Một vấn đề được đặt ra là dạy học như thế nào để học sinh không những nắm vững nội dung kiến thức cơ bản một cách có hệ thống mà phải rèn luyện khả năng tư duy lô gic , rèn luyện kỹ năng
Trang 1A – ĐẶT VẤN ĐỀ
I : Cơ sở lí luận
Cùng với sự phát triển của đất nước ta , sự nghiệp giáo dục cũng không
ngừng đổi mới Vì thế các nhà trường phải luôn chú trọng đế chất lượng của
học sinh một cách toàn diện Bởi vậy phải có sự đầu tư đích đáng cho nề giáo
dục Với vai trò là môn học công cụ , bộ môn toán đã góp phần tạo điều kiện
cho các em học tốt bản thân môn toán và các môn học khác
Một vấn đề được đặt ra là dạy học như thế nào để học sinh không những
nắm vững nội dung kiến thức cơ bản một cách có hệ thống mà phải rèn luyện
khả năng tư duy lô gic , rèn luyện kỹ năng làm bài tập của bộ môn toán cũng như các môn khoa học khác , có thái độ , quan điểm rõ ràng trong các bài tập
của mình để tạo được sự húng thú , say mê trong học tập , tiếp thu kiến thức và
có thể đưa các kiến thức đó ra áp dụng vào cuộc sống đời thường là câu hỏi mà
mỗi thầy cô luôn phải đặt ra để có thể truyền đạt kiến thức một cách tốt nhất
cho học sinh thân yêu của mình
Để đáp ứng được yêu cầu của sự nghiệp giáo dục và nhu cầu học tập của
các em trong , quá trình giảng dạy chúng ta phải biết chắt lọc ra những nội
dung kiến thức cơ bản một cách rõ ràng ngắn gọn và đầy đủ nội dung , phải đi
từ dễ đến khó , từ cụ thể đến trừu tượng và phát triển rút ra những nội dung
kiến thức chính trong bài học đồng thời có thể gợi mở , đặt vấn đề để học sinh
phát triển tư duy và kĩ năng phân tích nội dung và làm các bài tập toán học một
cáh chặt chẽ, rõ ràng và có hệ thống , đồng thời giúp cho các em nhận ra các
dạng bài toán đẫ học một cách nhanh nhất
Qua một thời gian giảng dạy bộ môn toán tại trường THCS Tứ Dân , bản thân tôi đã cố gắng chú trọng rèn luyện tư duy cho học sinh trong qua trình học toán và đạt được một số kết quả , có thể đây là bước đầu trao đổi thành một đề
tài về kinh nghiệm rèn tư duy trong học toán của học sinh Tôi mạnh rạn viết
thành sáng kiến kinh nghiệm với đề tài ; “ Rèn k ĩ năng giải bất phương
trình b ậc nhất một ẩn qua các dạng bài tập “ của mình để cùng trao đổi
Trang 2với các đồng nghiệp nhằm mục đích cùng trao đổi học hỏi lẫn nhau trong bồi dưỡng học sinh giỏi lớp 8 một cách tốt hơn
II : Cơ sở thực tiễn
* Trường THCS Tứ Dân chất lượng cụ thể là :
- 75% mức độ đạt yêu cầu trong đó có 20% học sinh khá giỏi
( kết quả khảo sát chất lượng đầu năm )
* Đối với học sinh lớp 8 :
- Phân chia thành các nhóm tiếp thu kiến thức như sau
+ Nhóm những em tiếp thu nhanh , giải quyết vấn đề nhanh , linh hoạt :
25%
+ Nhóm học sinh biết vận dụng trực tiếp ; 50%
+ Nhóm học sinh chưa biết vận dụng : 25%
( Phân chia các nhóm tiếp thu về bộ môn Toán )
- Về tài liệu : SGK , SGV đầy đủ , sách nâng cao , sách tham khảo của
học sinh và giáo viên còn hạn chế , phần lớn là do giáo viên và học sinh tự
mua sám
- Qua qua trình trực tiếp giảng dạy các khối lớp từ các tiết luyện tập ,
kiểm tra , các tiết bồi dưỡng học sinh giỏi , học sinh yếu kém và các tiết dự giờ
của các đồng nghiệp tôi nhận thấy : Học sinh thường lúng túng , không tìm ra hướng giải quyết hoặc tìm ra hướng giải quyết nhưng không biết làm thế nào ,
làm từu đâu ,các bài làm của các trong các giờ kiểm tra trên lớp cũng như các
bài kiểm tra một tiết thường không chặt chẽ , không hợp loogic làm cho lời
giải của các em trở nên rời rạc , không hợp lí đặc biệt là những bài toán khó ,
những tình huống toán học mang tính thực tiễn
- Bên cạnh đó một số khá lớn các em học sinh phụ hynh đi làm ăn xa
không có thời gian quan tâm đến việc học tập của các em , không đôn đóc các
em học được làm cho các em ngày càng mải chơi và không chịu học làm cho
kiến thức của các em bị hổng dẫn đến kết quả học tập kém và làm cho cac em
càng trỏ nên lười học
B – GI ẢI QUYẾT VẤN ĐỀ
Trang 3I : Các gi ải pháp thực hiện
1 Hình thành thái độ yêu thích bộ môn Toán cho các em học sinh
2 Phân loại bài tập và yêu cầu đối tượng học sinh qua từng dạng bài tập
để phù hợp và hiệu quả khi giải bài tập có liên quan đến bất phương trình bậc
nhất một ẩn
3 Rèn cho học sinh khả năng suy luận , tư duy , vận dụng các kiến thức
đã học vào các bài tập liên quan
4 Rèn kĩ năng giải toán cho học sinh
5 Tham khảo các tài liệu trong thư viện , trên báo chí cũng như thông
qua mạng internet , ý kiến của các đồng nghiệp , các chuyên gia ,điều tra ,
thống kê kết quả học tập của các em , hiệu quả công tác giảng dạy , đúc rút
kinh nghiệm kịp thời … Về các vấn hiên cứu và một số vấn đề liên quan
II: Các bi ện pháp thực hiện
*: Hình thành thái độ học tập bộ môn
Học sinh ở cấp THCS đang ở lứa tuổi hiếu động , bồng bột , giải quyết
vấn đề hầu như dựa vào cảm tính nắm được sự phát triển tâm lí này , giáo
viên cần phải tạo cho học sinh một thái độ học tập đúng đắn , nghiêm túc nhằm
tạo cho học sinh có tính kỉ luật , khoa học … đồng thời kích thích sự hứng thú
say mê học tập của các em trong quá trình học môn toán Cho học sinh thấy được tầm quan trọng của môn toán trong thức tế cuộc sống và trong các môn
học khác
Để làm được điều này là một giáo viên cần có nhiều biện pháp như : Cho
học sinh tổ chức các nhóm học tập để rèn luyện tính tập thể , tổ chức trò chơi ,
tiến hành đo đạc , giới thiệu các bài học lí thú …Đặc biệt là phải phân rõ dạng
bài tập để học sinh dễ hình dung và tiếp thu nó
* Phân lo ại và yêu cầu các đối tượng học sinh qua từng bài tập cụ thể để phù h ợp và hiệu quả khi giải bài tập
Được chia làm hai phần ;
+ Giới thiệu kiến thức cơ bản
+ Các dạng bài tập áp dụng
Trang 4Giáo tùy từng đối tượng học sinh mà cho bài tập có nội dung phù hợp để có
hiệu quả khi giảng dạy
* Rèn cho h ọc sinh khả năng suy luận , tư duy , vận dụng các kiến thức
đã học vào các bài tập liên quan
Sau khi đã cho học sinh làm các bài tập ở dạng tổng quát thì giáo viên
cho những bài tập tưng tự nhưng cách hỏi khác nhau để cho học sinh tư duy
Hoắc có thể đưa những bài tập không có dạng tổng quát nhưng có thể sử dụng
kiến thức cơ bản đã học để giải quyết nó với mục đích làm cho các em phải
biết tư duy , phân tích để có hướng giải quyết đúng tạo cho các em cảm giác như mình vừa có được một thành công và chính điều đó làm cho các em hiểu
sâu vấn đề và biết vận dụng vấn đề một cách thành thạo
* Rèn luy ện kĩ năng giải toán cho các em qua các dạng bài tập
1- Gi ới thiệu kiến thức cơ bản
a) Khái ni ệm bất phương trình bậc nhất một ẩn
- Bất phương trình bậc nhất một ẩn là phương trình có dạng : ax + b > 0 (
hoặc ax + b < 0 : ax + b 0 ; ax + b 0) trong đó x là ẩn a , b là các số đã cho
a 0
b) B ất phương trình tương đương
ĐN : hai bất phương trình được gọi à tương đương nếu chúng có cùng một
tập hợp nghiệm
Các phép bi ến đổi tương đương
+ Định lí 1 : Nếu cộng cùng một đa thức của ẩn vào hai vế của một bất
phương trình thì được một bất phương trình mới tương đương
- H ệ quả 1 ; Nếu xóa hai hạng tử giống nhau ở hai vế của một bất phương
trình thì được một bất phương trình tương đương
- H ệ quả 2 : Nếu chuyển hạng tử từ vế này sang vế kia và đổi dấu của nó
thì được một bất phương trình tương đương
+ Định lí 2 :
Trang 5- Nếu nhân hai vế của một bất phương trình với một số dương thì được một
bất phương trình tuơng đương
- Nếu nhân hai vế của một bất phương trình với một số âm và đổi chiều của
bất phương trình thì được một bất phương đương
2- Các d ạng bài tập
D ạng 1 : Giải bất phương trình bậc nhất một ẩn
Bài 1 : Giải các bất phương trình sau
a) x – 4 < - 8 b ) x + 3 > - 6
c ) -2x > -3x +d ) -4x -2 > -5x +6
Với bài tập này học sinh có thể giải rễ ràng bằng cách sử dụng các phếp biến đổi tương đương
Gi ải
a ) x – 4 < - 8 ↔ x < -8 + 4 ↔ x < - 4
Vậy tập nghiệm của bất phương trình đã cho là S = {x / x < - 4 }
b ) x + 3 > - 6 ↔ x > - 6 – 3 ↔ x > -9
Vậy tập nghiệm cuả bất phương trình đã cho là S = {x / x > - 9 }
c ) -2x > - 3x + 3 ↔ -2x + 3x > 3 ↔x > 3
Vậy tập nghiệm của bất phương trình đã cho là S = {x / x > 3 }
d) – 4x – 2 > -5x + 6 ↔ - 4x + 5x > 6 + 2 ↔ x > 8
Vậy bất phương trình đã cho có nghiệm là : S = {x / x > 8 }
Bài 2 : Giaỉ các bất phương trình sau ;
a ) (x + 2 ) 2 < 2x ( x + 2) +4
b ) (x + 2 ) ( x + 4 ) > ( x – 2 ) (x + 8) + 26
Bài tập này sẽ làm cho học sinh hơi bối rối vì các em thấy lũy thừa của x
không là bậc nhất nên không biết làm như thế nào vì vậy giáo viên đưa ra một
gợi ý nhỏ cho các em : Hãy thực hiện các phép tính ở hai vế và thu gọn
Gi ải
Trang 6a) ( x + 2 ) 2 < 2x ( x + 2) + 4
↔ x2
+ 4x + 4 < 2 x2 + 4x + 4
↔ x2
< 2 x2 ↔ x2
> 0 ↔ x > 0 hoặc x < 0
Sau khi giải đến bất phương trình x2
> 0 sẽ có nhiều học sinh biến đổi như
sau ; x2 > 0 ↔ x > 0 như vậy thì khi kết luận nghiệm thì sẽ thiếu nghiệm của
bất phương trình vì vậy cần nhắc lại cho các em lũy thừa chẵn của một số ,
biểu thức bao giờ cũng lớn hơn hoặc bằng 0 do vậy thay cho việc tìm các
gía trị của x để x2 > 0 ta đưa về tìm x để x2 = 0 khi đó những giá trị còn lại
của x sẽ làm cho x2
> 0
b ) ( x + 2) ( x + 4 ) > ( x – 2 ) ( x + 8 ) + 26
↔ x2
+ 6x + 8 > x2 + 6x -16 + 26
↔0 > 2 ( vô lí )
→ Bất phương trình vô nghiệm
Khi làm xong bài tập 2 giáo viên có thể cho học sinh rút ra các bước làm :
Bước 1 : Thực hiện các phép tính ở hai vế của bất phương trình
Bước 2 : Chuyển các hạng tử chứa ẩn sang một vế , các hạng tử bằng số
sang một vế rồi thu gọn bất phương trình
Bước 3 : Giải bất phương trình sau khi thu gọn
Bài 3 : Giải các bất phương trình sau :
a
b
Giáo viên cho học sinh nhận xét các bất phương trình trên có đặc điểm gì và
gợi ý học sinh hãy quy đồng và khử mẫu
Gi ải
Vậy tập nghiệm của bất phương trình là : S = {x / x ≤ 15}
Trang 7b)
Vậy tập nghiệm của bất phương trình là ; S = {x / x ≤ -115}
Qua bài tập này giáo viên cho học sinh rút ra cách giải bất phương trình có
chứa mẫu :
Bước 1 : Quy đồng và khử mẫu
Bước 2 : Chuyển các hạng tử chứa ẩn sang một vế và các hạng tử bằng số
sang một vế và thu gọn bất phương trình
Bước 3 : Giải bất phương trình sau khi thu gọn
Bài 4 : Giải bất phương trình :
mx + 1 ≥ m2
+ x ( với m là tham số )
Học sinh có thể biến đổi tương đương bình thường
mx m x mx x m m x m m
Đến bước này sẽ có nhiều em vội vàng suy ra x ≥ ( m + 1 ) bàng cách chia
(m-1)(m+1) cho (m-1) mà quên mất điều kiện để một phép chia có nghĩa là số chia
phải khác không và quy tắc chia hai vế của bất phương trình cho một số âm
phải đổi chiều bất phương trình Vậy giáo viên phải hướng dẫn các em phân chia trường hợp của m- 1 là ( m-1) > 0 ; (m – 1 ) <0 ; ( m- 1 ) = 0 và học sinh
có thể giải tiếp như sau :
+ Nếu m < 1 thì nghiệm của bất phương trình là x ≤ m + 1
+ Nếu m > 1 thì nghiệm của bất phương trình là x ≥ m + 1
+ Nếu x = 1 thì bất phương trình có dạng 0x ≥ 0 nghiệm đúng với mọi giá
trị của x
Bài 5 : Giải bất phương trình ( với a là hằng số )
x 1 ax
a > x 2 2x
a
Đây là bất phương trình có chứa mẫu do đó cần phải tìm điều kiện để cho
mẫu có nghĩa sau đó biến đổi và rút gọn bất phương trình
Trang 8Gi ải
Bất phương trình có nghĩa khi a ≠ 0
x 1 ax
a > x 2 2x
a
x 1 ax
a a
> x 2 2x
a a
ax 2x > 2 1
aa (a 2)x 1
a
- Nếu a > - 2 : a ≠ 0 thì nghiệm của bất phương trình là : x > 1
( 2)
a a
- Nếu a < - 2 thì nghiệm của bất phương trình đã cho là : 1
( 2)
x
a a
- Nếu a = -2 thì bất phương trình có dạng 0x > -1
2 nghiệm đúng với mọi x
Bài 6 : Giải bất phương trình :
2 5 8 11
x x x x
Với bài tập này phần lớn học sinh sẽ vận dụng cách làm một cách máy móc
đó là quy đồng , rút gọn rồi mới giải bất phương trình , làm như vậy thì các em
sẽ khá vất vả hoặc có em thì lại tách thành
8 9 8 9 8 6 8 6 8 3 8 3 8 0 80
Làm như vậy cũng rất phức tạp nên giáo viên có thể cho học sinh nhận xét về
mối quan hệ giữa tử và mẫu của mỗi phân thức và hướng dẫn học sinh tạo ra
các phân thức có tử giống nhau bằng cách cộng thêm vào mỗi phân thức với 1 khi đó ta có :
2 5 8 11
x x x x
Trang 9
89 86 83 80
91 0 91
x
x
x
Bên cạnh các bài toán với yêu cầu cụ thể là giải bất phương trình thì còn
những bài toán mà để giải được nó thì phải đưa về bài toán giải bất phương
trình Bài toán này đòi hỏi học sinh phải có sự tư duy logic , phân tích chặt chẽ
Bài 7 : Tìm giá trị của x thỏa mãn cả hai bất phương trình
2 3 2 3 2
x x x
và 3 2 3 5
x x x
Học sinh phải hiểu các giá trị cần tìm của x chính là nghiệm chung của cả hai
bất phương trình và để tìm được thì ta phải đi giải 2 bất phương trình và tìm
phần chung trong tập nghiệm của chúng
*
12 30 20 45 30
(1)
x x x
4
x
Từ (1) và (2) ta có x 0
Bài 8: Tìm các số nguyên x thỏa mãn cả hai bất phương trình
3 2
0, 8
x x và
1
x x
Gi ải
Trang 10Xét bất phương trình : 3 2 0,8
x x
1 2
x
(1)
Xét bất phương trình : 1 2 5 3
1 2 4 1 0 9 3
1 3
1 3
x x
(2)
Từ (1) và (2) ta có 12 ≤ x <13
Sau khi tìm được các giá trị của x thỏa mãn cả hai bất phương trình thì học
sinh lại thêm bước lựa chọn các giá trị nguyên của x
Vì x € Z nên x = 12
Nhận xét : Khi cho bài tập thì giáo viên có thể cho những bài tập tương tự nhau nhưng tập sau phải đòi hỏi cao hơn bài tập trước để tạo cho các em vừa
biết lợi dụng các bài tập đã biết để làm tương tự nhưng lại phải tư duy thêm để
trả lời được câu hỏi của bài như vậy sẽ tạo cho các em sự hứng thú và say mê
học tập
Bài 9 : tìm số nguyên x lớn nhất thỏa mãn mỗi bất phương trình sau
a) 5,2 + 0,3x < - 0,5
b) 1,2 – ( 2,1 – 0,2x ) <4,4
Gi ải
a) 5,2 + 0,3x < - 0,5
0, 3 0, 5 5, 2
0, 3 5, 7
19
x x x
Trang 11Học sinh khi làm đến đây có nhiều em sẽ không biết vậy x sẽ nhận giái trị
nào thì giáo viên có thể gợi ý : Số nguyên nhỏ hơn -19 và gần với -19 nhất là
bao nhiêu thì học sinh sẽ tìm được đó là -20
b) 1,2 – ( 2,1 – 0,2x ) < 4,4
1, 2 2,1 0, 2 4, 4
0, 2 4, 4 0, 9
26, 5
x x
x
Vậy số nguyên x lớn nhất thỏa mãn bất phương trình là 26
Bài 10: Với giá trị nào của x thì
a) Giá trị phân thức 5 62 x
lớn hơn giá trị phân thức 5 x3 2 b) Giá trị phân thức 1, 55 x
nhỏ hơn giá trị phân thức 4x2 5
Ở bài tập này học sinh phải thiết lập được mối quan hệ giữa các phân thức và đưa về giải bất phương trình
Gi ải
a) Giá trị phân thức 5 2
6
x
lớn hơn giá trị phân thức 5x3 2
nghĩa là
5 2 5 2
5 2 10 4
2 10 4 5 12 9 3
4
x
Vậy giá trị của phân thức 5 26 x
lớn hơn giá trị phân thức 5x32
khi x < 3
4
b) Giá trị phân thức 1, 55 x
nhỏ hơn giá trị phân thức 4x25
nghĩa là
2 5 4
5 5 ,
1 x x
3 2 x 20 x 25
Trang 12
1 22 22
x x
Vậy với x > - 1 thì Giá trị phân thức 1, 55 x
nhỏ hơn giá trị phân thức
2
x
Dạng bài tập này sau khi giải học sinh thường hay kết luận nghiệm của bất phương trình do vậy giáo viên chú ý học sinh hãy kết luận theo yêu cầu của bài
Bài 11: Tìm giá trị của m để nghiệm của phương trình sau dương
1 1
1
m
m
x
Đây là phương trình chứa mẫu vì vậy cần tìm điều kiện để phương trình có
nghĩa : Điều kiện x – 1 ≠ 0 suy ra x ≠ 1
Là bài toán về phương trình nhưng để trả lời được nó thì lại phải sử dụng đến
bất phương trình
Gi ải
1
1
m
x
- Nếu m = 1 thì phương trình có dạng 0x = 0 phương trình vô nghiệm
- Nếu m ≠ 0 thì x 1 2
m
Vì x ≠ 1 nên 2 1 1
1 m m
Nghiệm của phương trình là x 1 2
m
với m ≠ +-1