = + ⇔ + + + = ⇔ = + + + = 3 2 2 2 0 2 ( 3) 4 4 (1) ( 2 2) 0 ( ) 2 2 0 (2) x x mx m x x x x mx m g x x mx m (d) cắt (C m ) tại ba điểm phân biệt A(0; 4), B, C ⇔ phương trình (2) có 2 nghiệm phân biệt khác 0. ≤ − ∨ ≥ ∆ = − − > ⇔ ⇔ ≠ − = + ≠ / 2 1 2 2 0 ( ) 2 (0) 2 0 m m m m a m g m . Mặt khác: − + = = 1 3 4 ( , ) 2 2 d K d Do đó: ∆ = ⇔ = ⇔ = ⇔ = 2 1 8 2 . ( , ) 8 2 16 256 2 KBC S BC d K d BC BC 2 2 ( ) ( ) 256 B C B C x x y y⇔ − + − = với , B C x x là hai nghiệm của phương trình (2). ⇔ − + + − + = ⇔ − = ⇔ + − = 2 2 2 2 ( ) (( 4) ( 4)) 256 2( ) 256 ( ) 4 128 B C B C B C B C B C x x x x x x x x x x Trang 1 1 Trung Tâm Ôn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xuân—Đà Lạt 2 2 1 137 4 4( 2) 128 34 0 2 m m m m m ± ⇔ − + = ⇔ − − = ⇔ = (thỏa ĐK (a)). Vậy 1 137 2 m ± = Câu II: 1)Phương trình ⇔ (cosx–sinx) 2 - 4(cosx–sinx) – 5 = 0 cos -sin -1 cos -sin 5( cos -sin 2) x x x x loai vi x x = ⇔ = ≤ 2 2 2 sin( ) 1 sin( ) sin ( ) 4 4 4 2 x k x x k Z x k π π π π π π π = + ⇔ − = ⇔ − = ⇔ ∈ = + 2) Từ (1) ⇒ y ≠ 0 Hệ ⇔ 3 3 3 3 2 2 27 3 8 18 (2 ) 18 4 6 3 3 1 2 . 2 3 x x y y x x x x y y y y + = + = ÷ ⇔ + = + = ÷ Đặt a = 2x; b = 3 y . Ta có hệ: 3 3 3 18 1 ( ) 3 a b a b ab ab a b + = + = ⇔ = + = ĐS: Hệ đã cho có 2 nghiệm 3 5 6 3 5 6 ; , ; 4 4 3 5 3 5 − + ÷ ÷ + − Câu III: 1) Ta có: I = 2 2 6 1 sin sin 2 π π × + ∫ x x dx = 2 2 6 3 cos (cos ) 2 π π − − × ∫ x d x . Đặt 3 cos cos 2 x t= × Đổi cận: Khi 2 x cos 6 2 4 t t π π = ⇒ = ⇒ = ; khi x cos 0 2 2 t t π π = ⇒ = ⇒ = . Do vậy: 2 2 4 3 sin 2 I tdt π π = × ∫ = ( ) 3 2 16 π + . 2) Tìm các giá trị của tham số thực m sao cho phương trình sau có nghiệm thực: 2 2 1 1 1 1 9 ( 2)3 2 1 0 x x m m + − + − − + + + = (1) * Đk [-1;1]x ∈ , đặt t = 2 1 1 3 x+ − ; [-1;1]x ∈ ⇒ [3;9]t ∈ Ta có: (1) viết lại 2 2 2 2 1 ( 2) 2 1 0 ( 2) 2 1 2 t t t m t m t m t t m t − + − + + + = ⇔ − = − + ⇔ = − Xét hàm số f(t) = 2 2 1 2 t t t − + − , với [3;9]t ∈ . Ta có: 2 / / 1 4 3 ( ) , ( ) 0 3 ( 2) t t t f t f t t t = − + = = ⇔ = − Lập bảng biến thiên t 3 9 f / (t) + f(t) 48 7 4 Căn cứ bảng biến thiêng, (1) có nghiệm [-1;1]x ∈ ⇔ (2) có nghiệm [3;9]t ∈ ⇔ 48 4 7 m≤ ≤ Trang 2 2 C S O M A B Trung Tâm Ôn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xuân—Đà Lạt Câu IV: Gọi M là trung điểm của BC và O là hình chiếu của S lên AM. Suy ra: SM =AM = 3 2 a ; · 0 60AMS = và SO ⊥ mp(ABC) ⇒ d(S; BAC) = SO = 3 4 a Gọi V SABC - là thể tích của khối chóp S.ABC ⇒ V S.ABC = 3 3 1 . 3 16 ABC a S SO ∆ = (đvtt) Mặt khác, V S.ABC = 1 . ( ; ) 3 SAC S d B SAC ∆ ∆SAC cân tại C có CS =CA =a; SA = 3 2 a ⇒ 2 13 3 16 SAC a S ∆ = Vậy: d(B; SAC) = . 3 3 13 S ABC SAC V a S ∆ = (đvđd). Câu V: *Gọi H là hình chiếu của A trên d, mặt phẳng (P) đi qua A và (P)//d, khi đó khoảng cách giữa d và (P) là khoảng cách từ H đến (P). Giả sử điểm I là hình chiếu của H lên (P), ta có HIAH ≥ => HI lớn nhất khi IA ≡ Vậy (P) cần tìm là mặt phẳng đi qua A và nhận AH làm véctơ pháp tuyến. Mặt khác, )31;;21( tttHdH ++⇒∈ vì H là hình chiếu của A trên d nên . 0 ( (2;1;3)AH d AH u u⊥ ⇒ = = uuur r r là véc tơ chỉ phương của d) )5;1;7()4;1;3( −−⇒⇒ AHH Vậy: (P): 7(x – 10) + (y – 2) – 5(z + 1) = 0 ⇔ 7x + y – 5z –77 = 0 Câu VI:Vì z = 1 + i là một nghiệm của phương trình: z 2 + bx + c = 0 ( b, c ∈ R), nên ta có : ( ) ( ) ( ) 2 0 2 1 1 0 2 0 2 0 2 b c b i b i c b c b i b c + = = − + + + + = ⇔ + + + = ⇔ ⇔ + = = Câu VII 3 2 2 8 1 (2 1)(4 2 1) 2 1 cauchy c c c c c+ = + − + ≤ + ⇒ 2 3 2 1 8 1 a a c c ≥ + + Tương tự, 2 2 3 3 ; 2 1 2 1 8 1 8 1 b b c c a b a b ≥ ≥ + + + + Ta sẽ chứng minh: 2 2 2 1 (1) 2 1 2 1 2 1 a b c c a b + + ≥ + + + BĐT (1) ⇔ 4(a 3 b 2 +b 3 a 2 +c 3 a 2 ) +2(a 3 +b 3 +c 3 )+2(ab 2 +bc 2 +ca 2 )+( a+b+c) ≥ ≥ 8a 2 b 2 c 2 +4(a 2 b 2 +b 2 c 2 +c 2 a 2 ) +2 (a 2 +b 2 +c 2 )+1 (2) Ta có: 2a 3 b 2 +2ab 2 ≥ 4a 2 b 2 ; …. (3) 2(a 3 b 2 +b 3 a 2 +c 3 a 2 ) ≥ 2.3. 3 5 5 5 a b c =6 (do abc =1) (4) a 3 +b 3 +c 3 ≥ 3abc =3 = 1 +2 a 2 b 2 c 2 (5) a 3 +a ≥ 2a 2 ; …. (6) Công các vế của (3), (4), (5), (6), ta được (2). Dấu bằng xảy ra khi a=b=c=1 . GV:Lê Quang Điệp Đáp Án Đề 3: Luyện thi Đại Học,CĐ Môn Toán 0974.200.379—3755.711 (Giải toán theo chương trnh mi nht ca b giáo dc) Câu I: 1)Học sinh tự giải. 2) 4 3 2 x 2x 2 x 1y x m m= + − − + (1) Đạo hàm / 3 2 2 y 4x 3mx 4x 3m (x 1)[4x (4 3m)x 3m]= + − − = − + + + Trang 3 3 Trung Tâm Ôn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xuân—Đà Lạt ° / 2 x 1 y 0 4x (4 3m)x 3m 0 (2) = = ⇔ + + + = ° Hàm số có 2 cực tiểu ⇔ y có 3 cực trị ⇔ y / = 0 có 3 nghiệm phân biệt ⇔ (2) có 2 nghiệm phân biệt khác 1 2 (3m 4) 0 4 m . 3 4 4 3m 3m 0 ∆ = − > ⇔ ⇔ ≠ ± + + + ≠ Giả sử: Với 4 m 3 ≠ ± , thì y / = 0 có 3 nghiệm phân biệt 1 2 3 x , x , x ° Bảng biến thiên: x -∞ x 1 x 2 x 3 +∞ y / - 0 + 0 - 0 + y +∞ CT CĐ CT +∞ Từ bảng biến thiên ta thấy hàm số có 2 cực tiểu. Vậy, hàm số có 2 cực tiểu khi 4 m . 3 ≠ ± Câu II: 1).cos3xcos 3 x – sin3xsin 3 x = 2 3 2 8 + ⇔ cos3x(cos3x + 3cosx) – sin3x(3sinx – sin3x) = 2 3 2 8 + ⇔ ( ) 2 2 2 3 2 os 3x sin 3x+3 os3x osx sin3xsinx 2 c c c + + − = ⇔ 2 os4x , 2 16 2 c x k k Z π π = ⇔ = ± + ∈ . 2) Giải phương trình : 2x +1 +x ( ) 2 2 2 1 2x 3 0x x x+ + + + + = . (a) Đặt: − = + = + > = + ⇒ ⇒ − − = + + = = + + > 2 2 2 2 2 2 2 2 2 2 2 v u 2x 1 u x 2, u 0 u x 2 v u 1 v x 2x 3 x v x 2x 3, v 0 2 Ta có: − − − − − − ⇔ − + + + = ⇔ − + − + + = ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ − = + ⇔ − − + + = ⇔ + ÷ + + + = ÷ 2 2 2 2 2 2 2 2 2 2 2 2 v u 1 v u 1 v u u v u v (a) v u .u 1 .v 0 v u .u .v 0 2 2 2 2 2 2 v u 0 (b) v u 1 (v u) (v u) 1 0 v u 1 (v u) 1 0 (c) 2 2 2 2 Vì u > 0, v > 0, nên (c) vô nghiệm. Do đó: ⇔ − = ⇔ = ⇔ + + = + ⇔ + + = + ⇔ = − 2 2 2 2 1 (a) v u 0 v u x 2x 3 x 2 x 2x 3 x 2 x 2 Kết luận, phương trình có nghiệm duy nhất: x = 1 2 − . Câu III: Trang 4 4 Trung Tâm Ôn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xuân—Đà Lạt 1) + Ta có ( ) ( ) ( ) 2;0;2 , D 6; 6;6 D 3;3;0 AB AB C C = ⇔ = − − = − uuur uuur uuur uuur . Do đó mặt phẳng (P) chứa AB và song song CD có một VTPT ( ) 1;1; 1n = − r và A(-1; -1; 0) thuộc (P) có phương trình: x + y – z + 2 = 0.(P) Thử tọa độ C(2; -2; 1) vào phương trình (P) ⇒ C không thuộc (P), do đó (P) // CD. + ( ) ( ) ( ) 0 . D 1 os , D os , D , D 60 . D 2 AB C c AB C c AB C AB C AB C = = = ⇒ = uuur uuur uuur uuur 2) Theo giả thiết ta có M(m; 0; 0) ∈Ox , N(0; n; 0) ∈Oy , P(0; 0; p) ∈ Oz. Ta có : ( ) ( ) ( ) ( ) 1; 1; 1 ; ; ;0 . 1; 1; 1 ; ;0; . DP p NM m n DP NM m n DN n PM m p DN PM m p = − − = − = + ⇒ = − − = − = + uuur uuuur uuur uuuur uuur uuuur uuur uuuur . Mặt khác: Phương trình mặt phẳng ( α ) theo đoạn chắn: 1 x y z m n p + + = . Vì D ∈( α ) nên: 1 1 1 1 m n p − + + = . D là trực tâm của ∆MNP ⇔ . 0 . 0 DP NM DP NM DN PM DN PM ⊥ = ⇔ ⊥ = uuur uuuur uuur uuuur uuur uuuur uuur uuuur . Ta có hệ: 0 3 0 3 1 1 1 1 m n m m p n p m n p + = = − + = ⇒ = = − + + = .Kết luận, phương trình của mặt phẳng ( α ): 1 3 3 3 x y z + + = − . Câu IV: Tính tích phân ( ) 2 0 1 sin2xdxI x π = + ∫ . Đặt x 1 1 sin 2xdx os2x 2 du d u x dv v c = = + ⇒ = = I = ( ) /2 2 2 0 0 0 1 1 1 1 os2x os2xdx 1 sin 2x 1 2 2 4 4 4 x c c π π π π π − + + = + + = + ∫ . Câu V: Giải bất phương trình: 2 2 1 2 9 1 10.3 x x x x+ − + − + ≥ . Đặt 2 3 x x t + = , t > 0. Bất phương trình trở thành: t 2 – 10t + 9 ≥ 0 ⇔ ( t ≤ 1 hoặc t ≥ 9) Khi t ≤ 1 ⇒ 2 2 3 1 0 1 0 x x t x x x + = ≤ ⇔ + ≤ ⇔ − ≤ ≤ .(1) Khi t ≥ 9 ⇒ 2 2 2 3 9 2 0 1 x x x t x x x + ≤ − = ≥ ⇔ + − ≥ ⇔ ≥ (2) Kết hợp (1) và (2) ta có tập nghiệm của bpt là: S = (- ∞; -2]∪[-1;0]∪[1; + ∞). Câu VI: 1) 2)Ta có 2 1 3 3 4 4 2 z i= − − . Do đó: 2 1 3 1 3 1 1 0 2 2 2 2 z z i i + + = + − + + − − = ÷ ÷ Trang 5 5 Trung Tâm Ơn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xn—Đà Lạt Câu VII: Gọi E là trung điểm của BC, H là trọng tâm của ∆ ABC. Vì A'.ABC là hình chóp đều nên góc giữa hai mặt phẳng (ABC) và (A'BC) là ϕ = · 'A EH . Tá có : 3 3 3 E , , 2 3 6 a a a A AH HE= = = ⇒ 2 2 2 2 9 3a A' ' 3 b H A A AH − = − = . Do đó: 2 2 ' 2 3 tan A H b a HE a ϕ − = = ; 2 2 2 2 . ' ' ' 3 3 ' . 4 4 ABC ABC A B C ABC a a b a S V A H S ∆ ∆ − = ⇒ = = 2 2 2 '. 1 3 ' . 3 12 A ABC ABC a b a V A H S ∆ − = = . Do đó: ' ' ' . ' ' ' '.A BB CC ABC A B C A ABC V V V= − 2 2 2 ' ' ' 1 3 ' . 3 6 A BB CC ABC a b a V A H S ∆ − = = (đvtt) GV:Lê Quang Điệp Đáp Án Đề 4: Luyện thi Đại Học,CĐ Mơn Tốn 0974.200.379—3755.711 (Giải tốn theo chương trnh mi nht ca b giáo dc) Câu I: 1)Học Sinh Tự Làm. 2) Phương trình hoành độ giao điểm của (C m ) và đường thẳng y = 1 là: x 3 + 3x 2 + mx + 1 = 1 ⇔ x(x 2 + 3x + m) = 0 ⇔ = + + = 2 x 0 x 3x m 0 (2) * (C m ) cắt đường thẳng y = 1 tại C(0, 1), D, E phân biệt: ⇔ Phương trình (2) có 2 nghiệm x D , x E ≠ 0. ⇔ ≠ ∆ = − > ⇔ < + × + ≠ 2 m 0 9 4m 0 4 m 0 3 0 m 0 9 Lúc đó tiếp tuyến tại D, E có hệ số góc lần lượt là: k D = y’(x D ) = + + = − + 2 D D D 3x 6x m (x 2m); k E = y’(x E ) = + + = − + 2 E E E 3x 6x m (x 2m). Các tiếp tuyến tại D, E vuông góc khi và chỉ khi: k D k E = –1. ⇔ (3x D + 2m)(3x E + 2m) = 9x D x E +6m(x D + x E ) + 4m 2 = –1 ⇔ 9m + 6m × (–3) + 4m 2 = –1; (vì x D + x E = –3; x D x E = m theo đònh lý Vi-ét). ⇔ 4m 2 – 9m + 1 = 0 ⇔ m = ( ) m 1 9 65 8 ĐS: m = ( ) ( ) − = m 1 1 9 65 hay m 9 65 8 8 Câu II: Trang 6 6 S H P C A B N Trung Tâm Ơn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xn—Đà Lạt 1. + + =3sinx cosx 2cos3x 0 ⇔ sin π 3 sinx + cos π 3 cosx = – cos3x. ⇔ cos π − =− x cos3x 3 ⇔ cos π − = π− x cos( 3x) 3 ⇔ π π = + ∈ π = + π k x 3 2 (k Z) x k 3 ⇔ x = π π + k 3 2 (k ∈ Z) 2. Điều kiện: x ≥ 2 và y ≥ 2 : Lấy (1) trừ (2) vế theo vế ta được: 2 2 2 2 91 91 2 2x y y x y x+ − + = − − − + − 2 2 2 2 ( )( ) 2 2 91 91 x y y x y x y x y x x y − − ⇔ = + − + − + − + + + 2 2 1 ( ) 0 2 2 91 91 x y x y x y x y x y + ÷ ⇔ − + + + = ÷ − + − + + = ⇔ x = y (trong ngoặc ln dương và x va y đều lớn hơn 2) Vậy từ hệ trên ta có: 2 2 91 2x x x + = − + 2 2 91 10 2 1 9x x x ⇔ + − = − − + − 2 2 9 3 ( 3)( 3) 2 1 91 10 x x x x x x − − ⇔ = + − + − + + + 2 1 1 ( 3) ( 3) 1 0 2 1 91 10 x x x x ⇔ − + − − = ÷ ÷ ÷ − + + + ⇔ x = 3 Vậy nghiệm của hệ x = y = 3 Câu III: J − − = = = − ∫ ∫ b b ln10 8 x 8 2/3 1/3 3 x e 2 b e 2 e dx du 1 u 3 u e 2 − − b 2/3 3 4 (e 2) ; 2 với u = e x – 2, du = e x dx) Suy ra: → → = − − = = b 2/ 3 b ln2 b ln2 3 3 lim J lim 4 (e 2) (4) 6 2 2 Câu IV: Dựng SH AB ⊥ ° Ta có: (SAB) (ABC), (SAB) (ABC) AB, SH (SAB)⊥ ∩ = ⊂ SH (ABC)⇒ ⊥ và SH là đường cao của hình chóp. ° Dựng HN BC, HP AC⊥ ⊥ · · SN BC, SP AC SPH SNH⇒ ⊥ ⊥ ⇒ = = α ° SHN = SHP ⇒ HN = HP. ° AHP vuông có: o a 3 HP HA.sin60 . 4 = = ° SHP vuông có: a 3 SH HP.tg tg 4 = α = α ° Thể tích hình chóp 2 3 ABC 1 1 a 3 a 3 a S.ABC: V .SH.S . .tg . tg 3 3 4 4 16 = = α = α Trang 7 7 Trung Tâm Ơn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xn—Đà Lạt Câu V: Áp dụng bất đẳng thức Cơ- Si, ta có: 4ab ≤ (a + b) 2 1 4 a b a b ab + ⇔ ≤ + 1 1 1 ( , 0) 4 a b a b ⇔ + ∀ > ÷ Ta có: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 2 4 2 4 8 2 2x y z x y z x y z x y z ≤ + ≤ + + = + + ÷ ÷ ÷ + + + Tương tự: 1 1 1 1 1 2 8 2 2x y z x y z ≤ + + ÷ + + và 1 1 1 1 1 2 8 2 2x y z x y z ≤ + + ÷ + + Vậy 1 1 1 2 2 2x y z x y z x y z + + + + + + + + 1 1 1 1 2009 4 4x y z ≤ + + = ÷ Vậy MaxP = 2009 4 khi x = y = z = 12 2009 Câu VI: 1) (C) có tâm I(3;0) và bán kính R = 2 M ∈ Oy ⇒ M(0;m) Qua M kẽ hai tiếp tuyến MA và MB ( A và B là hai tiếp điểm) Vậy · · 0 0 60 (1) 120 (2) AMB AMB = = Vì MI là phân giác của · AMB (1) ⇔ · AMI = 30 0 0 sin 30 IA MI⇔ = ⇔ MI = 2R ⇔ 2 9 4 7m m + = ⇔ = m (2) ⇔ · AMI = 60 0 0 sin 60 IA MI⇔ = ⇔ MI = 2 3 3 R ⇔ 2 4 3 9 3 m + = Vơ nghiệm Vậy có hai điểm M 1 (0; 7 ) và M 2 (0;- 7 ) 2) (d 1 ) đi qua điểm A(0; 0; 4) và có vectơ chỉ phương 1 u (2; 1; 0)= r - (d 2 ) đi qua điểm B(3; 0; 0) và có vectơ chỉ phương 2 u (3; 3; 0)= − r AB (3; 0; 4)= − uuur ° 1 2 1 2 AB.[u ; u ] 36 0 AB, u , u= ≠ ⇒ uuur r r uuur r r không đồng phẳng. ° Vậy, (d 1 ) và (d 2 ) chéo nhau. ° Gọi MN là đường vuông góc chung của (d 1 ) và (d 2 ) ° 1 M (d ) M(2t; t; 4)∈ ⇒ , / / 2 N (d ) N(3 t ; t ; 0) ∈ ⇒ + − / / MN (3 t 2t; t t; 4)⇒ = + − − − − uuuur ° Ta có: / / / 1 / / 2 MN u 2(3 t 2) (t t) 0 M(2; 1; 4) t 1 N(2; 1; 0) t 1 3 t 2t (t t) 0 MN u ⊥ + − − + = = − ⇒ ⇔ ⇒ = + − + + = ⊥ uuuur r uuuur r Trang 8 8 Trung Tâm Ơn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xn—Đà Lạt ° Tọa độ trung điểm I của MN: I(2; 1; 2), bán kính 1 R MN 2. 2 = = ° Vậy, phương trình mặt cầu (S): 2 2 2 (x 2) (y 1) (z 2) 4.− + − + − = Câu VII: Xét phương trình Z 4 – Z 3 + 6Z 2 – 8Z – 16 = 0 Dễ dàng nhận thấy phương trình có nghiệm Z 1 = –1, sau đó bằng cách chia đa thức ta thấy phương trình có nghiệm thứ hai Z 2 = 2. Vậy phương trình trở thành: (Z + 1)(Z – 2)(Z 2 + 8) = 0 Suy ra: Z 3 = 2 2 i và Z 4 = – 2 2 i Đáp số: { } − − −1,2, 2 2 i, 2 2 i GV:Lê Quang Điệp Đáp Án Đề 5: Luyện thi Đại Học,CĐ Mơn Tốn 0974.200.379—3755.711 (Giải tốn theo chương trnh mi nht ca b giáo dc) Câu I: 1)hoc sinh tự làm. 2) Hoµnh ®é giao ®iĨm cđa ®å thÞ (C) vµ ®êng th¼ng d lµ nghiƯm cđa ph¬ng tr×nh =−+−+ −≠ ⇔+−= + + )1(021)4( 2 2 12 2 mxmx x mx x x Do (1) cã mmmvam ∀≠−=−+−−+−>+=∆ 0321)2).(4()2(01 22 nªn ®êng th¼ng d lu«n lu«n c¾t ®å thÞ (C ) t¹i hai ®iĨm ph©n biƯt A, B Ta cã y A = m – x A ; y B = m – x B nªn AB 2 = (x A – x B ) 2 + (y A – y B ) 2 = 2(m 2 + 12) suy ra AB ng¾n nhÊt AB 2 nhá nhÊt m = 0. Khi ®ã 24=AB Câu II. 1) Ph¬ng tr×nh ®· cho t¬ng ®¬ng víi 9sinx + 6cosx – 6sinx.cosx + 1 – 2sin 2 x = 8 6cosx(1 – sinx) – (2sin 2 x – 9sinx + 7) = 0 6cosx(1 – sinx) – (sinx – 1)(2sinx – 7) = 0 (1-sinx)(6cosx + 2sinx – 7) = 0 =−+ =− )(07sin2cos6 0sin1 VNxx x π π 2 2 kx += 2) §K: ≥−− > 03loglog 0 2 2 2 2 xx x BÊt ph¬ng tr×nh ®· cho t¬ng ®¬ng víi )1()3(log53loglog 2 2 2 2 2 −>−− xxx ®Ỉt t = log 2 x, BPT (1) )3(5)1)(3()3(532 2 −>+−⇔−>−− tttttt << −≤ ⇔ << −≤ ⇔ −>−+ > −≤ ⇔ 4log3 1log 43 1 )3(5)3)(1( 3 1 2 2 2 x x t t ttt t t << ≤< ⇔ 168 2 1 0 x x VËy BPT ®· cho cã tËp nghiƯm lµ: )16;8(] 2 1 ;0( ∪ Câu III. ∫ ∫ == xx dx xxx dx I 23233 cos.2sin 8 cos.cos.sin ®Ỉt tanx = t Trang 9 9 A1 A B C C1 B1 K H Trung Tõm ễn Luyn Tt Nghip V H,CD 54H Bựi Th Xuõn Lt dt t t t t dt I t t x x dx dt + = + = + == 3 32 3 2 22 )1( ) 1 2 ( 8 1 2 2sin; cos C x xxxdtt t tt dt t ttt +++=+++= +++ = 2 2433 3 246 tan2 1 tanln3tan 2 3 tan 4 1 ) 3 3( 133 Cõu IV. Do )( 111 CBAAH nên góc HAA 1 là góc giữa AA 1 và (A 1 B 1 C 1 ), theo giả thiết thì góc HAA 1 bằng 30 0 . Xét tam giác vuông AHA 1 có AA 1 = a, góc HAA 1 =30 0 2 3 1 a HA = . Do tam giác A 1 B 1 C 1 là tam giác đều cạnh a, H thuộc B 1 C 1 và 2 3 1 a HA = nên A 1 H vuông góc với B 1 C 1 . Mặt khác 11 CBAH nên )( 111 HAACB Kẻ đờng cao HK của tam giác AA 1 H thì HK chính là khoảng cách giữa AA 1 và B 1 C 1 Ta có AA 1 .HK = A 1 H.AH 4 3 . 1 1 a AA AHHA HK == Cõu V: áp dụng bất đẳng thức Cô si cho 2005 số 1 và 4 số a 2009 ta có )1(.2009 20091 11 42009 20092009200920092009200920092009 2005 aaaaaaaaa =+++++++ Tơng tự ta có )2(.2009 20091 11 42009 20092009200920092009200920092009 2005 bbbbbbbbb =+++++++ )3(.2009 20091 11 42009 20092009200920092009200920092009 2005 ccccccccc =+++++++ Cộng theo vế (1), (2), (3) ta đợc )(20096027 )(2009)(46015 444 444200920092009 cba cbacba ++ +++++ Từ đó suy ra 3 444 ++= cbaP Mặt khác tại a = b = c = 1 thì P = 3 nên giá trị lớn nhất của P = 3. Cõu VI: 1)Từ phơng trình chính tắc của đờng tròn ta có tâm I(1;-2), R = 3, từ A kẻ đợc 2 tiếp tuyến AB, AC tới đờng tròn và ACAB => tứ giác ABIC là hình vuông cạnh bằng 3 23= IA = = == 7 5 6123 2 1 m m m m 2) Gọi H là hình chiếu của A trên d, mặt phẳng (P) đi qua A và (P)//d, khi đó khoảng cách giữa d và (P) là khoảng cách từ H đến (P). Giả sử điểm I là hình chiếu của H lên (P), ta có HIAH => HI lớn nhất khi IA Vậy (P) cần tìm là mặt phẳng đi qua A và nhận AH làm véc tơ pháp tuyến. Trang 10 10 [...]... (2;1;3) là véc tơ chỉ phơng của d) H (3;1;4) AH ( 7;1;5) Vậy(P): 7(x - 10) + (y - 2) - 5(z + 1) = 0 7x + y -5z -77 = 0 Cõu VII: GV:Lờ Quang ip 0974.200.3793755.711 Cõu I: 1)Hc sinh t lm ỏp n 6: Luyn thi i Hc,C Mụn Toỏn (Gii toỏn theo chng trinh mi nhõt cua bụ giỏo duc) x = 0 y' = 3x 2 3mx = 3x( x m) = 0 x = m 2)Tacó ta thấy với m 0 thì y đổi dấu khi đi qua các nghiệm do vậy hàm số có CĐ,CT 1... V H,CD -54H Bựi Th Xuõn Lt ( a + 5 ; b 5 ) (d) 3a b =4 (3) 3 Trng tõm G 3 3 r=S = p 2 +2 5 (2), (3) C(1; 1) S= 3 2 + 65 + 89 t (1), (3) C(2; 10) r = p Do cụng vic lờn ỏp ỏn tm thi cha xong.cỏc bn cú th tham kho bi trong trang sau: http://ctk29cdonline.com Trang 12 . Thị Xuân—Đà Lạt GV:Lê Quang Điệp Đáp Án Đề 1: Luyện thi Đại Học, CĐ Môn Toán 0974.200.379—3755.711 (Giải toán theo chương trnh mi nht ca b giáo dc) Câu I: 1) Học Sinh Tự Làm. 2) Gọi M(x o ;. nhau. Câu V: GV:Lê Quang Điệp Đáp Án Đề 2: Luyện thi Đại Học, CĐ Môn Toán 0974.200.379—3755.711 (Giải toán theo chương trnh mi nht ca b giáo dc) Câu I: 1 )Học sinh tự làm. 2)Phương trình. khi a=b=c=1 . GV:Lê Quang Điệp Đáp Án Đề 3: Luyện thi Đại Học, CĐ Môn Toán 0974.200.379—3755.711 (Giải toán theo chương trnh mi nht ca b giáo dc) Câu I: 1 )Học sinh tự giải. 2) 4 3 2 x 2x