Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.Nghiên cứu khả năng và cơ chế kích thích tính kháng bệnh cháy bìa lá lúa của hợp chất trong các loài thực vật tại Đồng bằng Sông Cửu Long.
Trang 1MINISTRY OF EDUCATION AND TRAINING
CAN THO UNIVERSITY
SUMMARY OF DOCTORAL THESIS
Majors: Biotechnology Code: 9420201
Trang 2THIS STUDY WAS ACHIEVED
AT CAN THO UNIVERSITY
Scientific advisor: Assoc Prof Nguyễn Đắc Khoa
Confirmation of review by the Chairman of the Board
The thesis can be found at the library:
- Learning Resource Center, Can Tho University
- Vietnam National Library
Trang 3PUBLICATIONS RELATED WITH THE PhD THESIS
1 Truong Van Xa, Tran Kim Thoa, Thai Tran Anh Thu, Nguyen Dac
Khoa (2023) Effects of seed soaking and foliar spraying of Kalanchoe
pinnata aqueous leaf extracts against rice bacterial leaf blight CTU Journal of Innovation and Sustainable Development, 15(3), 12-22 DOI:
10.22144/ctujoisd.2023.047
2 Truong Van Xa, Tran Kim Thoa, Nguyen Duc Do, Nguyen Dac
Khoa (2023) Seed soaking using methanol Kalanchoe pinnata leaf
extracts induces rice resistance against bacterial leaf blight
https://doi.org/10.3390/ijpb14040084
3 Truong Van Xa, Tran Kim Thoa, Nguyen Dac Khoa (2024)
Aqueous Chromolaena odorata leaf extracts induce rice resistance against bacterial leaf blight International Journal of Phytopathology
Accept 31.08.2024
4 Truong Van Xa, Nguyen Duc Do, Nguyen Dac Khoa 2024 Seed
soaking using fractional leaf extracts of Kalanchoe pinnata (Lam.) Pers induces rice resistance against bacterial leaf blight (Xanthomonas
oryzae pv oryzae) Vietnam Journal of Agriculture and Rural Development, special Issue in Phytopathology (July 2024): 61-69
5 Nguyen Thi Thuy Ngan, Truong Van Xa, Nguyen Dac Khoa 2024
Investigation of induced resistance against rice bacterial blight of
aqueous Ageratum conyzoides leaf extracts using foliar spraying
Vietnam Journal of Agriculture and Rural Development, special Issue in
Phytopathology (July 2024): 44-51
6 Pham Thiet Trinh, Luu Minh Long, Truong Van Xa, Nguyen Dac
Khoa 2024 Foliar spraying using aqueous Kalanchoe pinnata leaf extracts induces rice resistance against bacterial leaf blight Vietnam
Journal of Agriculture and Rural Development, special Issue in
Phytopathology (July 2024): 52-60
Trang 4Chapter 1: INTRODUCTION
1 1 Rationale of the study
Bacterial leaf blight (BB) is caused by Xanthomonas oryzae pv oryzae (Xoo) (Swings et al., 1990) In Viet Nam, the disease is more destructive during rice harvest where loses can reached 65% of yields (Dinh et al.,
2008; Son, 1993) In addition, the disease also causes serious damage to
the quality of rice, which affects the export of high-quality rice (Dinh et al.,
2008; Khoa, 2018; Son, 1993)
BB management has centered on methods which reduce the initial inoculum and subsequent development of the patroon rice plants Induced resistance is a sustainable and environmentally friendly way to control the
BB disease (Kloepper et al., 1992, Khoa et al., 2011, 2017; Lyon et al., 2007; Khoa, 2018; Pieterse et al., 2014; Walters et al., 2007) For this
method, the resistance does not directly affect the pathogens, but generates signals to stimulate the self-defense mechanism in the plants Here there is
an increased accumulation of phenolic compounds, phytoalexins and disease-related proteins (PR-proteins) such as peroxidase (POX), catalase (CAT), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL) to
prevent the infection and growth of pathogens (Van Loon et al., 1998; Vidhyasekaran et al., 1997)
Numerous chemicals, bacteria and plant extracts can induce rice
resistance against BB They include salicylic acid (Mohan Babu et al.,
2011), Pseudomonas fluorescens (Lingaiah et al., 2013), methanol extracts
of Datura metel (Kagale et al., 2004), aqueous and methanol extracts of
Adhatoda vasica (Govindappa et al., 2011), aqueous extracts of Vitex negundo (Nisha et al., 2012), and aqueous crude extracts of Kalanchoe pinnata (Khoa et al., 2017; Hương et al., 2018) The protection involved
induced resistance since activities of POX and CAT increased after extract
applications, particularly with the presence of Xoo, while those of PPO and PAL increased at an early stage after pathogen inoculation (Kagale et al.,
Trang 52004; Govindappa et al., 2011; Nisha et al., 2012; Khoa et al., 2017) As
bioactive compounds have different characteristics and polarities, their contents and antioxidant power varied when extraction was conducted
using different solvents (Jaiswal et al., 2012) It could be argued that
different solvents and/or extraction methods could extract different resistance-inducing compounds against BB
This study aims at testing for disease-reducing effects of bioactive compounds in extracts of indigenous plants in the Mekong Delta of Vietnam and investigating the involvement of induced resistance in the observed disease reduction This helps make an eco-friendly strategy to control the disease thus improve rice yield and quality
(1) Selection of plant extracts in the Mekong Delta that can help
reduce rice leaf disease caused by Xoo bacteria;
(2) Proving the ability of selected plant extracts to reduce disease
related to the mechanism of rice leaf blight resistance;
(3) Investigate the ability of a group of compounds contained in
selected plant extracts to stimulate resistance to rice leaf blight disease;
(4) Identify a group of compounds capable of stimulating rice leaf
blight disease resistance
Trang 61.3 Research content
Content 1: Selection of plant extracts capable of stimulating resistance to rice leaf blight disease
Content 2: Investigating the ability to stimulate resistance to rice leaf blight
disease of the group of compounds contained in Kalanchoe pinnata leaves Content 3: Identify compounds in Sống đời (Kalanchoe pinnata) that have
the ability to stimulate resistance to rice leaf blight disease
1.4 Meaning of the study
1.4.1 Scientific significance
The thesis contributes to providing complete and systematic scientific data on promoting disease resistance in rice plants using biological agents, including: selecting, surveying the ability to reduce disease, proving the mechanism and identifying compounds that have resistance ability
The results of the thesis determine the ability and mechanism to stimulate resistance to rice leaf blight disease by water extracts of cỏ cứt
heo (Ageratum conyzoides), cỏ hôi (Chromolaena odorata), and Sống đời (Kalanchoe pinnata) Preparation and identification of compounds in
Kalanchoe pinnata leaves that have the ability to stimulate resistance to
rice leaf blight disease
1.4.2 Practical significance
Using plants containing natural compounds that help stimulate resistance to rice leaf blight disease is an economically effective and environmentally friendly solution, non-toxic to humans, easy to use, and can be utilized Local raw material sources should help reduce production costs;
Besides, disease prevention and treatment measures using plant extracts are completely consistent with the orientation of building organic agriculture
Trang 71.5 The new contributions of the thesis include
Selected and identified three plant extracts that have the potential to
help reduce rice leaf blight disease such as: A conyzoides, C odorata, and
pinnata (Lam.) Pers using organic solvents with different polarities can
help reduce leaf blight disease;
Proving that the ability of K pinnata extract to reduce BLB is related to
the resistance mechanism through increasing the activity of POX, CAT, PPO, and PAL enzymes;
Identifying 27 plant compounds in total MeOH extract, 34 plant
resistance to rice leaf blight disease It has been proven that two plant compounds, 5-Oxotetrahydrofuran-2,3-dicarboxylic acid, dimethyl ester
and 3-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester, in K pinnata
have the ability to stimulate resistance to leaf blight disease
Trang 8Chapter 2: LITERATURE REVIEW 2.1 Bacterial leaf blight
2.2 Disease resistance of plants
2.3 Studies on resistance mechanisms in plants
2.3.1 Plant resistance mechanism through physical barriers
2.3.2 Plant resistance mechanism through biochemical reactions
Biochemical reactions of plants such as increased synthesis of phenolic
compounds (Fan et al., 2017); phytoalexins (Cho et al., 2015; Roop Singh
et al., 2017); hypersensitive reaction (Hammerschmidt et al., 2000);
pathogenesis-related proteins (Van Loon et al., 2006)
Disease resistance responses of plants often appear in groups of
contribute to limiting the growth of pathogens (Apel et al., 2004; Shetty et
al., 2008) The action of a group of substances with high antioxidant
activity as antibacterial agents, participating in part of lignin, suberrin and other cell wall constituents, stimulates genes related to protection, stimulating Synthesize phytoalexins that are toxic to pathogens (Nicholson
et al., 1992; Apel et al., 2004; Edreva, 2005; Cho et al., 2015) In addition,
a group of substances with high antioxidant activity plays a role in
detoxifying cells (Rao et al., 1997; Govrin et al., 2000) ao et al., 1997; Govrin et al., 2000) Therefore, to maintain a balanced state in plant cells,
the detoxification mechanism is activated at the same time as the increase
in highly oxidized groups, in which the two enzymes POX and CAT
Trang 9often present in forms such as lignin peroxidase, manganese peroxidase
and peroxidase (Hammerschmidt et al., 1982)
In plants, POX is a group of enzymes that are activated early in the process of resisting fungal and bacterial pathogens An increase in POX activity is associated with a decrease in the penetration and spread of
pathogens (Nicholson et al., 1992; Hammerschmidt et al., 2000) POX is
involved in a number of physiological and biochemical processes in plants such as cell growth and expansion, regulating defense responses when
plants are shocked by biotic or abiotic agents (Hammerschmidt et al.,
2000) In addition, POX plays a role in regulating oxidation reactions and
al., 2001; Shetty et al., 2008) n summary, POX activity is increased when
attacked by pathogens and is produced along with the content of oxidant active substances; is an important enzyme for the formation of defense
(Hammerschmidt et al., 2000; Hiraga et al., 2001; Van Loon et al., 2006)
Research results on rice resistance response against leaf blight caused
by Xoo bacteria show that POX activity in rice tissue increases when
infected with the pathogen; increased earlier and stronger when treated
with resistant agents (Song et al., 2001; Kagale et al., 2004; Govindappa et
al., 2011; Nisha et al., 2012; Khoa et al., 2017)
2.3.2.2 Enzyme catalase
In plants catalase (CAT) present in peroxysomes plays a role in
synthesis (Apel et al., 2004; Yu et al., 2016) esis (Apel et al., 2004; Yu et
al., 2016) CAT helps decompose H2O2 to help detoxify plant tissue when
necrotrophic pathogens invade (Apel et al., 2004); or after parasitic
pathogens in living tissue (biotrophic) rapidly multiply and spread in plant
tissue (Loprasert et al., 1996; Yu et al., 2016) When biotrophic pathogens
attack plant tissue, the superoxide dismutase enzyme present in chlorophyll
pathogen (Loprasert et al., 1996) At the same time, the POX enzyme in
Trang 10plant tissue also participates in increasing H2O2 synthesis (Hiraga et al., 2001; Shetty et al., 2008) After that, CAT is increased in synthesis in the
oxygen molecules, helping plants detoxify (Apel et al., 2004; Yu et al.,
2016)
Seeds Soaking with leaf extract of Ocimum sanctum and Cymbopogan
citrus have the ability to stimulate resistance against Rhizoctonia solani
disease through a sharp increase in CAT activity from 0 to 96 hours after
inoculated (Pal et al., 2011) Similarly, seeds soaking with aqueous crude extracts of K pinnata helps stimulate rice plant resistance against rice leaf
blight disease through increased CAT enzyme from 1 to 6 days after
inoculation (Khoa et al., 2017)
2.3.2.3 Enzyme polyphenol oxidase
Polyphenol oxidase (PPO) is a copper (Cu) containing enzyme In the presence of oxygen, this enzyme catalyzes the hydroxylation of monophenol compounds to ortho-diphenols The generated ortho-diphenols are further oxidized to the corresponding ortho-diquinone compounds Diquinones have very strong activity, capable of participating in cross-
linking or alkylating proteins, forming brown pigments (Yoruk et al., 2003; Constabel et al., 2008) PPO participates in the function of protecting
plants against physical damage, attacks from pathogens and harmful insects
(Constabel et al., 2008) The plant's defense response to pathogen attack is
to increase the expression of the PPO enzyme to increase the ability to synthesize phenol and quinone compounds; These compounds are toxic to
pathogens such as germs and bacteria (Li et al., 2002; Constabel et al.,
2008) Besides, PPO also has the ability to activate genes encoding methyl jasmonate and oligogalacturonic acid signals in the plant's defense mechanism; Therefore, PPO also plays an important role in the resistance
mechanism that helps plants fight against microbial diseases (Constabel et
al., 2008)
In the study by Pal et al (2011), aqueous and ethanol extract of
Cymbopogan citrus and Ocimum sanctum have the effect of stimulating
Trang 11rice resistance against sheath spot disease caused by Rhizoctonia solani,
shown by increasing PPO activity 3 times higher than rice plants whose
seeds are not treated with resistance According to Khoa et al., (2017) and Hương et al (2018), the resistance-stimulating ability of the extract of K
pinnata through activating and increasing PPO activity is higher than the
treatment without treatment of the extract
2.3.2.4 Enzyme phenylalanine ammonia lyase
Phenylalanine ammonia lyase (PAL) participates in the process of cell wall lignification and biosynthesis of flavonoids and phenylpropanoids in
plant defense reactions (Santiago et al., 2009) PAL catalyzes the
phenylpropanoid synthesis, leading to the synthesis of compounds involved
in plant defense such as lignin, isoflavonoids and coumarins (Solekha et
al., 2020)
Studies have stimulated plant resistance against pathogens through increased PAL activity Specifically, treatment with acibenzolar-S-methyl
helps rice plants resist leaf blight (Pyricularia oryzae) by showing
increased synthesis of PAL and POX enzymes compared to the control
(Thieron et al., 1995) Methanol extract from Datura metel has the ability
to increase PAL enzyme activity in rice, contributing to resistance to leaf
blight and sheath spot disease in rice (Kagale et al., 2004) Aqueous extracts of Ocimum sanctum and Cymbopogan citrus have the ability to
increase PAL enzyme activity in rice plants, contributing to resistance to
sheath spot disease in rice (Pal et al., 2011) Extracts of Adhatoda vasica (Govindappa et al., 2011) Aqueous crude extracts of K pinnata has the
ability to help rice plants resist rice leaf blight disease due to an increase in
PAL enzyme activity (Khoa et al., 2017; Nguyễn Thị Thu Hương và ctv,
2018)
2.4 Plant compounds
2.5 Extraction methods of plant compounds
2.6 Plant species used in the study
Trang 12Chapter 3: METHODOLOGY 3.1 Plant species used in the study
Plant species used in the study from plant sources in the Mekong Delta
is based on three criteria: (1) popular plants; (2) contains plant substances
capable of stimulating disease resistance in plants as described by Kuć
(2006) và (3) refer to research on stimulating resistance in different crops
3.2 Effects on rice seed germination and development
The experiment was performed based on the method of của Singh and
Rao (1997) and modifed to Khoa et al (2017) The experiment was
arranged in a completely randomized format with three repetitions
Germination rates (percentage of germinated seeds over total number of seeds), shoot and root lengths of the germinated seeds were recorded after
3, 5 and 7 days In addition, the vigor index after 7 days as a function of germination rate and seedling lengths was calculated using formula
proposed by Arumugam et al (2008) and modifed to Doni et al (2014)
3.3 Disease-reducing effects of plant extracts on BB under greenhouse conditions
The experiment was arranged in a completely randomized format, with
3 repetitions
Rice plants at 45 days after sowing are used to inoculate the disease
according to the method of Kauffman, (1973) and modifed to Khoa et al
(2017)
Lesion length were measured at 7, 14 and 21 days after inoculation
(DAI) (Mew, 1993; Khoa et al., 2017)
3.4 Assays of the induced defense-related and antioxidant enzymes
Four treatments were included in these assays, i.e (1) seeds soaked in
sterile distilled water, rice plants were not inoculated (water +
non-inoculated); (2) seeds soaked in sterile distilled water, rice plants were inoculated (water + inoculated); (3) seeds soaked in extract, rice plants
Trang 13were not inoculated (extract + non-inoculated); and (4) seeds soaked in
extract, rice plants were inoculated (extract + inoculated)
Rice leaves were collected from 0 to 7 DAI (once a day) and quickly frozen in liquid For enzyme extraction, 10 g of rice leaves was ground in liquid nitrogen using a Retsch mixer mill (MM200, Retsch Co., Haan, Germany), and 0.1 g of the sample from each collection time point was subsequently homogenized in 1.5 mL of an extraction buffer solution corresponding to each enzyme Indeed, sodium potassium phosphate buffer 0.1 M (pH 6.5) was used for the extraction of POX and PPO, sodium potassium phosphate buffer 0.1 M (pH 7.0) for CAT, and sodium borate buffer 0.1 M (pH 8.7) for PAL The homogenates were then centrifuged at 10,000 rpm at 4 ◦C for 30 min Enzyme samples were always kept on ice during the assays Each assay was conducted with three replicates
3.4.1 POX enzyme assay
POX activity was expressed as changes in absorbance at 470 nm at 30s intervals during 2 minutes since the reaction occurred as the rate of conversion of tetraguaiacol and guaiacol using the method described by
Hammerschmidt et al (1982) and Khoa et al (2017) The mixture of 1.6
guaiacol solution, 0.15 mL of 0.1M sodium phosphate buffer solution and
pH 6.5 was used as blank The reaction mixture comprised 1.6 mL of 0.05
enzyme extract diluted two-fold with the extraction buffer The experiments were designed with three replications
3.4.2 CAT enzyme assay
CAT activity was recorded at 240 nm at 30s intervals during 2 minutes
described by Beers and Sizer (1952) and Khoa et al (2017) The
experiments were designed with three replications Blank sample was
mL of 0.1 M sodium potassium phosphate buffer, pH 7.0 The reaction