1. Trang chủ
  2. » Giáo án - Bài giảng

đáp án bộ đề thi toan đại học rất hay

12 461 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 471,8 KB

Nội dung

Trung Tâm Ôn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xuân—Đà Lạt GV:Lê Quang Điệp Đáp Án Đề 1: Luyện thi Đại Học,CĐ Môn Toán 0974.200.379—3755.711 (Giải toán theo chương trnh mi nht ca b giáo dc) Câu I: 1) Học Sinh Tự Làm. 2) Gọi M(x o ; 0 0 2 3 2 x x − − )∈ (C) . Phương trình tiếp tuyến tại M: (∆) y = 2 0 0 2 2 0 0 2 6 6 ( 2) ( 2) x x x x x − + − + − − (∆ ) ∩ TCĐ = A (2; 0 0 2 2 2 x x − − ) ⇔ (∆ ) ∩ TCN = B (2x 0 –2; 2) 0 0 2 (2 4; ) 2 AB x x − = − − uuur ⇒ AB = 2 0 2 0 4 4( 2) 2 2 ( 2) cauchy x x − + − ≥ ⇒ AB min = 2 2 ⇔ 0 3 (3;3) 1 (1;1) o x M x M = →   = →  Câu II:(cosx –sinx)(cox 2 + sin 2 -sinxcosx) = m ⇔ (cosx –sinx)(1- sinxcosx) = m đặt t = cosx –sinx [- ⇔ sinxcosx= (1) ⇔ t( 1- )= m 1) khi m= -1 t( 1- ) = -1. ⇔ t = 1,t=2 (loại) vậy với t= -1⇔ ⇔ x 1 =- ,x 2 = (k 2) t( 1- )= m để pt có nghiêm x[-] thì t Câu III: 2) Đk x ≥ 0. đặt t = x ; t ≥ 0 (1)trở thành (m–3)t+(2-m)t 2 +3-m = 0 ⇔ 2 2 2 3 3 1 t t m t t − + = − + (2) Xét hàm số f(t) = 2 2 2 3 3 1 t t t t − + − + (t ≥ 0) Lập bảng biến thiên ⇒ (1)có nghiệm ⇔ (2) có nghiệm t ≥ 0 ⇔ 5 3 3 m≤ ≤ Câu IV:Gọi (∆) là đường thẳng cần tìm ta có:(P) ∩ (d 1 ) = A(1;1;2); (P) ∩ (d 2 ) = B(3;3;2) ⇒ (∆) 1 2 1 2 ( ) 2 x t y t t z = −   = − ∈   =  ¡ Sử dụng công thức tính khoảng cách và cm hai đường thẳng chéo nhau. Câu V: GV:Lê Quang Điệp Đáp Án Đề 2: Luyện thi Đại Học,CĐ Môn Toán 0974.200.379—3755.711 (Giải toán theo chương trnh mi nht ca b giáo dc) Câu I: 1)Học sinh tự làm. 2)Phương trình hoành độ điểm chung của (C m ) và d là: =  + + + + = + ⇔ + + + = ⇔  = + + + =  3 2 2 2 0 2 ( 3) 4 4 (1) ( 2 2) 0 ( ) 2 2 0 (2) x x mx m x x x x mx m g x x mx m (d) cắt (C m ) tại ba điểm phân biệt A(0; 4), B, C ⇔ phương trình (2) có 2 nghiệm phân biệt khác 0. ≤ − ∨ ≥  ∆ = − − >  ⇔ ⇔   ≠ − = + ≠   / 2 1 2 2 0 ( ) 2 (0) 2 0 m m m m a m g m . Mặt khác: − + = = 1 3 4 ( , ) 2 2 d K d Do đó: ∆ = ⇔ = ⇔ = ⇔ = 2 1 8 2 . ( , ) 8 2 16 256 2 KBC S BC d K d BC BC 2 2 ( ) ( ) 256 B C B C x x y y⇔ − + − = với , B C x x là hai nghiệm của phương trình (2). ⇔ − + + − + = ⇔ − = ⇔ + − = 2 2 2 2 ( ) (( 4) ( 4)) 256 2( ) 256 ( ) 4 128 B C B C B C B C B C x x x x x x x x x x Trang 1 1 Trung Tâm Ôn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xuân—Đà Lạt 2 2 1 137 4 4( 2) 128 34 0 2 m m m m m ± ⇔ − + = ⇔ − − = ⇔ = (thỏa ĐK (a)). Vậy 1 137 2 m ± = Câu II: 1)Phương trình ⇔ (cosx–sinx) 2 - 4(cosx–sinx) – 5 = 0 cos -sin -1 cos -sin 5( cos -sin 2) x x x x loai vi x x =  ⇔  = ≤  2 2 2 sin( ) 1 sin( ) sin ( ) 4 4 4 2 x k x x k Z x k π π π π π π π  = +  ⇔ − = ⇔ − = ⇔ ∈  = +  2) Từ (1) ⇒ y ≠ 0 Hệ ⇔ 3 3 3 3 2 2 27 3 8 18 (2 ) 18 4 6 3 3 1 2 . 2 3 x x y y x x x x y y y y     + = + =   ÷      ⇔       + = + =  ÷       Đặt a = 2x; b = 3 y . Ta có hệ: 3 3 3 18 1 ( ) 3 a b a b ab ab a b + = + =   ⇔   = + =   ĐS: Hệ đã cho có 2 nghiệm 3 5 6 3 5 6 ; , ; 4 4 3 5 3 5     − +  ÷  ÷     + − Câu III: 1) Ta có: I = 2 2 6 1 sin sin 2 π π × + ∫ x x dx = 2 2 6 3 cos (cos ) 2 π π − − × ∫ x d x . Đặt 3 cos cos 2 x t= × Đổi cận: Khi 2 x cos 6 2 4 t t π π = ⇒ = ⇒ = ; khi x cos 0 2 2 t t π π = ⇒ = ⇒ = . Do vậy: 2 2 4 3 sin 2 I tdt π π = × ∫ = ( ) 3 2 16 π + . 2) Tìm các giá trị của tham số thực m sao cho phương trình sau có nghiệm thực: 2 2 1 1 1 1 9 ( 2)3 2 1 0 x x m m + − + − − + + + = (1) * Đk [-1;1]x ∈ , đặt t = 2 1 1 3 x+ − ; [-1;1]x ∈ ⇒ [3;9]t ∈ Ta có: (1) viết lại 2 2 2 2 1 ( 2) 2 1 0 ( 2) 2 1 2 t t t m t m t m t t m t − + − + + + = ⇔ − = − + ⇔ = − Xét hàm số f(t) = 2 2 1 2 t t t − + − , với [3;9]t ∈ . Ta có: 2 / / 1 4 3 ( ) , ( ) 0 3 ( 2) t t t f t f t t t =  − + = = ⇔  = −  Lập bảng biến thiên t 3 9 f / (t) + f(t) 48 7 4 Căn cứ bảng biến thiêng, (1) có nghiệm [-1;1]x ∈ ⇔ (2) có nghiệm [3;9]t ∈ ⇔ 48 4 7 m≤ ≤ Trang 2 2 C S O M A B Trung Tâm Ôn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xuân—Đà Lạt Câu IV: Gọi M là trung điểm của BC và O là hình chiếu của S lên AM. Suy ra: SM =AM = 3 2 a ; · 0 60AMS = và SO ⊥ mp(ABC) ⇒ d(S; BAC) = SO = 3 4 a Gọi V SABC - là thể tích của khối chóp S.ABC ⇒ V S.ABC = 3 3 1 . 3 16 ABC a S SO ∆ = (đvtt) Mặt khác, V S.ABC = 1 . ( ; ) 3 SAC S d B SAC ∆ ∆SAC cân tại C có CS =CA =a; SA = 3 2 a ⇒ 2 13 3 16 SAC a S ∆ = Vậy: d(B; SAC) = . 3 3 13 S ABC SAC V a S ∆ = (đvđd). Câu V: *Gọi H là hình chiếu của A trên d, mặt phẳng (P) đi qua A và (P)//d, khi đó khoảng cách giữa d và (P) là khoảng cách từ H đến (P). Giả sử điểm I là hình chiếu của H lên (P), ta có HIAH ≥ => HI lớn nhất khi IA ≡ Vậy (P) cần tìm là mặt phẳng đi qua A và nhận AH làm véctơ pháp tuyến. Mặt khác, )31;;21( tttHdH ++⇒∈ vì H là hình chiếu của A trên d nên . 0 ( (2;1;3)AH d AH u u⊥ ⇒ = = uuur r r là véc tơ chỉ phương của d) )5;1;7()4;1;3( −−⇒⇒ AHH Vậy: (P): 7(x – 10) + (y – 2) – 5(z + 1) = 0 ⇔ 7x + y – 5z –77 = 0 Câu VI:Vì z = 1 + i là một nghiệm của phương trình: z 2 + bx + c = 0 ( b, c ∈ R), nên ta có : ( ) ( ) ( ) 2 0 2 1 1 0 2 0 2 0 2 b c b i b i c b c b i b c + = = −   + + + + = ⇔ + + + = ⇔ ⇔   + = =   Câu VII 3 2 2 8 1 (2 1)(4 2 1) 2 1 cauchy c c c c c+ = + − + ≤ + ⇒ 2 3 2 1 8 1 a a c c ≥ + + Tương tự, 2 2 3 3 ; 2 1 2 1 8 1 8 1 b b c c a b a b ≥ ≥ + + + + Ta sẽ chứng minh: 2 2 2 1 (1) 2 1 2 1 2 1 a b c c a b + + ≥ + + + BĐT (1) ⇔ 4(a 3 b 2 +b 3 a 2 +c 3 a 2 ) +2(a 3 +b 3 +c 3 )+2(ab 2 +bc 2 +ca 2 )+( a+b+c) ≥ ≥ 8a 2 b 2 c 2 +4(a 2 b 2 +b 2 c 2 +c 2 a 2 ) +2 (a 2 +b 2 +c 2 )+1 (2) Ta có: 2a 3 b 2 +2ab 2 ≥ 4a 2 b 2 ; …. (3) 2(a 3 b 2 +b 3 a 2 +c 3 a 2 ) ≥ 2.3. 3 5 5 5 a b c =6 (do abc =1) (4) a 3 +b 3 +c 3 ≥ 3abc =3 = 1 +2 a 2 b 2 c 2 (5) a 3 +a ≥ 2a 2 ; …. (6) Công các vế của (3), (4), (5), (6), ta được (2). Dấu bằng xảy ra khi a=b=c=1 . GV:Lê Quang Điệp Đáp Án Đề 3: Luyện thi Đại Học,CĐ Môn Toán 0974.200.379—3755.711 (Giải toán theo chương trnh mi nht ca b giáo dc) Câu I: 1)Học sinh tự giải. 2) 4 3 2 x 2x 2 x 1y x m m= + − − + (1) Đạo hàm / 3 2 2 y 4x 3mx 4x 3m (x 1)[4x (4 3m)x 3m]= + − − = − + + + Trang 3 3 Trung Tâm Ôn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xuân—Đà Lạt ° / 2 x 1 y 0 4x (4 3m)x 3m 0 (2) =  = ⇔  + + + =  ° Hàm số có 2 cực tiểu ⇔ y có 3 cực trị ⇔ y / = 0 có 3 nghiệm phân biệt ⇔ (2) có 2 nghiệm phân biệt khác 1 2 (3m 4) 0 4 m . 3 4 4 3m 3m 0  ∆ = − > ⇔ ⇔ ≠ ±  + + + ≠  Giả sử: Với 4 m 3 ≠ ± , thì y / = 0 có 3 nghiệm phân biệt 1 2 3 x , x , x ° Bảng biến thiên: x -∞ x 1 x 2 x 3 +∞ y / - 0 + 0 - 0 + y +∞ CT CĐ CT +∞ Từ bảng biến thiên ta thấy hàm số có 2 cực tiểu. Vậy, hàm số có 2 cực tiểu khi 4 m . 3 ≠ ± Câu II: 1).cos3xcos 3 x – sin3xsin 3 x = 2 3 2 8 + ⇔ cos3x(cos3x + 3cosx) – sin3x(3sinx – sin3x) = 2 3 2 8 + ⇔ ( ) 2 2 2 3 2 os 3x sin 3x+3 os3x osx sin3xsinx 2 c c c + + − = ⇔ 2 os4x , 2 16 2 c x k k Z π π = ⇔ = ± + ∈ . 2) Giải phương trình : 2x +1 +x ( ) 2 2 2 1 2x 3 0x x x+ + + + + = . (a) Đặt:  − = +   = + > = +    ⇒ ⇒    − − = + + =    = + + >    2 2 2 2 2 2 2 2 2 2 2 v u 2x 1 u x 2, u 0 u x 2 v u 1 v x 2x 3 x v x 2x 3, v 0 2 Ta có:         − − − − − − ⇔ − + + + = ⇔ − + − + + =  ÷  ÷  ÷  ÷  ÷  ÷  ÷  ÷          − =     +  ⇔ − − + + = ⇔   +    ÷  + + + =    ÷       2 2 2 2 2 2 2 2 2 2 2 2 v u 1 v u 1 v u u v u v (a) v u .u 1 .v 0 v u .u .v 0 2 2 2 2 2 2 v u 0 (b) v u 1 (v u) (v u) 1 0 v u 1 (v u) 1 0 (c) 2 2 2 2 Vì u > 0, v > 0, nên (c) vô nghiệm. Do đó: ⇔ − = ⇔ = ⇔ + + = + ⇔ + + = + ⇔ = − 2 2 2 2 1 (a) v u 0 v u x 2x 3 x 2 x 2x 3 x 2 x 2 Kết luận, phương trình có nghiệm duy nhất: x = 1 2 − . Câu III: Trang 4 4 Trung Tâm Ôn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xuân—Đà Lạt 1) + Ta có ( ) ( ) ( ) 2;0;2 , D 6; 6;6 D 3;3;0 AB AB C C  =    ⇔ = − −    = −   uuur uuur uuur uuur . Do đó mặt phẳng (P) chứa AB và song song CD có một VTPT ( ) 1;1; 1n = − r và A(-1; -1; 0) thuộc (P) có phương trình: x + y – z + 2 = 0.(P) Thử tọa độ C(2; -2; 1) vào phương trình (P) ⇒ C không thuộc (P), do đó (P) // CD. + ( ) ( ) ( ) 0 . D 1 os , D os , D , D 60 . D 2 AB C c AB C c AB C AB C AB C = = = ⇒ = uuur uuur uuur uuur 2) Theo giả thiết ta có M(m; 0; 0) ∈Ox , N(0; n; 0) ∈Oy , P(0; 0; p) ∈ Oz. Ta có : ( ) ( ) ( ) ( ) 1; 1; 1 ; ; ;0 . 1; 1; 1 ; ;0; . DP p NM m n DP NM m n DN n PM m p DN PM m p   = − − = − = +   ⇒   = − − = − = +     uuur uuuur uuur uuuur uuur uuuur uuur uuuur . Mặt khác: Phương trình mặt phẳng ( α ) theo đoạn chắn: 1 x y z m n p + + = . Vì D ∈( α ) nên: 1 1 1 1 m n p − + + = . D là trực tâm của ∆MNP ⇔ . 0 . 0 DP NM DP NM DN PM DN PM   ⊥ =   ⇔   ⊥ =     uuur uuuur uuur uuuur uuur uuuur uuur uuuur . Ta có hệ: 0 3 0 3 1 1 1 1 m n m m p n p m n p   + =  = −   + = ⇒   = =   −  + + =   .Kết luận, phương trình của mặt phẳng ( α ): 1 3 3 3 x y z + + = − . Câu IV: Tính tích phân ( ) 2 0 1 sin2xdxI x π = + ∫ . Đặt x 1 1 sin 2xdx os2x 2 du d u x dv v c =  = +   ⇒   = =    I = ( ) /2 2 2 0 0 0 1 1 1 1 os2x os2xdx 1 sin 2x 1 2 2 4 4 4 x c c π π π π π − + + = + + = + ∫ . Câu V: Giải bất phương trình: 2 2 1 2 9 1 10.3 x x x x+ − + − + ≥ . Đặt 2 3 x x t + = , t > 0. Bất phương trình trở thành: t 2 – 10t + 9 ≥ 0 ⇔ ( t ≤ 1 hoặc t ≥ 9) Khi t ≤ 1 ⇒ 2 2 3 1 0 1 0 x x t x x x + = ≤ ⇔ + ≤ ⇔ − ≤ ≤ .(1) Khi t ≥ 9 ⇒ 2 2 2 3 9 2 0 1 x x x t x x x + ≤ −  = ≥ ⇔ + − ≥ ⇔  ≥  (2) Kết hợp (1) và (2) ta có tập nghiệm của bpt là: S = (- ∞; -2]∪[-1;0]∪[1; + ∞). Câu VI: 1) 2)Ta có 2 1 3 3 4 4 2 z i= − − . Do đó: 2 1 3 1 3 1 1 0 2 2 2 2 z z i i     + + = + − + + − − =  ÷  ÷     Trang 5 5 Trung Tâm Ơn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xn—Đà Lạt Câu VII: Gọi E là trung điểm của BC, H là trọng tâm của ∆ ABC. Vì A'.ABC là hình chóp đều nên góc giữa hai mặt phẳng (ABC) và (A'BC) là ϕ = · 'A EH . Tá có : 3 3 3 E , , 2 3 6 a a a A AH HE= = = ⇒ 2 2 2 2 9 3a A' ' 3 b H A A AH − = − = . Do đó: 2 2 ' 2 3 tan A H b a HE a ϕ − = = ; 2 2 2 2 . ' ' ' 3 3 ' . 4 4 ABC ABC A B C ABC a a b a S V A H S ∆ ∆ − = ⇒ = = 2 2 2 '. 1 3 ' . 3 12 A ABC ABC a b a V A H S ∆ − = = . Do đó: ' ' ' . ' ' ' '.A BB CC ABC A B C A ABC V V V= − 2 2 2 ' ' ' 1 3 ' . 3 6 A BB CC ABC a b a V A H S ∆ − = = (đvtt) GV:Lê Quang Điệp Đáp Án Đề 4: Luyện thi Đại Học,CĐ Mơn Tốn 0974.200.379—3755.711 (Giải tốn theo chương trnh mi nht ca b giáo dc) Câu I: 1)Học Sinh Tự Làm. 2) Phương trình hoành độ giao điểm của (C m ) và đường thẳng y = 1 là: x 3 + 3x 2 + mx + 1 = 1 ⇔ x(x 2 + 3x + m) = 0 ⇔ =   + + =  2 x 0 x 3x m 0 (2) * (C m ) cắt đường thẳng y = 1 tại C(0, 1), D, E phân biệt: ⇔ Phương trình (2) có 2 nghiệm x D , x E ≠ 0. ⇔ ≠  ∆ = − >   ⇔   < + × + ≠    2 m 0 9 4m 0 4 m 0 3 0 m 0 9 Lúc đó tiếp tuyến tại D, E có hệ số góc lần lượt là: k D = y’(x D ) = + + = − + 2 D D D 3x 6x m (x 2m); k E = y’(x E ) = + + = − + 2 E E E 3x 6x m (x 2m). Các tiếp tuyến tại D, E vuông góc khi và chỉ khi: k D k E = –1. ⇔ (3x D + 2m)(3x E + 2m) = 9x D x E +6m(x D + x E ) + 4m 2 = –1 ⇔ 9m + 6m × (–3) + 4m 2 = –1; (vì x D + x E = –3; x D x E = m theo đònh lý Vi-ét). ⇔ 4m 2 – 9m + 1 = 0 ⇔ m = ( ) m 1 9 65 8 ĐS: m = ( ) ( ) − = m 1 1 9 65 hay m 9 65 8 8 Câu II: Trang 6 6 S H P C A B N  Trung Tâm Ơn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xn—Đà Lạt 1. + + =3sinx cosx 2cos3x 0 ⇔ sin π 3 sinx + cos π 3 cosx = – cos3x. ⇔ cos π   − =−     x cos3x 3 ⇔ cos π   − = π−     x cos( 3x) 3 ⇔ π π  = +  ∈  π  = + π  k x 3 2 (k Z) x k 3 ⇔ x = π π + k 3 2 (k ∈ Z) 2. Điều kiện: x ≥ 2 và y ≥ 2 : Lấy (1) trừ (2) vế theo vế ta được: 2 2 2 2 91 91 2 2x y y x y x+ − + = − − − + − 2 2 2 2 ( )( ) 2 2 91 91 x y y x y x y x y x x y − − ⇔ = + − + − + − + + + 2 2 1 ( ) 0 2 2 91 91 x y x y x y x y x y   +  ÷ ⇔ − + + + =  ÷ − + − + + =   ⇔ x = y (trong ngoặc ln dương và x va y đều lớn hơn 2) Vậy từ hệ trên ta có: 2 2 91 2x x x + = − + 2 2 91 10 2 1 9x x x ⇔ + − = − − + − 2 2 9 3 ( 3)( 3) 2 1 91 10 x x x x x x − − ⇔ = + − + − + + + 2 1 1 ( 3) ( 3) 1 0 2 1 91 10 x x x x     ⇔ − + − − =  ÷  ÷  ÷ − + + +     ⇔ x = 3 Vậy nghiệm của hệ x = y = 3 Câu III: J  − −   = = =   − ∫ ∫ b b ln10 8 x 8 2/3 1/3 3 x e 2 b e 2 e dx du 1 u 3 u e 2    − −   b 2/3 3 4 (e 2) ; 2 với u = e x – 2, du = e x dx) Suy ra: → →   = − − = =   b 2/ 3 b ln2 b ln2 3 3 lim J lim 4 (e 2) (4) 6 2 2 Câu IV: Dựng SH AB ⊥ ° Ta có: (SAB) (ABC), (SAB) (ABC) AB, SH (SAB)⊥ ∩ = ⊂ SH (ABC)⇒ ⊥ và SH là đường cao của hình chóp. ° Dựng HN BC, HP AC⊥ ⊥ · · SN BC, SP AC SPH SNH⇒ ⊥ ⊥ ⇒ = = α ° SHN = SHP   ⇒ HN = HP. ° AHP vuông có:  o a 3 HP HA.sin60 . 4 = = ° SHP vuông có:  a 3 SH HP.tg tg 4 = α = α ° Thể tích hình chóp 2 3 ABC 1 1 a 3 a 3 a S.ABC: V .SH.S . .tg . tg 3 3 4 4 16 = = α = α Trang 7 7 Trung Tâm Ơn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xn—Đà Lạt Câu V: Áp dụng bất đẳng thức Cơ- Si, ta có: 4ab ≤ (a + b) 2 1 4 a b a b ab + ⇔ ≤ + 1 1 1 ( , 0) 4 a b a b   ⇔ + ∀ >  ÷   Ta có: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 2 4 2 4 8 2 2x y z x y z x y z x y z         ≤ + ≤ + + = + +    ÷  ÷  ÷ + + +         Tương tự: 1 1 1 1 1 2 8 2 2x y z x y z   ≤ + +  ÷ + +   và 1 1 1 1 1 2 8 2 2x y z x y z   ≤ + +  ÷ + +   Vậy 1 1 1 2 2 2x y z x y z x y z + + + + + + + + 1 1 1 1 2009 4 4x y z   ≤ + + =  ÷   Vậy MaxP = 2009 4 khi x = y = z = 12 2009 Câu VI: 1) (C) có tâm I(3;0) và bán kính R = 2 M ∈ Oy ⇒ M(0;m) Qua M kẽ hai tiếp tuyến MA và MB ( A và B là hai tiếp điểm) Vậy · · 0 0 60 (1) 120 (2) AMB AMB  =   =  Vì MI là phân giác của · AMB (1) ⇔ · AMI = 30 0 0 sin 30 IA MI⇔ = ⇔ MI = 2R ⇔ 2 9 4 7m m + = ⇔ = m (2) ⇔ · AMI = 60 0 0 sin 60 IA MI⇔ = ⇔ MI = 2 3 3 R ⇔ 2 4 3 9 3 m + = Vơ nghiệm Vậy có hai điểm M 1 (0; 7 ) và M 2 (0;- 7 ) 2) (d 1 ) đi qua điểm A(0; 0; 4) và có vectơ chỉ phương 1 u (2; 1; 0)= r - (d 2 ) đi qua điểm B(3; 0; 0) và có vectơ chỉ phương 2 u (3; 3; 0)= − r AB (3; 0; 4)= − uuur ° 1 2 1 2 AB.[u ; u ] 36 0 AB, u , u= ≠ ⇒ uuur r r uuur r r không đồng phẳng. ° Vậy, (d 1 ) và (d 2 ) chéo nhau. ° Gọi MN là đường vuông góc chung của (d 1 ) và (d 2 ) ° 1 M (d ) M(2t; t; 4)∈ ⇒ , / / 2 N (d ) N(3 t ; t ; 0) ∈ ⇒ + − / / MN (3 t 2t; t t; 4)⇒ = + − − − − uuuur ° Ta có: / / / 1 / / 2 MN u 2(3 t 2) (t t) 0 M(2; 1; 4) t 1 N(2; 1; 0) t 1 3 t 2t (t t) 0 MN u   ⊥ + − − + =  = −    ⇒ ⇔ ⇒     = + − + + = ⊥       uuuur r uuuur r Trang 8 8 Trung Tâm Ơn Luyện Tốt Nghiệp Và ĐH,CD 54H Bùi Thị Xn—Đà Lạt ° Tọa độ trung điểm I của MN: I(2; 1; 2), bán kính 1 R MN 2. 2 = = ° Vậy, phương trình mặt cầu (S): 2 2 2 (x 2) (y 1) (z 2) 4.− + − + − = Câu VII: Xét phương trình Z 4 – Z 3 + 6Z 2 – 8Z – 16 = 0 Dễ dàng nhận thấy phương trình có nghiệm Z 1 = –1, sau đó bằng cách chia đa thức ta thấy phương trình có nghiệm thứ hai Z 2 = 2. Vậy phương trình trở thành: (Z + 1)(Z – 2)(Z 2 + 8) = 0 Suy ra: Z 3 = 2 2 i và Z 4 = – 2 2 i Đáp số: { } − − −1,2, 2 2 i, 2 2 i GV:Lê Quang Điệp Đáp Án Đề 5: Luyện thi Đại Học,CĐ Mơn Tốn 0974.200.379—3755.711 (Giải tốn theo chương trnh mi nht ca b giáo dc) Câu I: 1)hoc sinh tự làm. 2) Hoµnh ®é giao ®iĨm cđa ®å thÞ (C) vµ ®êng th¼ng d lµ nghiƯm cđa ph¬ng tr×nh    =−+−+ −≠ ⇔+−= + + )1(021)4( 2 2 12 2 mxmx x mx x x Do (1) cã mmmvam ∀≠−=−+−−+−>+=∆ 0321)2).(4()2(01 22 nªn ®êng th¼ng d lu«n lu«n c¾t ®å thÞ (C ) t¹i hai ®iĨm ph©n biƯt A, B Ta cã y A = m – x A ; y B = m – x B nªn AB 2 = (x A – x B ) 2 + (y A – y B ) 2 = 2(m 2 + 12) suy ra AB ng¾n nhÊt  AB 2 nhá nhÊt  m = 0. Khi ®ã 24=AB Câu II. 1) Ph¬ng tr×nh ®· cho t¬ng ®¬ng víi 9sinx + 6cosx – 6sinx.cosx + 1 – 2sin 2 x = 8  6cosx(1 – sinx) – (2sin 2 x – 9sinx + 7) = 0  6cosx(1 – sinx) – (sinx – 1)(2sinx – 7) = 0  (1-sinx)(6cosx + 2sinx – 7) = 0     =−+ =− )(07sin2cos6 0sin1 VNxx x  π π 2 2 kx += 2) §K:    ≥−− > 03loglog 0 2 2 2 2 xx x BÊt ph¬ng tr×nh ®· cho t¬ng ®¬ng víi )1()3(log53loglog 2 2 2 2 2 −>−− xxx ®Ỉt t = log 2 x, BPT (1)  )3(5)1)(3()3(532 2 −>+−⇔−>−− tttttt    << −≤ ⇔    << −≤ ⇔         −>−+ > −≤ ⇔ 4log3 1log 43 1 )3(5)3)(1( 3 1 2 2 2 x x t t ttt t t     << ≤< ⇔ 168 2 1 0 x x VËy BPT ®· cho cã tËp nghiƯm lµ: )16;8(] 2 1 ;0( ∪ Câu III. ∫ ∫ == xx dx xxx dx I 23233 cos.2sin 8 cos.cos.sin ®Ỉt tanx = t Trang 9 9 A1 A B C C1 B1 K H Trung Tõm ễn Luyn Tt Nghip V H,CD 54H Bựi Th Xuõn Lt dt t t t t dt I t t x x dx dt + = + = + == 3 32 3 2 22 )1( ) 1 2 ( 8 1 2 2sin; cos C x xxxdtt t tt dt t ttt +++=+++= +++ = 2 2433 3 246 tan2 1 tanln3tan 2 3 tan 4 1 ) 3 3( 133 Cõu IV. Do )( 111 CBAAH nên góc HAA 1 là góc giữa AA 1 và (A 1 B 1 C 1 ), theo giả thiết thì góc HAA 1 bằng 30 0 . Xét tam giác vuông AHA 1 có AA 1 = a, góc HAA 1 =30 0 2 3 1 a HA = . Do tam giác A 1 B 1 C 1 là tam giác đều cạnh a, H thuộc B 1 C 1 và 2 3 1 a HA = nên A 1 H vuông góc với B 1 C 1 . Mặt khác 11 CBAH nên )( 111 HAACB Kẻ đờng cao HK của tam giác AA 1 H thì HK chính là khoảng cách giữa AA 1 và B 1 C 1 Ta có AA 1 .HK = A 1 H.AH 4 3 . 1 1 a AA AHHA HK == Cõu V: áp dụng bất đẳng thức Cô si cho 2005 số 1 và 4 số a 2009 ta có )1(.2009 20091 11 42009 20092009200920092009200920092009 2005 aaaaaaaaa =+++++++ Tơng tự ta có )2(.2009 20091 11 42009 20092009200920092009200920092009 2005 bbbbbbbbb =+++++++ )3(.2009 20091 11 42009 20092009200920092009200920092009 2005 ccccccccc =+++++++ Cộng theo vế (1), (2), (3) ta đợc )(20096027 )(2009)(46015 444 444200920092009 cba cbacba ++ +++++ Từ đó suy ra 3 444 ++= cbaP Mặt khác tại a = b = c = 1 thì P = 3 nên giá trị lớn nhất của P = 3. Cõu VI: 1)Từ phơng trình chính tắc của đờng tròn ta có tâm I(1;-2), R = 3, từ A kẻ đợc 2 tiếp tuyến AB, AC tới đờng tròn và ACAB => tứ giác ABIC là hình vuông cạnh bằng 3 23= IA = = == 7 5 6123 2 1 m m m m 2) Gọi H là hình chiếu của A trên d, mặt phẳng (P) đi qua A và (P)//d, khi đó khoảng cách giữa d và (P) là khoảng cách từ H đến (P). Giả sử điểm I là hình chiếu của H lên (P), ta có HIAH => HI lớn nhất khi IA Vậy (P) cần tìm là mặt phẳng đi qua A và nhận AH làm véc tơ pháp tuyến. Trang 10 10 [...]... (2;1;3) là véc tơ chỉ phơng của d) H (3;1;4) AH ( 7;1;5) Vậy(P): 7(x - 10) + (y - 2) - 5(z + 1) = 0 7x + y -5z -77 = 0 Cõu VII: GV:Lờ Quang ip 0974.200.3793755.711 Cõu I: 1)Hc sinh t lm ỏp n 6: Luyn thi i Hc,C Mụn Toỏn (Gii toỏn theo chng trinh mi nhõt cua bụ giỏo duc) x = 0 y' = 3x 2 3mx = 3x( x m) = 0 x = m 2)Tacó ta thấy với m 0 thì y đổi dấu khi đi qua các nghiệm do vậy hàm số có CĐ,CT 1... V H,CD -54H Bựi Th Xuõn Lt ( a + 5 ; b 5 ) (d) 3a b =4 (3) 3 Trng tõm G 3 3 r=S = p 2 +2 5 (2), (3) C(1; 1) S= 3 2 + 65 + 89 t (1), (3) C(2; 10) r = p Do cụng vic lờn ỏp ỏn tm thi cha xong.cỏc bn cú th tham kho bi trong trang sau: http://ctk29cdonline.com Trang 12 . Thị Xuân—Đà Lạt GV:Lê Quang Điệp Đáp Án Đề 1: Luyện thi Đại Học, CĐ Môn Toán 0974.200.379—3755.711 (Giải toán theo chương trnh mi nht ca b giáo dc) Câu I: 1) Học Sinh Tự Làm. 2) Gọi M(x o ;. nhau. Câu V: GV:Lê Quang Điệp Đáp Án Đề 2: Luyện thi Đại Học, CĐ Môn Toán 0974.200.379—3755.711 (Giải toán theo chương trnh mi nht ca b giáo dc) Câu I: 1 )Học sinh tự làm. 2)Phương trình. khi a=b=c=1 . GV:Lê Quang Điệp Đáp Án Đề 3: Luyện thi Đại Học, CĐ Môn Toán 0974.200.379—3755.711 (Giải toán theo chương trnh mi nht ca b giáo dc) Câu I: 1 )Học sinh tự giải. 2) 4 3 2 x 2x

Ngày đăng: 04/07/2014, 21:00

TỪ KHÓA LIÊN QUAN

w