1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập phương trình, bất phương trình pdf

11 418 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 243,5 KB

Nội dung

C©u 1 Gi¶I hÖ ph¬ng tr×nh:    +=+ +=+ xy yx y x 322 322 A) (1,3) B) (3,1) C) (3,3) D) (1,1) §¸p ¸n D C©u 2 Gi¶i c¸c ph¬ng tr×nh: log 3 ( ) 2 5 1 223 13 2 2 =       +++− −−xx xx A) X=1 vµ x=2 B) X=4 vµ x=8 C) X= 2 5 vµ X= 5 4 D) X= 2 53 ± §¸p ¸n D C©u 3 Gi¶i ph¬ng tr×nh sau ( ) ( ) 42log232 2 2 2 5 4 −−=−− xxxxLog A) x = 1 vµ x = -2 B) x = 1± C) x = 4 vµ x = -1 D) x = 4 vµ x = -2 §¸p ¸n D C©u 4 Cho ph¬ng tr×nh: ax a aaxx + − =− −++ 2 23 342 2 Gi¶i ph¬ng tr×nh víi a = 0 A) x = 0 vµ x = -2 B) x = 2 C) x = 1 và x = 2 D) x = 0 và x = 1 Đáp án B Câu 5 Cho phơng trình: ax a aaxx + = ++ 2 23 342 2 Hãy tìm a sao cho phơng trình trên có đúng hai nghiệm phân biệt thuộc đoạn [-4,0]. A) [ ] [ ] 7,31,0 a B) [ ] { } 4\7,3a C) [ ] { } 2\3,1a D) ( ] [ ) + ,31,a Đáp án C Câu 6 Giải hệ phơng trình: ( ) = = yx xyx 4 3 1 11 A) (1,4) B) (4,1) C) (1,0) D) (0,1) Đáp án C Câu 7 GiảI hệ phơng trình: +=+ +=+ xy yx 32 32 log13log log13log A) 1, 4 11 B) 4 11 ,1 C) (1,1) D) 4 11 , 4 11 Đáp án C Câu 8 Cho hệ phơng trình: =++ = 0626 lnln 22 mymxyx xyyx Giải hệ phơng trình với m = 1 A) (1,3) và (3,1) B) (1,3) và (3,3) C) (1,1) và (3,3) D) (1,1) và (3,1) Đáp án C Câu 9 Cho hệ phơng trình: =++ = 0626 lnln 22 mymxyx xyyx Xác định m để hệ có hai cặp nghiệm phân biệt. A) m > 2 1 B) m > 2 3 C) 2 2 1 << m D) 10 << m Đáp án B Câu 10Cho hệ phơng trình: = =++ yxyx mxxyx sinsin 052 2 Giải hệ phơng trình với m = 2 A) (0,0) và ( , ) B) (0, ) và ( 0, ) C) (1, 3 2 ) vµ ( 3 2 ,1) D) (1,1) vµ ( 3 2 , 3 2 ) §¸p ¸n D C©u 11Cho hÖ ph¬ng tr×nh:    −=− =+−+ yxyx mxxyx sinsin 052 2 T×m m ®Ó hÖ cã hai nghiÖm víi tung ®é tr¸i dÊu. A) m > 1 B) m < 0 C) m ≥ 2 1 D) V« nghiÖm. §¸p ¸n B C©u 12Gi¶i bÊt ph¬ng tr×nh sau: 1log 2 >+ xx A) x > 0 B) x > 1 C) x > 2 D) 0 < x < 2 §¸p ¸n B C©u 13Gi¶i bÊt ph¬ng tr×nh sau: 0 24 233 2 ≥ − −+ − x x x A) x ≤ 0 B) x ≥ 2 C) 0 ≤ x ≤ 2 1 D) 2 1 < x ≤ 2 §¸p ¸n D C©u 14Gi¶i bÊt ph¬ng tr×nh sau: 07623 23 >−++−− xxxx A) x > 2 B) x > 1 C) x < 2 D) 1 < x < 2 §¸p ¸n B C©u 15Gi¶i bÊt ph¬ng tr×nh sau: ( ) 141561124 232 −+−>+−− xxxxxx A) x = 1 B) x > 6 C) Mäi x D) V« nghiÖm. §¸p ¸n C C©u 16Gi¶i bÊt ph¬ng tr×nh: 1311632 22 −−−>+−−+− xxxxxx A) x ≤ -2 B) x ≥ 4 C) 1 ≤ x ≤ 3 D) 2 < x ≤ 3 §¸p ¸n D C©u 17Gi¶i hÖ bÊt ph¬ng tr×nh sau:      =++− −−≥ + 02 1 yxx yxx yx A) (x,-x) víi x ≥ 1 B) (2,y) víi y ≥ -2 C) (x,-x) víi x ≤ 1 D) (x,2) víi x ≥ -2 §¸p ¸n D C©u 18Gi¶i hÖ bÊt ph¬ng tr×nh sau:      >++− <− 0953 3 0loglog 2 3 2 2 2 2 xx x xx A) 1 < x < 4 B) 0 < x < 1 C) x > 4 D) x < 0 §¸p ¸n A C©u 19Gi¶i hÖ bÊt ph¬ng tr×nh sau: ( )          −< + =+ 4 cos1 16 cos 1 16 sin log 4 1 log 2 4 6 x x x xxx π π π A) x = 1 B) x = 81 C) x = 27 D) x = 16 §¸p ¸n D C©u 20Gi¶i ph¬ng tr×nh sau: xxx 4.253 =+ A) x = 0 vµ x = 2 B) x = 2± C) x = -2 vµ x = 1 D) x = 0 vµ x = 1 §¸p ¸n D C©u 21Gi¶i ph¬ng tr×nh sau: x xx cos23 coscos =− A) Zkkx ∈= , π B) π π kx 2 3 += vµ Zkkx ∈+= ,2 4 π π C) π kx 2= vµ Zkkx ∈+= ,2 6 π π D) π π kx 2 2 += vµ Zkkx ∈= ,2 π §¸p ¸n D C©u 22Gi¶i ph¬ng tr×nh sau: 224 33 loglog =+ xx A) x = 1 vµ x = 3 B) x = -1 vµ x = 9 C) x = 3 1 vµ x = 1 D) x = 3 1 vµ x = 9 §¸p ¸n A C©u 23Gi¶i ph¬ng tr×nh sau: x x x 253 4 log 4log =+ A) x = 0 vµ x = 4 B) x = 1 vµ x = 4 C) x = 0 vµ x = 4 1 D) x = 1 vµ x = 4 1 §¸p ¸n B C©u 24Gi¶i ph¬ng tr×nh sau: 13 4 log −=− xx x A) x = 1 vµ x = 4 1 B) x = 6 1 vµ x = 16 C) x = 3 và x = 16 D) x = 1 và x = 4 Đáp án D Câu 25Giải phơng trình sau: 132 1 2 += + x x A) x = 1 B) x = 0 C) x = -1 D) Vô nghiệm Đáp án B Câu 26 Cho hàm số: kxkkxy 21)1( 24 ++= Xác định giá trị của tham số k để hàm số chỉ có một điểm cực trị. A) ( ) 1,0k B) )1,1(k C) ( ] [ ) + ,10,k D) ( ] [ ) + ,11,k Đáp án C Câu 27Cho hàm số: 2 3 1 2 1 34 += mxxxy Tìm m để đồ thị hàm số có cực đại, cực tiểu. A) m > 2 1 B) 0 < m < 2 1 C) m < - 27 1 D) - 0 27 1 << m Đáp án D Câu 28Xác định giá trị của tham số m để các hàm số sau có cực trị: mx mmxx y + + = 2 2 , với m là tham số. A) m > 2 B) m < 0 C) 0 < m < 1 D) -1 < m < 0 Đáp án D Câu 29Cho hàm số: 1 2 2 + = mx mxx y Xác định m để hàm số có cực trị A) 1<m B) 2>m C) 1<m<2 D) -2<m<1 Đáp án A Câu 30Cho hàm số: 1 2 2 + = mx mxx y Xác định m để hàm số có cực đại, cực tiểu với hoành độ thoả mãn x 1 +x 2 =4x 1 x 2 A) m= 2 1 B) m= 2 5 C) m= 2 3 D) m= 2 3 Đáp án A Câu 31Cho hàm số: 1 2 2 + = mx mxx y Xác định m để hàm số có cực đại, cực tiểu với hoành độ dơng. A) 0<m<1 B) m>2 C) 0<m<2 D) -2<m<0 Đáp án A Câu 32Cho hàm số: ( ) ( ) mx mmmxxm y + = 221 232 Tìm m để hàm số có cực đại, cực tiểu trong khoảng (0,2). A) m>1 B) m<3 C) 0<m<1 D) Vô nghiệm. Đáp án D Câu 33Cho hàm số: ( ) mx mmxmmx y + ++++ = 322 41 Xác định m để đờng thẳng đi qua điểm cực đại và cực tiểu của hàm số tiếp xúc với đ- ờng tròn ( ) ( ) 511 22 =++ yx A) m=0 B) m=1 C) m=-1 D) Vô nghiệm. Đáp án C Câu 34Cho hàm số: 1 42 2 + ++ = x xx y Lập phơng trình parabol (P) đi qua điểm cực đại, cực tiểu của đồ thị hàm số và tiếp xúc với đờng thẳng (d): 6x-y-1 = 0 [...]... và (P2): y = 4 2 14 2 x + x 3 3 3 D) (P1): y = x 2 4 x + 2 và (P2): y = 1 2 2 x + x 1 3 3 Đáp án C Câu 35Lập phơng trình đờng thẳng đi qua các điểm cực đại và cực tiểu của đồ thị hàm số: y = x 3 3x 2 9 x + 5 A) x-2y+1=0 B) 2x-y+1=0 C) 8x-y+18=0 D) x-8y+18=0 Đáp án C Câu 36Lập phơng trình đờng thẳng đi qua các điểm cực đại và cực tiểu của đồ thị hàm số: 1 y = x3 x 2 x + 3 3 A) 3x+4y-8=0 B) x-3y+2=0 . Cho hệ phơng trình: =++ = 0626 lnln 22 mymxyx xyyx Giải hệ phơng trình với m = 1 A) (1,3) và (3,1) B) (1,3) và (3,3) C) (1,1) và (3,3) D) (1,1) và (3,1) Đáp án C Câu 9 Cho hệ phơng trình: =++ = 0626 lnln 22 mymxyx xyyx Xác. } 23,1a D) ( ] [ ) + ,31,a Đáp án C Câu 6 Giải hệ phơng trình: ( ) = = yx xyx 4 3 1 11 A) (1,4) B) (4,1) C) (1,0) D) (0,1) Đáp án C Câu 7 GiảI hệ phơng trình: +=+ +=+ xy yx 32 32 log13log log13log A) . = 2 C) x = 1 và x = 2 D) x = 0 và x = 1 Đáp án B Câu 5 Cho phơng trình: ax a aaxx + = ++ 2 23 342 2 Hãy tìm a sao cho phơng trình trên có đúng hai nghiệm phân biệt thuộc đoạn [-4,0]. A) [ ]

Ngày đăng: 04/07/2014, 17:20

TỪ KHÓA LIÊN QUAN

w