Đề thi thử đại học môn toán,đề mới cập nhật năm 2014. Kiến thức đưa ra bam sát chương trình học và cũng có một số câu khó dành cho học sinh khá và giỏi. Giúp cải thiện kiến thức cho học sinh và giúp học sinh vượt qua ki thi một cách dễ dàng hơn.
TRƯỜNGTHPTCHUYÊNNĐC ĐỀTHITHỬĐẠIHỌCVÀCAOĐẲNGNĂM2014 Môn:TOÁN;KhốiAKhốiA 1 KhốiB ĐỀTHITHỬLẦN2 Thờigianlàmbài:180phút,khôngkểphátđề I. PHẦNCHUNGCHOTẤTCẢCÁCTHÍSINH(7,0điểm) Câu1: (2,0điểm)Chohàmsố 4 2 2 2y x mx = - + (1) 1) Khảosátsựbiếnthiênvàvẽđồthịcủahàmsố(1)khim=1. 2) Tìmtấtcảgiátrịthựccủamđểđồthịcủahàmsố(1)có3cựctrịtạothànhmộttamgiáccóđườngtròn ngoạitiếpđiquađiểm 3 9 ; 5 5 D æ ö ç ÷ è ø . Câu2: (1,0điểm) Giảiphươngtrìnhlượnggiác: 2 2 2 cos 3 3cos 2 cos cos 2 2x x x x + + + = Câu3: (1,0điểm) Giảihệphươngtrình: ( ) 2 2 2 2 2 2 2 4 9.3 4 9 .7 4 4 4 4 2 2 4 x y x y y x x x y x - - - + ì + = + ï í ï + = + - + î Câu4: (1,0điểm) Tínhtíchphân: 2 4 sin x cos x I dx 3 sin 2x p p + = + ò Câu5:(1,0điểm) ChohìnhchópS.ABCDcóđáyABCDlàhìnhvuông,SA ^ (ABCD), SA a = .Diệntíchtam giácSBCbằng 2 2 2 a .TínhthểtíchkhốichópS.ABCDtheo a .GọiI,JlầnlượtlàtrungđiểmcáccạnhSBvà SD.TínhkhoảngcáchgiữahaiđườngthẳngAIvàCJ. Câu6: (1,0điểm) Chocácsốthựckhôngâm , ,a b c thỏa 3a b c + + = .Tìmgiátrịlớnnhấtcủabiểuthức: ( )( )( ) 2 2 2 2 2 2 P a ab b b bc c c ca a = - + - + - + II. PHẦNRIÊNG(3,0điểm) Thísinhchỉđượclàmm ộttronghaiphần(phầnAhoặcB). A.TheochươngtrìnhChuẩn. Câu7a:(1,0điểm) TrongmặtphẳngtoạđộOxy,chohaiđườngthẳng 1 : 1 0d x y + + = ; 2 : 2 1 0d x y - - = .Lập phươngtrình đườngthẳngquađiểm (1; 1)M - cắt 1 2 ,d d tươngứngtạiAvàBsaocho 2 0MA MB + = uuur uuur r Câu8a:(1,0điểm) Trongkhônggiantọađộ Oxyz ,chohaiđườngthẳngcắtnhau 1 3 3 3 : 2 2 1 x y z d - - - = = ; 2 1 1 2 : 6 3 2 x y z d - - - = = ,gọiIlàgiaođiểmcủachúng.TìmtọađộcácđiểmA,Blầnlượtthuộc 1 2 ;d d saocho tamgiácIABcântạiIvàcódiệntíchbằng 41 42 Câu9a: (1,0điểm) Chosốphứczthỏamãn 2 2 1 z i z i + - = + - .Tìmgiátrịnhỏnhấtvàgiátrịlớnnhấtcủa z B.TheochươngtrìnhNângcao. Câu7b.(1,0điểm) TrongmặtphẳngtoạđộOxy, chotamgiácABCcóphươngtrình đườngcaoAH: 3 3x = , haiphươngtrìnhđườngphângiáctronggóc và lầnlượtlà 3 0x y - = và 3 6 3 0x y + - = .Bánkính đườngtrònnộitiếptamgiácbằng3.ViếtphươngtrìnhcáccạnhcủatamgiácABC,biếtđỉnhAcótungđộ dương. Câu8b.(1,0điểm) TrongkhônggiantọađộOxyz ,chobađiểmA(0;1;1);B(2;1;1);C(4;1;1)vàmặtphẳng ( ) : 6 0P x y z + + - = .Tìm điểmMtrênmặtphẳng(P)saocho 2MA MB MC + + uuur uuur uuuur đạtgiátrịnhỏnhất. Câu9b.(1,0điểm) Tìmsốhạngkhôngchứaxtrongkhaitriểncủanhịthức 2 3 1 n x x æ ö + ç ÷ è ø biếtrằng: 1 2 3 20 2 1 2 1 2 1 2 1 2 1 n n n n n C C C C + + + + + + + + = - . HẾT Thísinhkhôngđượcsửdụngtàiliệu Cánbộcoithikhônggiảithíchgìthêm www.VNMATH.com PNTHITHIHCLNIIKHIAA 1 BNM2014 Cõu Nidung im Chohms 4 2 2 2y x mx = - + (1) 1)Khosỏtsbinthiờnvv thcahms (1)khim=1. Khim=1tacú 4 2 2 2y x x = - + ã TX:D=R lim x y đ+Ơ = +Ơ lim x y đ-Ơ = +Ơ ã 3 2 0 2 ' 4 4 4 ( 1) 0 1 1 x y y x x x x x y = ị = ộ = - = - = ờ = ị = ở ã Bngbinthiờn: x Ơ 1 - 0 1 +Ơ y  0 + 0 0 + y +Ơ 2 +Ơ 1 1 HmsBtrờncỏckhong( 10),(1 ) - +Ơ ,NBtrờncỏckhong( 1),(01) -Ơ - Hmstcci:y C =2tix C =0.Hmstcctiu 1 CT y = ti 1 CT x = . ã th Cõu 1 2)Tỡmttcgiỏtrthccam thcahms (1)cú3cctrtothnh mttamgiỏccúngtrũnngoitipiquaim 3 9 5 5 D ổ ử ỗ ữ ố ứ . 3 2 ' 4 4 4 ( )y x mx x x m = - = - .iukincú3cctrlm>0 Khiú3cctrl ( ) ( ) ( ) 2 2 02 2 C 2A B m m m m - + - - + TamgiỏcABCcõnti A TõmIcangtrũn(ABC)nmtrờntrctung (0 y)I ị Tacú 2 1 1 02 2 2 IA IB I m m ổ ử = ị - - ỗ ữ ố ứ ngtrũn(ABC)qua 3 9 5 5 D ổ ử ỗ ữ ố ứ 2 2 2 2 2 3 1 1 1 1 1 5 5 2 2 2 2 ID IA m m m m ổ ử ổ ử ổ ử = + - - = + ỗ ữ ỗ ữ ỗ ữ ố ứ ố ứ ố ứ 2 1 1 1 0 1 2 2 m m m + - = = hoc 5 1 2 m - = (dom>0) (2im) 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 Giiphngtrỡnhlnggiỏc: 2 2 2 cos 3 3cos 2 cos cos 2 2x x x x + + + = Cõu 2 Phngtrỡnhóchotngngvi: cos 6 3cos 4 3cos 2 1 0x x x + + + = (1im) 0.25 0.25+0.25 www.VNMATH.com tt=cox2xtacúphng trỡnh: 3 2 1 cos 2 1 2 3 1 0 1 1 cos 2 2 2 t x t t t x = - = - ộ ộ ờ ờ + - = ờ ờ = = ở ở Phngtrỡnhóchocúnghim : 2 x k p p = + 6 x k p p = + 0.25 Giihphngtrỡnh: ( ) 2 2 2 2 2 2 2 4 9.3 4 9 .7 (1) 4 4 4 4 2 2 4(2) x y x y y x x x y x - - - + ỡ + = + ù ớ ù + = + - + ợ Cõu 3 k: 2 0x y - + .t 2 2t x y = - ( ) 2 2 (1) 4 3 4 9 .7 t t t + - + = + 2 2 2 2 4 3 4 3 ( 2) (2 ) 7 7 t t t t f t f t + + + + = + = Trongú 4 3 1 3 ( ) 4 7 7 7 x x x x f x + ổ ử ổ ử = = + ỗ ữ ỗ ữ ố ứ ố ứ lhmsgimtrờnR Doútacú: 2 2 2 2 2 2t t t x y + = = - = Tú 2 (1) 2 2y x = - thayvophngtrỡnh(2)tacú: 2 1 2 4 4 4 4 2 2 4 1 ( 1) 1 x x x x x x x - + = + - + = - + - + t 1u x = - khiú 2 (2) 4 1 u u u = + + Mtkhỏctacú ( )( ) 2 2 1 1 1u u u u + + - + + = v 2 4 1 u u u - = - + + Nờntacúphngtrỡnh: 4 4 2 0 u u u - - - = (3) Xộthms: ( ) 4 4 2 u u g u u u - = - - " ẻĂ tacú: '( ) (4 4 )ln 4 2 0 u u g u u - = + - > " ẻ Ă Nờnhsg(u)luụnngbintrờnR,ngoiratacú:g(0)=0nờnpt(3)cúnghim duynhtu=0.Khiútacú : 1 1 2 x y = ị = - Vyhphngtrỡnhóchocúmtnghim : 1 ( ) 1 2 x y ổ ử = - ỗ ữ ố ứ (1im) 0.25 0.25 0.25 0.25 Tớnhtớchphõn: p p + = + ũ 2 4 sinx cosx I dx 3 sin2x Cõu 4 I= p p + + ũ 2 4 sin x cosx dx 3 sin2x = p p + - - ũ 2 4 sinx cosx dx 4 (1 sin2x) tt=sinxcosx ị dt=(cosx+sinx)dx. icn: x= 2 p ị t=1 x= 4 p ị t=0 ị I= - ũ 1 2 0 dt 4 t ,tt=2sinu 0 2 u p ộ ự ẻ ờ ỳ ở ỷ ị dt=cosudu icn:t =0 ịu=0,t =1 ịu= 6 p ịI= p p p p = = = - ũ ũ 6 6 6 2 2 2 0 0 0 2cosudu 2cosu du u 2cosu 6 2 2 sin u (1im) 0.25 0.25 0.25 0.25 ChohỡnhchúpS.ABCDcúỏyABCDlhỡnhvuụng,SA ^ (ABCD),SA=a.Din tớchtamgiỏcSBCbng 2 2 2 a Cõu 5 TớnhthtớchkhichúpS.ABCDtheoa. GixldicnhhỡnhvuụngABCD.TamgiỏcSBCvuụngtiBcú (1im) www.VNMATH.com 2 2 2 1 1 2 . . 2 2 2 SBC a S SB BC x a x x a = = + = = Vy: 3 . 1 . 3 3 S ABCD ABCD a V S SA = = (vtt) GiI,JlnltltrungimcỏccnhSBvSD.Tớnhkhongcỏchgiahai ngthngAIvCJ. DnghtrcAxyznhhỡnhvtacú:A(000)C(aa0) 0 2 2 a a I ổ ử ỗ ữ ố ứ 0 2 2 a a J ổ ử ỗ ữ ố ứ , ( , ) , AI CJ AC d AI CJ AI CJ ộ ự ở ỷ = ộ ự ở ỷ uur uuur uuur uur uuur Vi 2 2 2 3 , 4 4 4 a a a AI CJ ổ ử ộ ự = - - ỗ ữ ở ỷ ố ứ uur uuur ( 0)AC a a = uuur 3 2 2 2 ( , ) 11 11 4 a a d AI CJ a = = 0.25 0.25 0.25 0.25 Chocỏcsthckhụngõma,b,ctha 3a b c + + = .Tỡmgiỏtrlnnhtcabiu thc: ( )( )( ) 2 2 2 2 2 2 P a ab b b bc c c ca a = - + - + - + Cõu 6 Khụngmttớnhtngquỏt,tagis: 0 3a b c Ê Ê Ê Ê Suyra 2 2 2 2 2 2 ( ) 0 ( ) 0 a a b a ab b b a a c a ac c c - Ê ỡ - + Ê ỡ ớ ớ - Ê - + Ê ợ ợ Doú ( ) ( ) 2 2 2 2 2 2 2 ( ) 3P b c b bc c b c b c bc Ê - + = + - T 3 0 3 a b c a b c + + = ỡ ớ Ê Ê Ê Ê ợ tacú 3b c a b c + Ê + + = Doú: 9 2 3 0 4 bc b c bc Ê + Ê Ê Ê Tú: ( ) 2 2 2 2 3 3 2 3 9 3 9 3 9 3P b c bc b c b c t t Ê - = - = - vi 9 0 t 4 t bc = Ê Ê LpBBThs: 2 3 ( ) 9 3f t t t = - vi 9 0 t 4 Ê Ê tac ( ) 12 12f t P Ê ị Ê Vy:MaxP=12tcti( ) (012)a b c = vcỏchoỏnvcachỳng (1im) 0.25 0.25 0.25 0.25 Chohaingthng 1 : 1 0d x y + + = 2 : 2 1 0d x y - - = .Lpphngtrỡnhng thngquaim (1 1)M - ct 1 2 ,d d tng ngtiAvBsaocho 2 0MA MB + = uuur uuur r Cõu 7a 1 1 1 ( 1 )A d A t t ẻ ị - - 2 2 2 ( 1 2 )B d B t t ẻ ị - + 1 2 1 2 1 2 2( 1) ( 1) 0 2 0 1 2( 1 1) ( 1 2t 1) 0 t t MA MB t t t - + - = ỡ + = = = ớ - - + + - + + = ợ uuur uuur r PhngtrỡnhngthngquaABcntỡml:x=1. (1im) 0.25 0.25+0.25 0.25 Cho 1 3 3 3 : 2 2 1 x y z d - - - = = 2 1 1 2 : 6 3 2 x y z d - - - = = ,giIlgiaoimcachỳng. TỡmtacỏcimA,Blnlt ẻ 1 2 d d saochoD IABcõntiIvcúdintớch bng 41 42 Cõu 8a GiaoimI(112) 1 d cúVTCP 1 (221)u = ur 2 d cúVTCP 2 (632)u = uur (1im) 0.25 z y x a J I A B C D S www.VNMATH.com Gi j lgúcgia 1 2 d d ,tacú: 1 2 1 2 . 20 41 cos sin 21 21 . u u u u j j = = ị = ur uur ur uur 1 41 . .sin 1 2 42 IAB S IA IB IA IB j = = ị = = 1 (3 2 3 2 3 )A d A t t t ẻ ị + + + 2 2 2 2 4 1 (2 2t) (2 2 t) (1 t) 1 3 3 IA t t = + + + + + = = - = - Vi 2 3 t = - tac 5 5 7 3 3 3 A ổ ử ỗ ữ ố ứ ,vi 4 3 t = - tac 1 1 5 3 3 3 A ổ ử ỗ ữ ố ứ Tngt,tatỡm c 13 10 16 7 7 7 B ổ ử ỗ ữ ố ứ v 1 4 12 7 7 7 B ổ ử ỗ ữ ố ứ Vytỡm c4cpimA,Bnhsau: 5 5 7 3 3 3 A ổ ử ỗ ữ ố ứ v 13 10 16 7 7 7 B ổ ử ỗ ữ ố ứ 5 5 7 3 3 3 A ổ ử ỗ ữ ố ứ v 1 4 12 7 7 7 B ổ ử ỗ ữ ố ứ 1 1 5 3 3 3 A ổ ử ỗ ữ ố ứ v 13 10 16 7 7 7 B ổ ử ỗ ữ ố ứ 1 1 5 3 3 3 A ổ ử ỗ ữ ố ứ v 1 4 12 7 7 7 B ổ ử ỗ ữ ố ứ 0.25 0.25 0.25 Chosphczthamón 2 2 1 z i z i + - = + - .Tỡmgiỏtrnhnhtvgiỏtrlnnhtca z Cõu 9a Gis z x yi = + .Tgt 2 2 1 z i z i + - = + - 2 ( 1) 2 1 ( 1)x y i x y i + + - = + - + ( ) 2 2 2 2 2 2 ( 2) ( 1) 2 ( 1) ( 1) ( 3) 10x y x y x y + + - = + + + + + = TphpbiudincazlngtrũntõmI(03)bỏnkớnh 10R = .GiMl imbiudincaz.Tacú: 10 3 10 3IM IO OM IM IO OM - Ê Ê + - Ê Ê + min min 10 3z OM = - max max 10 3z OM = + (1im) 0.25 0.25 0.25 0.25 TamgiỏcABC,ngcaoAH: 3 3x = ,phngtrỡnh ngphõngiỏctronggúc v lnltl 3 0x y - = v 3 6 3 0x y + - = .Bỏnkớnhngtrũnni tiptamgiỏcbng3.VitphngtrỡnhcỏccnhcatamgiỏcABC,bitnhAcú tungdng. Cõu 7b ã ChngminhtamgiỏcABCu ã DongcaoAH: 3 3x = nờntBCsongsonghoctrựngvitrchonh Ox.Tõmngtrũnnitip (3 33)I ,bỏnkớnhbng3 ị ptBC:y=0hoc y=6 ã NuptBC:y=6thỡtung caAbng 3(loi) ị ptBC:y=0.Tacỏc imB(00) C(6 30) ã ngthngABcúhsgúc 3k = ,ngthngACcúhsgúc ' 3k = - . Phngtrỡnhlnltl 3y x = v 3 18y x = - + (1im) 0.25 0.25 0.25 0.25 ChobaimA(011)B(211)C(411)vmtphng( ) : 6 0P x y z + + - = . Tỡm imMtrờnmtphng(P)saocho 2MA MB MC + + uuur uuur uuuur tgiỏtrnhnht. Cõu 8b GiI,J,KlnltltrungimAB,BC,IJ,tacúI(101)J(301)K(201) Khiú 2 ( ) ( ) 2 4T MA MB MC MA MB MB MC M I MJ MK = + + = + + + = + = uuur uuur uuuur uuur uuur uuur uuuur uuur uuur uuuur Nhvy:TtGTNNkhiMlhỡnhchiucaKtrờn(P) (1im) 0.25 0.25 0.25 0.25 www.VNMATH.com TacóptđtquaKvàvuônggóc(P)làd: 2 1 x t y t z t = + ì ï = í ï = + î Giaocủadvà(P)làM(3;1;2) Tìmsốhạngkhôngchứaxtrongkhaitriểncủanhịthức 2 3 1 n x x æ ö + ç ÷ è ø biếtrằng: 1 2 3 20 2 1 2 1 2 1 2 1 2 1 n n n n n C C C C + + + + + + + + = - Câu 9b Theotínhchấtcủa k n C tacó: 1 2 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 ; ; n n n n n n n n n n C C C C C C - + + + + + + + = = = Dođó: 1 2 1 2 2 20 2 1 2 1 2 1 2 1 2 1 2 1 ( ) ( ) 2(2 1) n n n n n n n n n n C C C C C C + + + + + + + + + + + + + + + = - (1) Mặtkháctacó 0 2 1 2 1 2 1 1 n n n C C + + + = = nên 0 1 2 2 2 1 21 2 1 2 1 2 1 2 1 2 1 (1) 2 n n n n n n n C C C C C + + + + + + Û + + + + + = 2 1 21 2 2 10 n n + Û = Û = Khaitriển 10 10 10 2 3 10 2 5 30 10 10 3 0 0 1 ( ) .( ) k k k k k k k x C x x C x x - - - = = æ ö + = = ç ÷ è ø å å Cho5 30 0 6k k - = Û = .Vậysốhạngkhôngchứaxlàsốhạngthứ7và 6 7 10 210T C = = (1điểm) 0.25 0.25 0.25 0.25 www.VNMATH.com . 2 SBC a S SB BC x a x x a = = + = = Vy: 3 . 1 . 3 3 S ABCD ABCD a V S SA = = (vtt) GiI,JlnltltrungimcỏccnhSBvSD.Tớnhkhongcỏchgiahai ngthngAIvCJ. DnghtrcAxyznhhỡnhvtacú :A( 000)C(aa0) 0 2 2 a a I. u (1im) 0.25 0.25 0.25 0.25 ChohỡnhchúpS.ABCDcúỏyABCDlhỡnhvuụng,SA ^ (ABCD),SA =a. Din tớchtamgiỏcSBCbng 2 2 2 a Cõu 5 TớnhthtớchkhichúpS.ABCDtheoa. GixldicnhhỡnhvuụngABCD.TamgiỏcSBCvuụngtiBcú (1im) www.VNMATH.com 2 2 2 1. 2 a a J ổ ử ỗ ữ ố ứ , ( , ) , AI CJ AC d AI CJ AI CJ ộ ự ở ỷ = ộ ự ở ỷ uur uuur uuur uur uuur Vi 2 2 2 3 , 4 4 4 a a a AI CJ ổ ử ộ ự = - - ỗ ữ ở ỷ ố ứ uur uuur ( 0)AC a a