+Tác động của xung thứ nhất: Trong khoảng thời gian 05 mS: coi tác động là bậc thang. Trong khoảng thời gian 510 mS:là dao động tự do. +Tác động của xung thứ hai: Trong khoảng thời gian 1015 mS: coi tác động của xung thứ 2 là bậc thang:
3.42. +Tác động của xung thứ nhất: Trong khoảng thời gian 0 ÷ 5 mS: coi tác động là bậc thang. ]A[,e).(i s.ti¹T .eBeA)t(i , t t L R 9673155105 105 55 503 3 100 11 ≈+−= →= +−=+= −− − − − Trong khoảng thời gian 5 ÷ 10 mS:là dao động tự do. A.,)s(is.ti¹T .e,)t(i ).t( 19321101010 96731 23 3 105100 =→= = −− − −− +Tác động của xung thứ hai: Trong khoảng thời gian 10 ÷ 15 mS: coi tác động của xung thứ 2 là bậc thang: ]A[,e,)s.(imSti¹T.e.)t(i ,,A, mSt BA;B;BeA)t(i ,)t( )t( 69102806835101515580683 8068351932119321 10 5 50310100 22222 10100 2 2 2 =−=→=+−= −=−=→= = +=+= −−−− −− − − Trong khoảng thời gian 15 ÷ 20 mS:là dao động tự do. ]A[.,)s.(is.mSti¹T.e,)t(i ).t( 632111021022069102 22 3 1015100 =→=== −− − −− +Trong khoảng thời gian 20 ÷ 25 mS: coi tác động của xung thứ 3 là bậc thang: ]A[,e,)s.(imSti¹T.e,)t(i ,,A, mSt BA;B;BeA)t(i ,).t( ).t( 95722367935102525536793 3679356321163211 20 5 503102100 33333 102100 3 2 2 =−=→=+−= −=−=→= = +=+= −−−− −− − − Trong khoảng thời gian 25 ÷ 30 mS:là dao động tự do. ]A[.,)s.(is.mSti¹T.e,)t(i ).t( 793611031033095722 22 3 1025100 =→=== −− − −− +Trong khoảng thời gian 30 ÷ 35 mS: coi tác động của xung thứ 4 là bậc thang: A,e,)s.(imSti¹T.e,)t(i ,,A, mSt BA;B;BeA)t(i ,).t( ).t( 05523206435103535520643 3064357936179361 30 5 503103100 44444 103100 4 2 2 =−=→=+−= −=−=→= = +=+= −−−− −− − − Trong khoảng thời gian 35 ÷ 40 mS:là dao động tự do. ]A[.,)s.(is.mSti¹T.e,)t(i ).t( 853011041044005523 22 3 1035100 =→=== −− − −− +Trong khoảng thời gian 40 ÷ 45 mS: coi tác động của xung thứ 5 là bậc thang: ]A[,e,)s.(imSti¹T.e,)t(i ,,A, mSt BA;B;BeA)t(i ,).t( ).t( 0912314735104545514703 1470358530185301 40 5 503103100 55555 104100 5 2 2 =−=→=+−= −=−=→= = +=+= −−−− −− − − 114 Trong khoảng thời gian 45 ÷ 50 mS:là dao động tự do. ]A[.,)s.(is.mSti¹T.e,)t(i ).t( 874911051055009123 22 3 1045100 =→=== −− − −− +Trong khoảng thời gian 50 ÷ 55 mS: coi tác động của xung thứ 6 là bậc thang: ]A[,e,)s.(imSti¹T.e,)t(i ,,A, mSt BA;B;BeA)t(i ,).t( ).t( 1045315135105555515103 1251358745187491 50 5 503105100 56666 105100 6 2 2 =−=→=+−= −=−=→= = +=+= −−−− −− − − Trong khoảng thời gian 55 ÷ 60 mS:là dao động tự do. ]A[.,)s.(is.mSti¹T.e,)t(i ).t( 882911061066010453 22 3 1055100 =→=== −− − −− Từ xungthứ 7 trở đi mạch coi như đã chuyển sang chế độ xác lập với I max ≈3,1A;I min ≈1,9A,có đồ thị hình 3.78b. 3.43. Vì tác động là hàm tuyến tính nên sẽ giải bằng toán tử: +Xung thứ nhất tác động : Xung thứ nhất có phương trình là u(t)=20 000t. →= 2 00020 p )p(u Sơ đồ toán tử tương đương hình 3.79 a). Từ đó: ; p )p( Cp R)p(Z; pCp )p(Z C 1001001101 4 + =+=== ; pp . C; p p . A p C p C p A )p(p . )p(Z)p(I)p(U; )p(p)p(z )p(u )p(I CC 00020 0100 102 200 100 102 100 100 102 100 200 6 2 2 6 1 2 211 2 6 = =+ == −= = ++ + = + == + == →+−=−= = + −= − te)t(u; p )p( . C t C 00020200200200 0 100 102 100 2 6 1 V,),(u C 575873010 = -Đây là ĐKBĐ cho xung thứ hai tác động . 115 +Xung thứ hai tác động :dịch gốc toạ độ về t 1 =0,01s: →= 2 00020 p )p(u Sơ đồ toán tử tương đương hình 3. b) tính đến điều kiện ban đầu nói trên. Từ đó: p , p C p C p A p , )p(p .p, p , )p(Z)p(I)p(U; )p(p p, p )p( p , p )p(I ''' CC 575873 100 575873 100 102587357 575873 100 0207357580 100100 57587300020 22 6 2 211 +++ + =+ + +− = += + +− = + − = ]V[,)s,(u te, ]V[,),t(,e,)t(u ;, p )p( .p,)p(, C ; p )p( .p, C;, p p .p, A C ),t( ),t( C ' '' 6429100020 400000205758273 5758730100002057582735758273 5758273 0 100 102587357100587357 00020 0 100 102587357 5758273 100 102587357 010100 010100 2 6 1 6 2 2 6 1 = −+ =+−+−= −= = + −++− = = = + +− == −= +− = −− −− Đây là ĐKBĐ cho xung thứ ba tác động . +Xung thứ ba tác động :dịch gốc toạ độ về t 1 =0,02s: →= 2 00020 p )p(u Sơ đồ toán tử tương đương hình 3. c) tính đến điều kiện ban đầu nói trên. Từ đó: p , )p(Z)p(I)p(U; )p(p p, p )p( p , p )p(I CC 6429100 100 0200064291 100100 6429100 00020 2 += + +− = + − = p , p C p C p A p , )p(p .p, '''''' 6429100 100 6429100 100 1022910064 22 6 211 +++ + =+ + +− = ; p P .p, C;, p p .p, A ''' 00020 0 100 1022910064 6429300 100 1022910064 6 2 2 6 1 = = + +− == −= +− = 116 V,)s,(ute, ,),t(,e,)t(u ;, p )p( .p,)p(, C C ),t( ),t( C '' 6110030000206006429300 64291000200002064293006429300 6429300 0 100 10229100641002910064 020100 020100 2 6 1 =→+−= =+−+−= −= = + −++− = −− −− Đây là ĐKBĐ cho xung thứ tư tác động . +Xung thứ tư tác động :dịch gốc toạ độ về t 1 =0,03s: →= 2 00020 p )p(u Sơ đồ toán tử tương đương chỉ khác điều kiện ban đầu nói trên. Từ đó: p , p C p C p A p , )p(p .p p , )p(Z)p(I)p(U; )p(p p, p )p( p , p )p(I ''''''''' CC 6110 100 6110 100 10211060 6429100 100 0201061 100100 6110 00020 22 6 2 211 +++ + =+ + +− = += + +− = + − = ; p P .p C;, p p .p A '''''' 00020 0 100 10210060 6310 100 10210060 6 2 2 6 1 = = + +− == −= +− = V,)s,(u te, ,),t(,e,)t(u ;, p )p( .p)p( C C ),t( ),t( C '' 26114040 000208006310 61100300002063106310 6310 0 100 1021006410010060 030100 030100 2 6 1 = →−+−= +−+−= −= = + −++− = −− −− Đây là ĐKBĐ cho xung thứ năm tác động . +Xung thứ năm tác động :dịch gốc toạ độ về t 1 =0,04s: →= 2 00020 p )p(u Sơ đồ toán tử tương đương chỉ khác điều kiện ban đầu nói trên. Từ đó: p , )p(Z)p(I)p(U; )p(p p, p )p( p , p )p(I CC 26114 100 02014261 100100 2611400020 2 += + +− = + − = p , p E p E p D p , )p(p .p 26114 100 26114 100 10211426 2 1 2 6 21 +++ + =+ + +− = ; p P .p E;, p p .p D 00020 0 100 10211426 26314 100 10211426 6 2 2 6 1 = = + +− == −= +− = 117 V,)s,(u te, ,),t(,e,)t(u ;, p )p( .p)p( E C ),t( ),t( C 6115050 0002010006314 2611404000020263146314 26314 0 100 1021006410011426 040100 040100 2 6 1 = →+− =+−+−= −= = + −++− = −− −− Đây là ĐKBĐ cho xung thứ sáu tác động . +Xung thứ sáu tác động :dịch gốc toạ độ về t 1 =0,05s: →= 2 00020 p )p(u Sơ đồ toán tử tương đương chỉ khác điều kiện ban đầu nói trên. Từ đó: p , p E p E p 'D p , )p(p .p p , )p(Z)p(I)p(U; )p(p p, p )p( p , p )p(I '' CC 6115 100 6115 100 10211560 6115 100 0201561 100100 6115 00020 2 1 2 6 2 21 +++ + =+ + +− = += + +− = + − = ;'E;, p p .p 'D 000206315 100 10211560 2 2 6 1 == −= +− = E’ 1 =-315,6 V,)s,(u te, ,),t(,e,)t(u C ),t( ),t( C 1116060 0002012006315 61150500002063156315 050100 050100 = →+− +−+−= −− −− Đây là ĐKBĐ cho xung thứ sáu tác động . Đến đây quá trình quá độ gần như xác lập .Đồ thị là đường đậm nét hình 3.80 3.44.Đồ thị điện áp u C (t) hình 3.81 118 3.45.Chỉ dẫn : Giải bằng toán tử tương tự như BT 3.43. - 0÷2mS :Viết phương trình xung điện áp thứ nhất rồi chuyển sang dạng toán tử tính u C (t); xác định u C (2mS). - 2÷4mS :Dịch gốc toạ độ đến t 1 =2mS.Lập sơ đồ toán tử tương đương tính đến ĐKBĐ là U C (2mS).Tìm u C (t-t 1 ) - Sau 4mS : Dao động tự do. 3.46. Hình 3.82. Nhận xét các thông số của mạch: ω=10 6 rad/s=ω 0 = LC 1 -Mạch cộng hưởng ; f=ω/2π=159 155 Hz; Chu kỳ của dao động cao tần T 0 =1/f 0 =6,2832 ms; t X =6,2832ms =6,2832.10 -3 s =1000T 0 . Tức mỗi chuỗi xung hình sin gồm 1000 chu kỳ dao động cao tần . ; C L Ω==ρ 100 Q=R/ρ=10 000/100=100. Thời gian xác lập t XL =6Q/ω 0 =6.10 - 4 s=0,6ms(Đọc phần “Quá trình thiết lập dao động hình sin trong mạch RLC song song” ) Trong khoảng thời gian xung thứ nhất tác động 0 ÷ t X =0 ÷ 6,2832mS; 119 ) p p BpA p BpA (. )p p)(p( p. ).p p( p p p )pp(C p)p(I )p(Y )p(I )p(U)p(U p )p(Z;. . . C g ; LC ;g; p )pp(C pL ) LCC g pp(CL pL CLpgpL pL pCg)p(Y; p p )p(I C C 1232 22 122 11 8 1232122 28 8123212222 00 8 3 8 4 6 0 4 4 22 2 2 122 0 10105210 102 10105210 102 1010105210 2 2 10 105 102 10 2 10 1 1 10 10 1 2 1 1 1 10 2 0 0 ++ + + + + = +++ = +++ = ω+α+ === ====α==ω== ω+α+ = ++ = ++ =++= + = − − − − 212 2 2 2 12 2 3 2 12 1 3 1 2 1 12 1 2 1 33 1 1010 101052101052 p BPBp.ApA .Bp BpB.pApA pA =+++ ++++++ −== =−= −= ⇒ =+ =++ =++ =+ −− 4 2 4 1 21 21 12 2 12 1 12 2 3 1 12 1 211 3 21 1010 0 01010 010105210 11052 0 A;A BB AA .B.B .A B.A BBA AA ] p p p p [.] p p p p [.)p(U C 1232122 4 1232 4 122 4 8 10105210 102 101052 10 10 10 102 ++ − + = ++ − + = −− ]V[tcos)e(.)]tsin,t(coset[cos.)t(u t.t. C 6103546610564 101102100101010102 3 −− −≈−−≈ (Điện áp này lớn vì mạch cộng hưởng .) ]A[tsin)e(.)tsinetsin(.)t(i ] p pp [. .p )p(u Lp )p(u )p(I t.t. L L 6105261056668 12321224 10110210101010102 101052 1 10 1 1082 10 33 −−−− − −=−= ++ − + === ( Dòng điệ qua L lớn vì mạch cộng hưởng .) Kết thúc xung thứ nhất : quá trình dao động tự do .Điều kiện ban đầu của dao động tự do: u C (t X )= ]V[ ,.cos)e(. ., 43610283261054 1021028326101102 33 ≈− −− − i L (t X )= ]A[.,.sin)e(. ., 31028326101102 3610283261052 33 ≈− −− − Từ đó có sơ đồ toán tử hình3.83a),đưa về hình 3.83.b) Nguồn dòng toán tử chung: 120 = ω+α+ == = − = − )p.p(C p).p(I )p(Y )p(I )p(U );p(I p p. p 3 2.1010 ngng ng 48- 2 0 2 4 2 3102 )tt(cose )]tt(sin.)tt(cos.[e )tsin tcos.(e)t(u)t(u p p .p. )p p( p. X )tt(. XX )tt(. t. C XX −≈−−− −− +== ++ − = ++ − = −−−− − − − 6 105 46264 105 6 6 348 64105 1232 84 12328 4 101021010210102 10 10 105102103 10102 101052 103102 10105210 3102 33 3 Đây là dao động tự do,tắt dần. Với t=3t X thì 0 83262102832625000 3 ≈= −− − ,., ee nên u(T)≈0,tức quá trình quá độ đã kết thúc.(Thật vậy ,như ban đầu ta đã nhận xét là thời gian quá trình quá độ chỉ là t XL =0,6 ms). Các xung tiếp theo bắt đầu khi quá trình quá độ của xung trước nó tác động đã kết thúc nên các dao động có dạng lặp lại như ở chu kỳ đầu.Kết quả có thể viết được các biểu thức giải tích tương ứng cho từng xung tiếp theo tác động với gốc toạ độ được dích tương ứng. 3.47. Sơ đồ toán tử tương đương hình 3.84 có : (*) p p )p(.p )p(p )p(I )p(E )p(Z )p(p )p( ,pp )p(I; p )p(E 2 32 224 3224 32 224 51 41624 + + = + + == + + = + −== Mặt khác theo sơ đồ hình 3.84 thì tổng trở toán tử là : = ++ ++++ = ++ + += pLRR pLRRRRLp)RR(R pLRR )pLR(R R)p(Z 21 22121 21 12 (**) pLRR RRR.RR.RLp)RR( ++ ++++ 21 21212 Đồng nhất (*) và (**) sẽ có : K.)p( K).p( pLRR RRRRRRp)RR(L 2 32 21 21212 + + = ++ ++++ 121 Từ biểu thức cuối ta có hệ 4 phương trình như sau: = =+ =++ =+ KL KRR KRRRRRR K)RR(L 2 3 2 21 2121 2 Giải hệ phương trình này như sau: Thay L=K vào sẽ có : KLRLRR RLRLR LRR)RR(R RR LRR LRRRRRR RR ±=+−±=⇒=−+−⇒ +−=−= =++ −= ⇒ =+ =++ =+ 2442044 222 3 2 2 3 2 2 21 2121 2 21 2121 2 Nếu lấy R=2- KL −= 2 thì phải lấy 402 <>− KHayK ; Từ đó 4 4 1 4 1 022 12 <<>→>−==−= KnªNKKKR;KRR Ví dụ chọn K=1→ L=1 H,R=1Ω;=1Ω ;R 1 =1 Ω. 3.48. Cũng sơ đồ toán tử hình 3.84, thực hiện tương tự BT3.47.rồi có thể chọn K để có HL;RRR 11 21 =Ω=== 3.49. Hình 3.85. e(p)= )p(ppp 10 10 10 11 + = + − LCp RLpLCRp LCp Lp R)p(Z; LCp Lp Cp pL C L )p(Z CL 2 2 22 111 1 + ++ = + += + = + = = ++++ + == )LCp( Lp )RLpCLRp)(p(p )LCp( )p(Z )p(Z )p(e )p(U CLC 22 2 110 110 122 )p(N )p(M p A p A p A ppp ) LCRC p p)(p( RC )RLpCLRp)(p( L = + + + + + = + + + − + = +++ = +++ 502010 50 12 7 20 3 7 10 4 7 1 10 10 10 10 3 21 2 2 Công thức Heviside )p('N )p(M A k k K = dùng để tính các hệ số trên.áp dụng công thức Heviside để lập hệ phương trình như sau: RCLC p RC p p RC )p('N )p(M )RLpCLRp)(p( L )p(N )p(M 101 2023 10 10 10 2 2 ++++ =→ +++ = Như vậy: 078070010770700 1 4 7 10100 10 10 10 20 1 23 10 10 2 =+−→=+− = +− = −= = ++++ = −= RLRLCLRLRLC )( RLRLC L p RC p LCRC p p RC p)p('N )p(M )( RLRCL L p RC p LCRC p p RC p)p('N )p(M 2 3 7 30800 10 20 10 20 1 23 10 20 2 −= +− = −= = ++++ = −= )( RLRLC L p RC p LCRC p p RC p)p('N )p(M 3 12 7 906500 10 50 10 20 1 23 10 50 2 = +− = −= = ++++ = −= Từ (1),(2) và (3) lập được hệ phương trình : )( RLRLC RLRLC RLRLC 4 12906500 330800 410100 =+− −=+− =+− Giải 4 được: L=0,7 H; R=10 Ω ; C=0,01/ 7 F= F,F µ≈ 001430 700 1 Có thể kiểm tra lại kết quả nhận được như sau: Thay các trị số của R,L và C vào công thức U C (p) sẽ được: )p)(p)(p( )pp)(p()RLpCLRp)(p( L )p(U , C;,L;R C 502010 700 10007010 700 10 10 2 7 010 7010 2 +++ = +++ = +++ = === 123 [...]... )(p + 50) = p = −20 p = −50 700 7 = ; (p + 20)( p + 50) p = −10 4 = 700 7 =− ; (p + 10)( p + 50) p = −20 3 = 700 7 = (p + 10)( p + 20) p = −50 12 Hoặc: thay các trị số của R,L,C nhận được từ trên vào mạch, với tác động toán tử là 10 sẽ nhận được : p(p + 10) 7 7 7 700 U C (p ) = = 4 − 3 + 12 (p + 10)(p + 20)(p + 50) p + 10 p + 20 p + 50 7 −10 t 7 − 20 t 7 −50 t − e + e Tức sẽ có u C (t ) = e !!! 4 3... = = 100 p + 100 p + 50 (p + 50) p = −100 (p + 100) p = −50 U C (p ) = − 100 100 + → u C (t ) = 100(e −50 t − e −100 t ) p + 100 p + 50 b) Phương pháp tích phân Duhament Tìm đặc tính quá độ hC(t): Khi mạch chịu tác động của nguồn bậc thang E thì có uC(t)=E(1-e-αt)=E(1-e-50t); h C ( t ) = 1 − e −50 t ; f1 (t ) = 100e −100 t ; f1 (0) = 100; f1' (t ) = −10 4 e −100 t t u c (t ) = f 2 (t ) = 100(1 − e − . ttt e.,e.,te, 37 531 0 031 00 101 735 3101 735 3872720 ttt e,et,e, 37 5100100 011908727001190 −−− −− [A] b) Phương pháp toán tử: 126 2 21 22 2 32 3 2 22 23 6 2 2 100 10 037 5 37 5100 42 2405 037 5100 30 240 4 120005 037 5100 30 240 4 37 5100 240 4 37 532 100 240128 240 37 532 240 1200 032 20 240 720012 240 720012 12005 120002 03 1200020 30 1200020 30 1200020 12000 20 33 83 10 20 100 128 )p( C p C p A )p.()p( p, )p()p.()p( p)p( . )p)(p.()p( p)p( . ZZ Z)p(I )p(I . )p.()p( )p( . )p(.)p( )p( )p(I ; p )p( p p p p Z ; p p p )p( p p p p Z ; p p pp., Z; )p( )p(e + + + + + = ++ = +++ + = +++ + = + = ++ + = ++ + = + + = + + =+ + + = + + = + + = + + + = + =+≈+= + = ;, pp p, C;, p )p( p, A. thời gian 30 ÷ 35 mS: coi tác động của xung thứ 4 là bậc thang: A,e,)s.(imSti¹T.e,)t(i ,,A, mSt BA;B;BeA)t(i ,).t( ).t( 055 232 06 435 1 035 355206 43 306 435 7 936 17 936 1 30 5 5 031 031 00 44444 1 031 00 4 2 2 =−=→=+−= −=−=→= = +=+= −−−− −− − − . ,.cos)e(. ., 436 102 832 61054 102102 832 6101102 33 ≈− −− − i L (t X )= ]A[.,.sin)e(. ., 31 02 832 6101102 36 102 832 61052 33 ≈− −− − Từ đó có sơ đồ toán tử hình3.83a),đưa về hình 3. 83. b) Nguồn