Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 18 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
18
Dung lượng
0,92 MB
Nội dung
hieuvghy@gmail.com Mathisthinking.tk Math is thinking Gợiýcáchgiải đề thichuyêntoán SP & KHTN v2 năm 2010 và 1 số vấn đề liên quan I. Đềthi 1.SP hieuvghy@gmail.com Mathisthinking.tk Math is thinking 2.KHTN II.Gợi ýcách giải. 1.SP Câu1. 1/ a.G/y: Nhận thấy 1 cáchdễ dàng 2222 (1)(1)()() baababab −−−=−=−+ . Do đó để đưa các biểu thức trong căn xích lại gần nhau hơn với dấu – thì ta nhân liên hợp. hieuvghy@gmail.com Mathisthinking.tk Math is thinking Ta có: 2222 22 ()() 1111 11 abab baababba ba −+ −−−==−⇔+=−+− −+− Đến đây ta sẽ tìm quan hệ giữa các cặp số đã biết tổng và hiệu 22 22 11 11 abba abba −=−−− +=−+− Giờ thì cộng hay trừ tùy bạn… b.N/x: !! Việc xử lý tổng(hiệu) của 2 căn thức với chúng ta đã khá quen thuộc: 1. Bình phương → các biểu thức trong căn xích lại gần nhau hơn với dấu nhân “x”. 2. Liên hợp → các biểu thức trong căn xích lại gần nhau hơn với dấu trừ “-”. Hơn nữa liên hợp cũng đã từng được biết tới qua đềthi SP vòng 1 năm 2009. !! Chú ý khi nhân liên hợp hay cùng chia 2 vế cho 1 biểu thức thì cần xét bt đó =0 !! Bài dạng này: Câu 5 Các số thực x, y thỏa mãn đẳng thức Chứng minh x+y=0 2/ a.G/y: Chắc hẳn chúng ta không ai choáng với 2009,2010 và kiểu hỏi lừa của đề bài. Bản chất bài toán được phát biểu như sau : Đưa 2222 (1)(1) nnnn ++++ về dạng bình phương. Vậy thì ta phá tung rồi sử dụng pp khử được: 222243222 (1)(1)2321(1) nnnnnnnnnn ++++=++++=++ . b.N/x: Đây là bài toándễ trong đề nhưng khi trình bày bạn nên đặt n=2009 hoặc 2010để quá trình biến đổi đơn giản hơn Câu2. a.G/y: Xử lý bài toán về pt bậc 2 với các biểu thức chứa hệ số thì ta không thể quên Vi-ét: 2(1) 5(2) abc abd += =− và 2(3) 5(4) cda cdb += =− Thế rồi từ (1) và (3) ta làm được câu a. hieuvghy@gmail.com Mathisthinking.tk Math is thinking Câu b có vẻ hơi khó vì bỗng dưng đâu ra 30??? Nhưng trước hết ta đã biết acbd +=+ → cần 15 acbd +=+= .Quả thực tới đây ta bí.Nhưn bạn phải nhận xét: 1. Ta chưa dùng hết giả thiết : Vi-ét mới dùng ½ và không phải chỉ có thể khai thác gt dưới cái nhìn Vi-ét 2. Bậc 1 với các biến đã bó tay nên chăng tìm bậc cao hơn Từ đó ta có thể nghĩ tới dùng (2) và (4) → ac=25 Thế các nghiệm vào bài 2 2 2 2 250 250 250 250 aacd bbcd ccab ddab −−= −−= −−= −−= Có ac nên ta nghĩ đến cái thứ 1 và 3.Bạn cộng trừ thêm bớt và nhớ lấy ta cần cần 15 acbd +=+= b.N/x: Câu a là 1 câu dễ nhưng câu b lại đòi hỏi ta những cách nhìn và nhận xét tinh tế hơn.Và quả thật mối quan hệ giữa 2 câu rất mờ nhạt đôi khi còn làm khó cho nhau. Câu3. a.G/y: Bài này thuộc về kiểu BĐT số học nên lúc mới đầu ta có vẻ sợ và ngại nhưng chắc chắn khi đặt bút vào làm thì mọi vấn đề dừng như rất trôi chảy. 222224 2432242 242324 (2)(44) 4444 44 mnnmnmnmn mnnmnmnmn mnmnnmn −<−+< ++>++ ⇔ +>+ Khi đã có câu a thì b trở nên rất dễ vì các cực cho pp kẹp đã định sẵn : 22 2 ()() mnSmn n −<< Nhớ rằng n>1 mà tự hoàn thiện b.N/x: Bài toán thực sự không quá khó nhưng ta cần chú ý: 1. 1 xnxn >↔≥+ 2. pp kẹp với SCP Đã 2 năm có BĐT số học !! Bài dạng này: Bài 3: Ba số nguyên dương a, p, q thỏa mãn các điều kiện sau i) hieuvghy@gmail.com Mathisthinking.tk Math is thinking ii) Chứng minh Câu4. hieuvghy@gmail.com Mathisthinking.tk Math is thinking Câu5. a.G/y: Nếu bạn đã từng làm toán hình học tổ hợp và toán logic thì chắc chắn ta sẽ xác định đây là dạng toán dùng pp “Bất biến”.Vậy thì giờ ta hãy tìm cái gì không biến đi.Thông thường nó là tổng hiệu hoặc thương tích gì đó.Trong bài này ta cần tìm quan hệ của a,b với , 22 ab ab − + . Nếu tôi nói ngay lời giảithì sẽ mất hay nên các phép thử sau sẽ chỉ là định hướng Chú ý: Cả 3 số trước và sau đều có dạng 2 n mp + nên khả năng xét tính vô hữu tỉ là rất khó 1.Tổng hoặc hiệu 2 22 ab ab b − + −= hoặc 2 22 ab ab a − + += → nếu chỉ dùng tổng hiệu bậc 1 thì ta không thể loại bỏ 2 2.Tích 22 1 .() 2 22 ab ab ab − + =−. Cái này có vẻ khả thi hơn nhưng bậc 2 lại khác loại (tức ab và 22 () ab − ) 3.Từ nhận những nhận xét trên ta cần đưa biểu thức bất biến về cùng loại bậc 2 hieuvghy@gmail.com Mathisthinking.tk Math is thinking TH1: cùng ab ???????? → rất khó khử mất 22 , ab TH2:cùng 22 , ab →cần khử đi ab Bạn hãy nghĩ tiếp k 20’ trước khi nhìn lời giải: 2222 ()() 22 ab ab ab − + +=+ Chú ý tìm ra cái bất biến này chưa xong bởi bài toán có 3 số nhưng có lẽ gợiý sẽ chỉ viết thế này. b.N/x: Dạng toán này luôn rất khó với mọi đối tượng do chúng không chỉ đòi hỏi pp đúng đắn mà còn sự nhanh lẹ trong tư duy. !! Bài dạng này: Mỗi lần cho phép thay thế cặp số (a.b) thuộc tập hợp bằng cặp số trong đó cặp số (c,d) cũng thuộc M Hỏi sau một số hữu hạn lần thay thế ta có thể nhận được tập hợp các cặp số hay không? 2.KHTN Câu1. 1/ a.G/y: Đây là câu dễ nhất trong lịch sửthichuyên mình từng gặp.Bạn dùng máy tìm no hay giải ra nháp tìm no cũng được rồi cm đó là no duy nhất 2/ a.G/y: Không khó để có thể nhận ra đây là pt hoàn toàn không mẫu mực .Ta cứ phá tạm như sau 22 22 22 52226 52226 3(2)()11 2311 xyxy xyxy xxyxy xyxyx ++= ++= ⇔ ++−= −−+= Do cả 2 pt đều mang dáng dấp bậc 2 nên ta thử nhóm bậc 2 theo x rồi theo y sau đó thử: 1. Kẹp biến nhờ ∆ 2. Đưa về dạng tích nếu có ∆ chính phương Đó là suy nghĩ ban đầu và có vẻ khả thi nhưng chắc chắn là không ra.Khi đó ta quay lại nhìn: 22 2 52226 2(3)11 xxyy xxyy ++= −−−= hay 22 22 22526 2311 yxyx yyxxx ++= −−++= Sẽ thấy điều kì diệu khi nhóm theo y. Đó là hệ số. Bạn đã nhìn ra…? hieuvghy@gmail.com Mathisthinking.tk Math is thinking Câu2. 1/ a.G/y: Do bài cho là tìm n nên ta đừng chú ý tới những tính chất chia hết của SCP. Bởi nếu làm vậy ta sẽ chỉ có thể tìm ra 1 dạng chung chung cho n thôi.Với 1 tư duy hết sức đơn giản là đưa cái cần tìm vào phương trình ta có: 22 391()()391 nmmnmn+=⇔−+= .Đây đã là pt no nguyên quen thuộc nhưng chú ý 391=17.23 2/ a.G/y: Với kinh nghiệm BĐT và cực trị thì ta sớm có thể nhận ra dấu bằng xảy ra ↔ x=y. Hơn nữa khi thay x=y thì ta còn nhận ra rằng dấu bằng xảy ra z ∀ . Sau khi đã có trong tay dấu bằng thì ta tiếp theo là các phép biến đổi hay 1 BĐT nào đó.Trước tiên hãy viết lại bài 22 2()1 xyzxyxy +++≥+ Tận dụng gt ???? Chắc chắn gt được tận dụng ngay lập tức là 1(1)(1) xyzxyxyxy +=+−−=−− Nếu làm như vậy là ta đã xóa z ra khỏi cuộc chơi và BĐT cần cm với 0<x,y<1.Tuy nhiên con số 1 ở VP sẽ dừơng như không thể giải quyết. Do đó ta cần suy nghĩ giữ lại z để cùng làm biến mất với 1.Lời giải sau của tôi có phần hơi ngẫu hứng : Ta có: 1(1)(1)()()( ) xyzxyxyxyyzxzzxyBCS +=+−−=−−=++≥+ .Khi đó BĐT trở thành: 22 2() xyxy +≥+ .Bạn hãy lý giải hộ tôi cách nghĩ trên. Câu3. hieuvghy@gmail.com Mathisthinking.tk Math is thinking Câu 4. Không khó có thể nhận ta con số 2010 chẳng có ý nghĩa gì. Trong tâm bài toán là ở số được đánh dấu-số tm 1 trong các đk: 1. Số dương 2. Số bắt đầu của 1 tổng dương các số liên tiếp Do yêu cầu cm tổng các số được đánh dấu dương nên ta hãy thử quan tâm tới số âm được đánh dấu i a .Chắc chắn i a thỏa mãn đk 2. Ta g/s tổng đó là 1 iiik aaa ++ +++ . Một điều có thể khẳng định và ta cũng đang rất cần là từ i a đến ik a + có các số dương để tổng các số dương đó với i a > 0.Đến đây lời giải gần như đã hé lộ phần nào. Nhưng cũng như bao bài toán lôgic khác để biến cách suy nghĩ của mình thành lời giải khá khó khăn. hieuvghy@gmail.com Mathisthinking.tk Math is thinking Gợiýcáchgiải đề thichuyêntoán SP & KHTN v2 năm 2010 và 1 số vấn đề liên quan I. Đềthi 1.SP [...]...hieuvghy@gmail.com Mathisthinking.tk 2 .KHTN II .Gợi ýcáchgiải 1.SP Câu1 1/ a.G/y: Nhận thấy 1 cáchdễ dàng (1 − b 2 ) − (1 − a 2 ) = a 2 − b 2 = (a − b)(a + b) Do đó để đưa các biểu thức trong căn xích lại gần nhau hơn với dấu – thì ta nhân liên hợp Math is thinking hieuvghy@gmail.com Ta có: 1 − b2 − 1 − a 2 = Mathisthinking.tk (a − b)(a + b) 1− b + 1− a 2 2 = a − b... hoàn thi n b.N/x: Bài toán thực sự không quá khó nhưng ta cần chú ý: 1 x > n ↔ x ≥ n + 1 2 pp kẹp với SCP Đã 2 năm có BĐT số học !! Bài dạng này: Bài 3: Ba số nguyên dương a, p, q thỏa mãn các điều kiện sau i) Math is thinking hieuvghy@gmail.com ii) Chứng minh Mathisthinking.tk Câu4 Math is thinking hieuvghy@gmail.com Mathisthinking.tk -. .. chúng ta không ai choáng với 2009,2 010 và kiểu hỏi lừa của đề bài Bản chất bài toán được phát biểu như sau : Đưa n 2 + n 2 (n + 1)2 + (n + 1)2 về dạng bình phương Vậy thì ta phá tung rồi sử dụng pp khử được: n 2 + n 2 (n + 1)2 + (n + 1) 2 = n 4 + 2n3 + 3n 2 + 2n + 1 = (n 2 + n + 1) 2 b.N/x: Đây là bài toándễ trong đề nhưng khi trình bày bạn nên đặt n=2009 hoặc 2 010để quá trình biến đổi đơn giản... dừơng như không thể giải quyết Do đó ta cần suy nghĩ giữ lại z để cùng làm biến mất với 1.Lời giải sau của tôi có phần hơi ngẫu hứng : Ta có: xy + z = xy + 1 − x − y = (1 − x)(1 − y ) = ( y + z )( x + z ) ≥ z + xy ( B.C.S ) Khi đó BĐT trở thành: 2( x 2 + y 2 ) ≥ x + y Bạn hãy lý giải hộ tôi cách nghĩ trên Câu3 Math is thinking hieuvghy@gmail.com Mathisthinking.tk Câu 4... bạn đã từng làm toán hình học tổ hợp và toán logic thì chắc chắn ta sẽ xác định đây là dạng toán dùng pp “Bất biến”.Vậy thì giờ ta hãy tìm cái gì không biến đi.Thông thường nó là tổng hiệu hoặc thương tích gì đó.Trong bài này ta cần tìm quan hệ của a,b với a +b a −b , 2 2 Nếu tôi nói ngay lời giảithì sẽ mất hay nên các phép thử sau sẽ chỉ là định hướng n Chú ý: Cả 3 số trước và sau đều có dạng m 2... này có vẻ khả thi hơn nhưng bậc 2 lại khác loại (tức ab và (a 2 − b 2 ) ) 2 2 2 3.Từ nhận những nhận xét trên ta cần đưa biểu thức bất biến về cùng loại bậc 2 Math is thinking hieuvghy@gmail.com TH1: cùng ab ???????? → rất khó khử mất a 2 , b 2 TH2:cùng a 2 , b 2 →cần khử đi ab Bạn hãy nghĩ tiếp k 20’ trước khi nhìn lời giải: ( Mathisthinking.tk a−b 2 a+b 2 ) +( ) = a 2 + b2 2 2 Chú ý tìm ra cái bất... vẻ khả thi nhưng chắc chắn là không ra.Khi đó ta quay lại nhìn: 2 2 2 y 2 + 2 xy + 5 x 2 = 26 5 x + 2 xy + 2 y = 26 hay 2 2 2 2 x − x( y − 3) − y = 11 − y − yx + 2 x + 3 x = 11 Sẽ thấy điều kì diệu khi nhóm theo y Đó là hệ số Bạn đã nhìn ra…? - Math is thinking hieuvghy@gmail.com Mathisthinking.tk Câu2 1/ a.G/y: Do bài cho là tìm n nên ta đừng chú ý tới... 2 010để quá trình biến đổi đơn giản hơn Câu2 a.G/y: Xử lý bài toán về pt bậc 2 với các biểu thức chứa hệ số thì ta không thể quên Vi-ét: a + b = 2c (1) c + d = 2a (3) và ab = −5d (2) cd = −5b(4) Thế rồi từ (1) và (3) ta làm được câu a Math is thinking hieuvghy@gmail.com Mathisthinking.tk Câu b có vẻ hơi khó vì bỗng dưng đâu ra 30??? Nhưng trước hết ta đã biết a... 2 Giờ thì cộng hay trừ tùy bạn… b.N/x: !! Việc xử lý tổng(hiệu) của 2 căn thức với chúng ta đã khá quen thuộc: 1 Bình phương → các biểu thức trong căn xích lại gần nhau hơn với dấu nhân “x” 2 Liên hợp → các biểu thức trong căn xích lại gần nhau hơn với dấu trừ - Hơn nữa liên hợp cũng đã từng được biết tới qua đề thi SP vòng 1 năm 2009 !! Chú ý khi nhân liên hợp hay cùng chia 2 vế cho 1 biểu thức... xong bởi bài toán có 3 số nhưng có lẽ gợiý sẽ chỉ viết thế này b.N/x: Dạng toán này luôn rất khó với mọi đối tượng do chúng không chỉ đòi hỏi pp đúng đắn mà còn sự nhanh lẹ trong tư duy !! Bài dạng này: Mỗi lần cho phép thay thế cặp số (a.b) thuộc tập hợp bằng cặp số trong đó cặp số (c,d) cũng thuộc M Hỏi sau một số hữu hạn lần thay thế ta có thể nhận được tập hợp các cặp số hay không? 2 .KHTN Câu1 1/ . hieuvghy@gmail.com Mathisthinking.tk Math is thinking Gợi ý cách giải đề thi chuyên toán SP & KHTN v2 năm 2 010 và 1 số vấn đề liên quan I. Đề thi 1.SP hieuvghy@gmail.com Mathisthinking.tk. is thinking Gợi ý cách giải đề thi chuyên toán SP & KHTN v2 năm 2 010 và 1 số vấn đề liên quan I. Đề thi 1.SP hieuvghy@gmail.com Mathisthinking.tk Math is thinking 2 .KHTN. 22 2() xyxy +≥+ .Bạn hãy lý giải hộ tôi cách nghĩ trên. Câu3. hieuvghy@gmail.com Mathisthinking.tk Math is thinking Câu 4. Không khó có thể nhận ta con số 2 010 chẳng có ý nghĩa gì.