T chn 7 Nm hc 2009 2020 Nguyn Diu Linh Ngày soạn: 17/08/2009 Tiết 1, 2 Ngày dạy: 21, 22/08/2009 Tun 1 Số hữu tỉ Số thực Các phép toán trong Q I. Mục tiêu: - Ôn tập, hệ thống hoá các kiến thức về số hữu tỉ. - Rèn luyện kỹ năng thực hiện phép tính, kỹ năng áp dụng kiến thức đã học vào từng bài toán. - Rèn luyện tính cẩn thận, chính xác khi làm bài tập. II. Chuẩn bị: 1. Giáo viên: Chun b bi tp cho hs 2. Học sinh: ễn li cỏc kin thc c bn III. Tiến trình lên lớp: 1. Kiểm tra bài cũ: 2. Bài mới: Hoạt động của thầy và trò Ghi bảng HS lần lợt đứng tại chỗ trả lời. GV đa bài tập trên bảng phụ. HS hoạt động nhóm (5ph). GV đa đáp án, các nhóm kiểm tra chéo lẫn nhau. GV đa ra bài tập trên bảng phụ, HS lên bảng thực hiện, dới lớp làm vào vở. HS hoạt động nhóm bài tập 2, 3(3ph). GV đa đáp án, các nhóm đối chiếu. HS lên bảng thực hiện, dới lớp làm vào vở. Yêu cầu HS nêu cách làm, sau đó hoạt động cá nhân (10ph), lên bảng trình bày. I. Các kiến thức cơ bản: - Số hữu tỉ: Là số viết đợc dới dạng: a (a,b ,b 0) b Z - Các phép toán: + Phép cộng: + Phép ttrừ: + Phép nhân: + Phép chia: II. Bài tập: Bài tập 1: Điền vào ô trống: 3 2 7 5 A. > B. < C. = D. Bài tập 2: Tìm cách viết đúng: A. -5 Z B. 5 Q C. 4 15 Z D. 4 15 Q Bài tập 3: Tìm câu sai: x + (- y) = 0 A. x và y đối nhau. B. x và - y đối nhau. C. - x và y đối nhau. D. x = y. Bài tập 4: Tính: a, 12 4 15 26 + (= 62 65 ) b, 12 - 11 121 (= 131 11 ) c, 0,72. 3 1 4 (= 63 50 ) d, -2: 1 1 6 (= 12 7 ) Bài tập 5: Tính GTBT một cách hợp lí: Trng THPT in Hi Trang- 1 - Tự chọn 7 Năm học 2009 – 2020 Nguyễn Diệu Linh HS nªu c¸ch t×m x, sau ®ã ho¹t ®éng nhãm (10ph). A = 1 7 1 6 1 1 1 2 13 3 13 2 3 − − − + + + ÷ ÷ = … = 1 1 7 6 4 1 2 2 13 13 3 3 + − + + − ÷ ÷ ÷ = 1 – 1 + 1 = 1 B = 0,75 + 2 1 2 5 1 5 9 5 4 + − + ÷ = 3 4 + 5 2 2 1 1 4 5 5 9 − − + ÷ = 1 1 9 C = 1 3 1 1 1 : . 4 2 4 2 2 − − − ÷ ÷ = 3 4 9 1 1 . . 9 2 3 2 4 4 − − − − = − Bµi tËp 6: T×m x, biÕt: a, 1 3 1 x 2 4 4 + = 1 x 3 − = ÷ b, 5 1 : x 2 6 6 + = − 1 x 17 − = ÷ c, 2 x x 0 3 − = ÷ x 0 2 x 3 = ÷ ÷ = ÷ 3. Cñng cè: Nh¾c l¹i c¸c d¹ng bµi tËp ®· ch÷a. 4. Híng dÉn vÒ nhµ: Xem l¹i c¸c bµi tËp ®· lµm. 5.Rót kinh NghiÖm: Trường THPT Điền Hải Trang- 2 - T chn 7 Nm hc 2009 2020 Nguyn Diu Linh Ngày soạn: 17/08/2009 Tiết 3, 4 Ngày dạy: 28, 29/08/2009 Tun 2 Giá trị tuyệt đối của một số hữu tỉ. luyện tập giảI các phép toán trong Q I. Mục tiêu: - Ôn định nghĩa giá trị tuyệt đối của một số hữu tỉ. Cách tìm giá trị tuyệt đối của một số hữu tỉ. - Rèn kỹ năng giải các bài tập tìm x, thực hiện thành thạo các phép toán. II. Chuẩn bị: 1. Giáo viên: Bảng phụ. Chun b bi tp cho hs 2. Học sinh: ễn li cỏc kin thc c bn III. Tiến trình lên lớp: 1. Kiểm tra bài cũ: Va ụn va kim tra 2. Bài mới: Hoạt động của thầy và trò Ghi bảng HS nhắc lại định nghĩa giá trị tuyệt đối của một số hữu tỉ. Nêu cách làm bài tập 1. HS hoạt động cá nhân (4ph) sau đó lên bảng trình bày. ? Để rút gọn biểu thức A ta phải làm gì? HS: Bỏ dấu GTTĐ. ? Với x > 3,5 thì x 3,5 so với 0 nh thế nào? HS: ? Khi đó x 3,5 = ? GV: Tơng tự với x < 4,1 ta có điều gì? HS lên bảng làm, dới lớp làm vào vở. Bài tập 1: Tìm x, biết: a, x = 4,5 x = 4,5 b, x 1+ = 6 x 1 6 x 1 6 + = + = x 5 x 7 = = c, 1 x 3,1 1,1 4 + = 1 x 3,1 1,1 4 + = + = 4,2 1 x 4,2 4 1 x 4,2 4 + = + = 79 x 20 89 x 20 = = Bài tập 2: Rút gọn biểu thức với: 3,5 x 4,1 A = x 3,5 4,1 x Với: 3,5 x x 3,5 > 0 x 3,5 = x 3,5 x 4,1 4,1 x > 0 4,1 x = 4,1 x Vậy: A = x 3,5 (4,1 x) = x 3,5 4,1 + x = 2x 7,6 Bài tập 3: Tìm x để biểu thức: a, A = 0,6 + 1 x 2 đạt giá trị nhỏ nhất. b, B = 2 2 2x 3 3 + đạt giá trị lớn nhất. Giải Trng THPT in Hi Trang- 3 - Tự chọn 7 Năm học 2009 – 2020 Nguyễn Diệu Linh ? BiĨu thøc A ®¹t gi¸ trÞ nhá nhÊt khi nµo? Khi ®ã x = ? HS ho¹t ®éng nhãm (7ph). GV ®a ®¸p ¸n ®óng, c¸c nhãm kiĨm tra chÐo lÉn nhau. 4) Thực hiện phép tính a. 3 2− + 5 2− b. 13 4 + 39 12− c. 21 1− + 28 1− Hoạt động thành phần 2.3 4)Điền vào ô trống 5. Tính 1 1 9 7 5 3 5 6 A − − = + + + ÷ 12 1 7 8 13 13 B = + + − + ÷ ÷ a, Ta cã: 1 x 2 − > 0 víi x ∈ Q vµ 1 x 2 − = 0 khi x = 1 2 . VËy: A = 0,6 + 1 x 2 − > 0, 6 víi mäi x ∈ Q. VËy A ®¹t gi¸ trÞ nhá nhÊt b»ng 0,6 khi x = 1 2 . b, Ta cã 2 2x 0 3 + ≥ víi mäi x ∈ Q vµ 2 2x 0 3 + = khi 2 2x 3 + = 0 ⇒ x = 1 3 − VËy B ®¹t gi¸ trÞ lín nhÊt b»ng 2 3 khi x = 1 3 − . Bài tập 4) Thực hiện phép tính a. 3 2− + 5 2− = 15 10− + 15 6− = 15 16− b. 13 4 + 39 12− = 13 4 + 13 45− =0 c. 21 1− + 28 1− = 84 34 −− = 84 7− = 12 1− 4)Điền vào ô trống Bài tập 5 Trường THPT Điền Hải Trang- 4 - + 2 1− 9 5 36 1 18 11− 2 1− 9 5 36 1 18 11− + 2 1− 9 5 36 1 18 11− 2 1− -1 18 1 36 17− 9 10− 9 5 18 1 9 10 12 7 18 1− 36 1 36 17− 12 7 18 1 12 7− 18 11− 9 10− 18 1− 12 7− 9 11− T chn 7 Nm hc 2009 2020 Nguyn Diu Linh 1 1 9 7 5 3 5 6 1 1 1 7 5 9 3 6 10 2 7 5 6 6 3 1 2 2 2 A = + + + ữ = + + + ữ ữ = + + ữ = + = ( ) 12 1 7 8 13 13 12 1 8 7 13 13 13 1 1 1 0 13 B = + + + ữ ữ = + + + ữ = = = 3. Củng cố: - Nhắc lại các dạng toán đã chữa. 4. Hớng dẫn về nhà: - Xem lại các bài tập đã làm. - Xem lại luỹ thừa của một số hữu tỉ. 5.Rút kinh Nghiệm: Trng THPT in Hi Trang- 5 - Ký duyt Tun 1 2 Ngy 24/08/2009 T chn 7 Nm hc 2009 2020 Nguyn Diu Linh Ngày soạn: 17/08/2009 Tiết 5, 6 Ngày dạy: 05, 06/09/2009 Tun 3 luỹ thừa của một số hữu tỉ I. Mục tiêu: - Ôn tập củng cố kiến thức về luỹ thừa của một số hữu tỉ. - Rèn kỹ năng thực hiện thành thạo các phép toán. II. Chuẩn bị: 1. Giáo viên: Bảng phụ. Chun b bi tp cho hs 2. Học sinh: ễn li cỏc kin thc c bn III. Tiến trình lên lớp: 1. Kiểm tra bài cũ: ? Viết dạng tổng quát luỹ thừa cua một số hữu tỉ? ?Nêu một số quy ớc và tính chất của luỹ thừa? 2. Bài mới: Hoạt động của thầy và trò Ghi bảng GV dựa vào phần kiểm tra bài cũ chốt lại các kiến thức cơ bản. GV đa ra bảng phụ bài tập 1, HS suy nghĩ trong 2 sau đó đứng tại chỗ trả lời. GV đa ra bài tập 2. ? Bài toán yêu cầu gì? I. Kiến thức cơ bản: a, Định nghĩa: x n = x.x.x .x (x Q, n N*) (n thừa số x) b, Quy ớc: x 0 = 1; x 1 = x; x -n = n 1 x (x 0; n N*) c, Tính chất: x m .x n = x m + n x m :x n = x m n (x 0) n n n x x y y = ữ (y 0) (x n ) m = x m.n II. Bài tập: Bài tập 1: Thực hiện phép tính: a, (-5,3) 0 = b, 3 2 2 2 . 3 3 ữ ữ = c, (-7,5) 3 :(-7,5) 2 = d, 2 3 3 4 ữ = e, 6 6 1 .5 5 ữ = f, (1,5) 3 .8 = g, (-7,5) 3 : (2,5) 3 = h, 2 6 2 5 5 + = ữ i, 2 6 2 5 5 ữ = Bài tập 2: So sánh các số: Trng THPT in Hi Trang- 6 - T chn 7 Nm hc 2009 2020 Nguyn Diu Linh HS: ? Để so sánh hai số, ta làm nh thế nào? HS suy nghĩ, lên bảng làm, dới lớp làm vào vở. GV đa ra bài tập 3. HS hoạt động nhóm trong 5. Đại diện một nhóm lên bảng trình bày, các nhóm còn lại nhận xét. ? Để tìm x ta làm nh thế nào? Lần lợt các HS lên bảng làm bài, dới lớp làm vào vở. Bài 5: a. Chứng tỏ rằng nếu d c b a < (b > 0; d > 0) thì d c db ca b a < + + < b. Hãy viết ba số hữu tỉ xen giữa 3 1 và 4 1 Bài 6: Tìm 5 số hữu tỉ nằm giữa hai số hữu tỉ 2004 1 và 2003 1 Ta có: 2003 1 20032004 11 2004 1 2003 1 2004 1 < + + << 4007 2 6011 3 2004 1 4007 2 2004 1 <<< 6011 3 8013 4 2004 1 6011 3 2004 1 <<< 8013 4 10017 5 2004 1 8013 4 2004 1 <<< 10017 5 12021 6 2004 1 10017 5 2004 1 <<< Vậy các số cần tìm là: a, 3 6 và 6 3 Ta có: 3 6 = 3 3 .3 3 6 3 = 2 3 .3 3 3 6 > 6 3 b, 4 100 và 2 200 Ta có: 4 100 = (2 2 ) 100 = 2 2.100 = 2 200 4 100 = 2 200 Bài tập 3: Tìm số tự nhiên n, biết: a, n 32 4 2 = 32 = 2 n .4 2 5 = 2 n .2 2 2 5 = 2 n + 2 5 = n + 2 n = 3 b, n 625 5 5 = 5 n = 625:5 = 125 = 5 3 n = 3 c, 27 n :3 n = 3 2 9 n = 9 n = 1 Bài tập 4: Tìm x, biết: a, x: 4 2 3 ữ = 2 3 x = 5 2 3 ữ b, 2 3 5 5 .x 3 3 = ữ ữ x = 5 3 c, x 2 0,25 = 0 x = 0,5 d, x 3 + 27 = 0 x = -3 e, x 1 2 ữ = 64 x = 6 Bài 5: Giải: a. Theo bài 1 ta có: bcad d c b a << (1) Thêm a.b vào 2 vế của (1) ta có: a.b + a.d < b.c + a.b a(b + d) < b(c + a) db ca b a + + < (2) Thêm c.d vào 2 vế của (1): a.d + c.d < b.c + c.d d(a + c) < c(b + d) d c db ca < + + (3) Từ (2) và (3) ta có: d c db ca b a < + + < b. Theo câu a ta lần lợt có: 4 1 7 2 3 1 4 1 3 1 < < < 7 2 10 3 3 1 7 2 3 1 < < < 10 3 13 4 3 1 10 3 3 1 < < < Vậy 4 1 7 2 10 3 13 4 3 1 < < < < Trng THPT in Hi Trang- 7 - T chn 7 Nm hc 2009 2020 Nguyn Diu Linh 12021 6 ; 10017 5 ; 8013 4 ; 6011 3 ; 4007 2 3. Củng cố: - Nhắc lại các dạng toán đã chữa. 4. Hớng dẫn về nhà: - Xem lại các bài tập đã làm. - Xem lại luỹ thừa của một số hữu tỉ. 5.Rút kinh Nghiệm: Trng THPT in Hi Trang- 8 - Ký duyt Tun 03 Ngy 01/09/2009 T chn 7 Nm hc 2009 2020 Nguyn Diu Linh Ngày soạn: 17/08/2009 Tiết 7, 8 Ngày dạy: 12, 13/09/2009 Tun 4 luỹ thừa của một số hữu tỉ (Tiếp) I. Mục tiêu: - Ôn tập củng cố kiến thức về luỹ thừa của một số hữu tỉ. - Rèn kỹ năng thực hiện thành thạo các phép toán. II. Chuẩn bị: 1. Giáo viên: Bảng phụ. Chun b bi tp cho hs 2. Học sinh: ễn li cỏc kin thc c bn III. Tiến trình lên lớp: 1. Kiểm tra bài cũ: ? Viết dạng tổng quát luỹ thừa cua một số hữu tỉ? ?Nêu một số quy ớc và tính chất của luỹ thừa? 2. Bài mới: Hoạt động của thầy và trò Ghi bảng GV đa bảng phụ có bài tập 1. HS suy nghĩ trong 2 sau đó lần lợt lên bảng làm, dới lớp làm vào vở. GV đa ra bài tập 2. ? Để so sánh hai luỹ thừa ta thờng làm nh thế nào? HS hoạt động nhóm trong 6. Hai nhóm lên bảng trình bày, các nhóm còn lại nhận xét. GV đa ra bài tập 3, yêu cầu học sinh nêu cách làm. I. Kiến thức cơ bản: II. Bài tập: Bài tập 1: thực hiện phép tính: a, 2 2 3 2 1 3 5 3 4. 1 25 : : 4 4 4 2 + ữ ữ ữ ữ = 25 9 64 8 4. 25. . . 16 16 125 27 + = 25 48 503 4 15 60 + = b, ( ) 0 2 3 1 1 2 3. 1 2 : .8 2 2 + + ữ =8 + 3 1 + 64 = 74 c, 6 2 6 1 3 : 2 7 2 + ữ ữ = 1 1 3 1 2 8 8 + = d, ( ) 2 1 5 5 1 1 5 . . 2 10 ữ = 5 2 5 1 1 5 . . 10 1 2 ữ = ( ) 5 2 5 1 5 .2 . 5.2 = 3 1 1 2 8 = e, 6 5 9 4 12 11 4 .9 6 .120 8 .3 6 + = 12 10 9 9 12 12 11 11 2 .3 2 .3 .3.5 2 .3 2 .3 + = 12 10 11 11 2 .3 (1 5) 2 .3 (6 1) + = 2.6 4 3.5 5 = Bài tập 2: So sánh: a, 2 27 và 3 18 Ta có: 2 27 = (2 3 ) 9 = 8 9 3 18 = (3 2 ) 9 = 9 9 Vì 8 9 < 9 9 2 27 < 3 18 b, (32) 9 và (18) 13 Ta có: 32 9 = (2 5 ) 9 = 2 45 2 45 < 2 52 < (2 4 ) 13 = 16 13 < 18 13 Vậy (32) 9 < (18) 13 Bài tập 3: Tìm x, biết: a, x 8 4 3 2 4 3 = ữ ( x = - 4) Trng THPT in Hi Trang- 9 - T chn 7 Nm hc 2009 2020 Nguyn Diu Linh HS hoạt động cá nhân trong 10 3 HS lên bảng trình bày, dới lớp kiểm tra chéo các bài của nhau. Bài 5: Tìm tập hợp các số nguyên x biết rằng +<< 2 1 21: 45 31 1.5,42,3: 5 1 37 18 5 2: 9 5 4 x Ta có: - 5 < x < 0,4 (x Z) Nên các số cần tìm: x { } 1;2;3;4 Bài 6: Tìm 2 số hữu tỉ a và b biết A + b = a . b = a : b Giải: Ta có a + b = a . b a = a . b = b(a - 1) 1 1 = a b a (1) Ta lại có: a : b = a + b (2) Kết hợp (1) với (2) ta có: b = - 1 Q ; có x = Q 2 1 Vậy hai số cần tìm là: a = 2 1 ; b = - 1 Bài 7: Tìm x biết: a. 2003 1 2004 9 = x b. 2004 1 9 5 = x x = 2004 9 2003 1 x = 2004 1 9 5 x = 1338004 5341 4014012 16023 = x = 6012 3337 18036 10011 = b, (x + 2) 2 = 36 2 2 2 2 (x 2) 6 (x 2) ( 6) + = + = x 2 6 x 2 6 + = + = x 4 x 8 = = c, 5 (x 2)(x + 3) = 1 5 (x 2)(x + 3) = 5 0 (x 2)(x + 3) = 0 x 2 0 x 3 0 = + = x 2 x 3 = = Bài 4: Tính nhanh giá trị của biểu thức P = 13 11 7 11 5 11 4 11 13 3 7 3 5 3 4 3 3 11 7 11 2,275,2 13 3 7 3 6,075,0 ++ ++ = ++ ++ = 11 3 13 1 7 1 5 1 4 1 .11 13 1 7 1 5 1 4 1 3 = ++ ++ Bài 5: Tính M = + + + 2 9 25 2001 . 4002 11 2001 7 : 34 33 17 193 . 386 3 193 2 = ++ + 2 9 50 11 25 7 : 34 33 34 3 17 2 = 2,05:1 50 2251114 : 34 3334 == +++ Bài 8: Số nằm chính giữa 3 1 và 5 1 là số nào? Ta có: 15 8 5 1 3 1 =+ vậy số cần tìm là 15 4 Bài 9: Tìm x Q biết a. 3 2 5 2 12 11 = + x 20 3 = x b. 7 5 5 2 : 4 1 4 3 ==+ xx c. ( ) 20 3 2 .2 >> + xxx và x < 3 2 3. Củng cố: ? Nhắc lại định nghĩa luỹ thừa của một số hữu tỉ? ? Luỹ thừa của một số hữu tỉ có những tính chất gì? Bài 10: Chứng minh các đẳng thức Trng THPT in Hi Trang- 10 - [...].. .Tự chọn 7 a a 1 1 1 = − ; a (a + 1) a a + 1 b Nguyễn Diệu Linh 2 1 1 = − a (a + 1)(a + 2) a (a + 1) (a + 1)(a + 2) 1 1 1 = − ; a (a + 1) a a + 1 VP = b Năm học 2009 – 2020 a +1 a 1 − = = VT a (a + 1) a (a + 1) a(a + 1) 2 1 1 = − a (a + 1)(a + 2) a (a + 1) (a + 1)(a + 2) VP = a+2 a 2 − = = VT a (a + 1)(a + 2) a( a + 1)(a + 2) a (a + 1)(a + 2) 4 Híng dÉn vỊ nhµ: - Xem... Trong c¸c sè sau, sè nµo b»ng ? 7 2 2 39 3 3 + 392 32 − 392 a = ;b = ;c = ;d = 91 72 7 2 + 912 7 2 − 912 §Ĩ thùc hiƯn yªu cÇu cđa ®Ị bµi ta lµm ntn? GV n n¾n, kiĨm tra sù tÝnh to¸n cđa HS Bµi tËp 111 tr.19 SBT a= 39 3 = 91 7 32 = 72 9 3 = 49 7 c= 32 + 39 2 7 + 91 2 2 = 3 + 39 42 3 = = 7 + 91 98 7 3 3 − 39 − 36 3 TÊt c¶ c¸c sè ®· cho ®Ịu b»ng = = 7 7 2 − 912 7 − 91 − 84 7 4 Híng dÉn vỊ nhµ: - Häc thc... b+d b d b−d b d b+d b d b d II Tù ln: (6 ®) Bµi 1: TÝnh: (3 ®) −2 4 5 13 5 15 11 33 −1 + a, b, : ÷ c, + 5 5 7 2 7 2 4 16 3 Bµi 2: T×m x, biÕt: (2 ®) 3 x a, 10 + x = 12, 5 b, = 4 24 Bµi 3: (1 ®) So s¸nh: 230 + 330 + 430 vµ 3 2410 Trường THPT Điền Hải Trang- 16 - Tự chọn 7 Năm học 2009 – 2020 Nguyễn Diệu Linh Ngµy so¹n: 17/ 09/2009 Ngµy d¹y: 16- 17/ 10/2009 TiÕt 17- 18 Tuần 9 Đêng th¼ng vu«ng gãc ®êng... 6; 7; 8; 9 lÇn lỵt b¶ng tr×nh bµy bµi lµm lµ x; y; z; t ta cã: x + y + z + t = 1050 Trường THPT Điền Hải Trang- 14 - Tự chọn 7 Năm học 2009 – 2020 Nguyễn Diệu Linh x y z t = = = 9 8 7 6 Theo tÝnh chÊt cđa d·y tØ sè b»ng nhau ta cã: x y z t x + y + z + t 1050 = = = = = = 35 9 8 7 6 9+8 +7+ 6 30 VËy: Sè HS khèi 6 lµ: x = Sè HS khèi 7 lµ: y = Sè HS khèi 8 lµ: z = Sè HS khèi 9 lµ: t = Bµi tËp 3: Ba líp 7A;... · gi÷a AB vµ AE Do ®ã: BAC + CAE = BAE Díi líp lµm vµo vë, sau ®ã kiĨm tra chÐo · · ⇒ BAE = 900 − CAE(1) c¸c bµi cđa nhau · · T¬ng tù ta cã: EAD = 900 − CAE(2) · · Tõ (1 ) vµ (2 ) ta cã: BAC = EAD XÐt ∆ABC vµ ∆AED cã:AB = AE (gt) · · BAC = EAD (chøng minh trªn) Trường THPT Điền Hải Trang- 30 - Tự chọn 7 Năm học 2009 – 2020 ? VÏ h×nh, ghi GT vµ KL cđa bµi to¸n ? §Ĩ chøng minh OA = OB ta chøng minh hai... Bµi tËp 108 tr.18 SBT Ho¹t ®éng 3 Yªu cÇu HS lµm bµi tËp 1 07 * C¸c sè cã c¨n bËc hai lµ: a=0; c=1; tr.18SBT Trong c¸c sè sau ®©y, sè nµo cã d=16+ 9(= 25); c¨n bËc hai? H·y cho biÕt c¨n e=32+4 2(= 25); Trường THPT Điền Hải Trang- 20 - Tự chọn 7 Năm học 2009 – 2020 bËc hai kh«ng ©m cđa c¸c sè ®ã: a=0; b=-25; c=1; d=16+9; e=32+42; g=∏-4; h =(2 -11)2 i =(- 5)2; k=-32; l= 16 ; m=34; n=52-32 Nh÷ng sè nh thÕ nµo th×... kÕt qu¶ lµ: 7 9 −2 −6 −8 8 A ; B ; C ; D 63 63 63 63 C©u 4: kÕt qu¶ cđa phÐp tÝnh (- 3)6 (- 3)2 lµ: A -38 B (- 3)8 C (- 3)12 D -312 5 1 C©u 5: Gi¸ trÞ cđa x trong phÐp tÝnh: − x = lµ: 6 8 17 23 − 17 −23 A ; B ; C ; D 24 24 24 24 C©u 6: Cho ®¼ng thøc: 4.12 = 3.16 Trong c¸c tØ lƯ thøc sau, tØ lƯ thøc ®óng lµ: 4 16 12 4 4 3 4 16 = = A = B C D = 3 12 3 16 12 16 3 12 x 15 = VËy gi¸ trÞ cđa x lµ: C©u 7: Cho tØ... XÐt xem hai tØ sè cã b»ng nhau kh«ng 3 1 1 a) : vµ 21: (Dïng ®Þnh nghÜa) 5 7 5 C2: XÐt xem tÝch trung tØ cã b»ng tÝch ngo¹i tØ 1 1 b) 4 : 7 vµ 2 ,7: 4 ,7 kh«ng (Dïng tÝnh chÊt c¬ b¶n) 2 2 ⇒ HS ho¹t ®éng c¸ nh©n trong 5ph 1 1 1 2 Mét vµi HS lªn b¶ng tr×nh bµy, díi líp kiĨm c) : vµ : 4 9 2 9 tra chÐo bµi cđa nhau 2 4 7 4 d) : vµ : GV ®a ra bµi tËp 2 7 11 2 11 ? Mn lËp c¸c tØ lƯ thøc tõ ®¼ng thøc cđa 4 sè... và ∆ADE có : -AB = AD (gt) µ chung A Cần có thêm yếu tố về cạnh là AE = AC Theo đề bài AB = AD; BE = DC ⇒ AE = AC Một Hs lên bảng trình bày bài giải Trường THPT Điền Hải 13.Bài 29: E x B A D C y Cm: Ta có: AE = AB + BE AC = AD + DC Mà : AB = AD và BE = DC Nên: AE = AC (* ) Xét ∆ABC và ∆ADE có: - AB = AD (gt) - µ chung A - AC = AE (* ) ⇒ ∆ABC = ∆ADE (c-g-c) Trang- 31 - Tự chọn 7 Năm học 2009 – 2020 Gv... Trường THPT Điền Hải Trang- 32 - Tự chọn 7 Năm học 2009 – 2020 Ngµy so¹n: 17/ 09/2009 Ngµy d¹y: 19-20/11/2009 Nguyễn Diệu Linh TiÕt 27- 28 Tuần 14 ¤n tËp:MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯNG TỶ LỆ NGHỊCH I Mơc tiªu 1.VỊ kiÕn thøc: - HS n¾m ®ỵc thÕ nµo lµ hai ®¹i l¬ng tØ lƯ nghÞch - Học sinh thực hiện được các bài toán cơ bản về đại lượng tỷ lệ nghòch 2.VỊ kÜ n¨ng: - Kỹ năng tính toán chính xác - ¸p dơng kiÕn thøc . 6012 33 37 18036 10011 = b, (x + 2) 2 = 36 2 2 2 2 (x 2) 6 (x 2) ( 6) + = + = x 2 6 x 2 6 + = + = x 4 x 8 = = c, 5 (x 2)(x + 3) = 1 5 (x 2)(x + 3) = 5 0 (x 2)(x + 3). chn 7 Nm hc 2009 2020 Nguyn Diu Linh a. 1 11 ) 1( 1 + = + aaaa ; b. )2 )(1 ( 1 ) 1( 1 )2 )(1 ( 2 ++ + = ++ aaaaaaa a. 1 11 ) 1( 1 + = + aaaa ; VP = VT aaaa a aa a = + = + + + ) 1( 1 ) 1() 1( 1 b VT aaaa a aa a = + = + + + ) 1( 1 ) 1() 1( 1 b. )2 )(1 ( 1 ) 1( 1 )2 )(1 ( 2 ++ + = ++ aaaaaaa VP = VT aaaaaa a aaa a = ++ = ++ ++ + )2 )(1 ( 2 )2 )(1 () 2 )(1 ( 2 4. Hớng dẫn về nhà: - Xem lại các bài tập