1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn thạc sĩ Sư phạm toán học: Phát triển năng lực giải quyết vấn đề thông qua dạy học chủ đề Biểu thức đại số cho học sinh lớp 8 trường Trung học cơ sở

114 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Phát triển năng lực giải quyết vấn đề thông qua dạy học chủ đề Biểu thức đại số cho học sinh lớp 8 trường Trung học cơ sở
Tác giả Cán Thị Thanh Nhàn
Người hướng dẫn TS. Phạm Đức Hiệp
Trường học Trường Đại học Giáo dục - Đại học Quốc gia Hà Nội
Chuyên ngành Sư phạm toán học
Thể loại Luận văn thạc sĩ
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 114
Dung lượng 19,75 MB

Nội dung

Giả thuyết khoa học Nếu xác định được các thành tố cơ bản của năng lực giải quyết van đề và déxuất một số giải pháp phát triển năng lực giải quyết vấn đề của học sinh trong dạyhọc “Chủ đ

Trang 1

ĐẠI HỌC QUOC GIA HÀ NOI TRƯỜNG ĐẠI HỌC GIÁO DỤC

CÁN THỊ THANH NHÀN

PHÁT TRIEN NĂNG LỰC GIẢI QUYET VAN DE THONG QUA

DẠY HỌC CHỦ ĐÈ BIEU THỨC ĐẠI SO CHO HỌC SINH LỚP 8

TRƯỜNG TRUNG HỌC CƠ SỞ

LUẬN VĂN THAC SĨ SU PHAM TOÁN HỌC

Trang 2

CÁN THỊ THANH NHÀN

PHAT TRIEN NANG LỰC GIẢI QUYÉT VAN DE THONG QUA DAY HOC CHU DE BIEU THUC DAI SO CHO HOC SINH LOP 8

TRUONG TRUNG HOC CO SO

LUẬN VAN THAC SĨ SU PHAM TOÁN HOC

CHUYEN NGANH: LY LUAN VA PHUONG PHAP DAY HOC BO

MON TOAN HOC Mã số: 8 14 02 09.01

Người hướng dẫn khoa học: TS Pham Đức Hiệp

HÀ NỘI - 2023

Trang 3

LOI CẢM ON

Trong quá trình thực hiện nghiên cứu va hoàn thiện ban luận văn, tác gia đã

nhận được sự ủng hộ và động viên nhiệt tình từ các cấp lãnh đạo, giáo viên, bạnbè, đồng nghiệp và gia đình

Tác giả muốn bày tỏ lòng biết ơn sâu sắc đến các thầy cô giáo, Hội đồng khoahọc và Ban giám hiệu của Trường Đại học Giáo dục - Đại học Quốc gia Hà Nộivì đã tạo điều kiện thuận lợi trong quá trình nghiên cứu và hoàn thiện bản luận văn

Thạc sĩ.

Đặc biệt, tác giả muốn cám ơn đặc biệt đến TS Phạm Đức Hiệp, người thầyđã tận tình hướng dẫn và hỗ trợ để tác giả có thể hoàn thành luận văn này

Tác giả cũng gửi lời cảm ơn đến Ban giám hiệu, các thầy cô giáo trong tổ

Toán và các em học sinh của trường Trung học cơ sở Vĩnh Quỳnh, huyện Thanh

Trì, Thành phố Hà Nội vi đã tạo điều kiện thuận lợi nhất dé tác giả có thể hoàn

thành luận văn này.

Với thời gian nghiên cứu có hạn, luận văn có thé vẫn còn thiếu sót và tác giảrất mong nhận được những ý kiến đóng góp chân thành từ các thầy cô giáo và

đồng nghiệp dé hoàn thiện hon

Xin tran trọng cảm on!

Hà Nội, ngày 26 thang 12 năm 2023

Tác giả

Can Thị Thanh Nhàn

Trang 4

LỜI CAM ĐOANTôi cam kết răng các số liệu và kết quả nghiên cứu được trình bày trong luậnvăn này là chân thực và không được sử dụng đề ủng hộ bất kỳ học vị nào Tôi đãbiết ơn mọi sự giúp đỡ cho quá trình hoàn thiện luận văn này và các thông tin đượctrích dẫn trong đề cương đã được ghi rõ nguồn gốc một cách minh bạch và đềuđược cấp phép dé công bố.

Hà Nội, ngày 26 tháng 12 năm 2023

Tác giả

Can Thị Thanh Nhàn

il

Trang 5

LOI CẢM ƠN ch nh HH ng iLOI CAM DOAN 5c tt HH ư ii

\/009006.0 1H

DANH MỤC BANG BIÊU - G56 SE EEEEEEEETEEEEEEEE kg ETgrey viDANH MỤC BIEU DO uu .ceeecsesssseesseesseessneessnessnecsseessueesueesaneesieesaeeesneesneessneeses vii00071000058 1

1 Lý do chọn đề taie.c.ccececccccccccsscsessesessesessesesesscsesscsesscsessesesesscsesscsessesesessssesseseeess 1

2 Mục đích nghiÊn CỨU <1 1133391111111 111111 9 111 ng kg key 2

4 Khách thé và đối tượng nghiên cứu + + + + +E+E+E+Ee£zkzEererersreee 3

5 Câu hỏi nghiÊn CỨU c1 1333221011113 11 139 1111 1 811 kg vn vn re 3 6 Phuong phap nghién CUu 0 4

7 Giả thuyết khoa hOC c.cecescscsessssessesessesesscsesscscsucscssscsessssvsucscsecscsesscsesscsseseaeaes 4

8 Cấu trúc luận văn - cssst St SE SE S8 111811111151 5111115151 5115151511111 111111 4CHƯƠNG 1 CƠ SỞ LÍ LUẬN VÀ THỰC TIẼN 2-©5c 555cc: 5

1.1 Định hướng đổi mới giáo dục phổ thông - ¿2 2+5 2+x+£e£zz£cxe2 5

1.1.1 Định hướng đổi mới giáo dục - - ¿+ + ++E+E£+E+Et£E+EerkrEerxrrersrrrree 51.1.2 Dạy học phát hiện và giải quyết vấn đề ¿2 +cz+x+zczxererszrereee 81.2 Năng lực giải quyết van dé trong day học tOdI c.eecscesessesessessesseseeseesesees 11

1.2.1 Năng ÌỰC - SH HH TT TH TH TT nh II 1.2.2 Năng lực toán hỌc .- 11 1111111 111111110111 11H 1 1 ng vn ren 12

1.2.3 Năng lực giải quyết Van đề ¿+ sSeSt E2 3221211121111 111111 xe 171.3 Dạy học nham phát triển năng lực giải quyết van đề thực tiễn 241.3.1 Giải quyết van đề trong day học - + 252x+E+Ec£xezeErkerxersred 241.3.2 Quá trình giải quyết van đề trong day học - 2 s+s+s+£zczcszse¿ 25

1.3.3 Các mức độ của dạy học giải quyết vẫn đỀ -.-cccc cv ErErrrkseres 26

iii

Trang 6

1.3.4 Ưu điểm và nhược điểm của day học giải quyết vấn đề - 281.3.5 Phát triển năng lực giải quyết van đề cho học sinh thông qua dạy học pháthiện và giải quyết vấn đề ¿+ + +t+x 2x EEE1215212111121111 1111111111011 xe 28

1.4 Thực trạng việc phát triển năng lực giải quyết van đề của học sinh trong dayhọc chủ đề Biểu thức dai SỐ -¿- - SStSE SE 1E SE E111 1111111111111 1xC 29

1.4.1 Công cụ khảo Sất - - LH TH HH kh 30

1.4.2 Mục đích khảo sát CC Q Q1 1111111111111 ng nghe 30

1.4.3 Kết Ua dat QUOC 0 .‹‹‹-“ 3 30Tiểu kết chương l 2 ¿E522 2E‡EE£EEEEEEEEE2EE21E21217121211 211111111 36

CHUONG 2 MỘT SO BIEN PHÁP PHÁT TRIEN NĂNG LUC 37GIẢI QUYET VAN DE THONG QUA DAY HOC CHỦ ĐÈ BIEU THUC

ĐẠI SO CHO HOC SINH LỚP 8 TRUONG TRUNG HOC CƠ SO 372.1 Một số nguyên tắc xây dung biện pháp day học chủ đề biểu thức dai số chohọc sinh nhằm phát triển một số kỹ năng giải quyết vấn đề cho học sinh lớp 8 ở

trường Trung hoc CƠ SỞ c9 ng TH vn 37

2.1.1 Nguyên tac 1: Dam bảo sự tôn trọng, kế thừa, phát trién Chương trình, Sách

giáo khoa hiện hành - - G0119 HH kh 37

2.1.2 Nguyên tắc 2: Phù hop với học sinh -¿- 2 2+s+c++x+£czxererxzrerees 382.1.3 Nguyên tắc 3: Đảm bảo tính khả thi góp phần đổi mới phương pháp dạy hoc

2.2 Các biện pháp nhằm phát triển kỹ năng giải quyết van đề cho học sinh ở trường

Trung học cơ sở thông qua day học nội dung Biéu thức đại số 392.2.1 Biện pháp 1: Trang bị kiến thức về phương pháp giải các dạng bài toán thuộcnội dung Biểu thức đại số cho học sinh + - 252 +S£+E+E+E+Ee£E+Eerxzxerxee 39

2.2.2 Biện pháp 2: Lồng ghép rèn luyện kỹ năng dự đoán, phát hiện và giải quyết

van dé cho học sinh thông qua day hoc nội dung Biéu thức đại số 41

IV

Trang 7

2.2.3 Biện pháp 3: Lồng ghép rèn luyện kỹ năng định hướng, phát hiện và phântích vấn đề cho học sinh thông qua việc tìm sai sót trong quá trình giải các bài toánBiểu thức đại SỐ - (5 St 3 1E E11 E1E11 1111111111111 1111111111111 110111 x6 652.2.4 Biện pháp 4: Đa dạng hóa giảng dạy thông qua phương pháp giải quyết vấn

An 68

Tiểu kết chương 22 2- 5-52 22219321 9EE2121E2121121211112121112111 11111111011 xe 75CHƯƠNG 3 THUC NGHIỆM SU PHẠM - 525252 Sc+csxsesxes 76

3.1 Mục đích thực nghiệm sư phạm - 5 + + +22 *++*ekExsseerreserrereeee 76

3.2 Nội dung thực nghiệm sư phạm - + S331 ESSeEeeresseeeeerreee 76

3.3 Phương pháp thực nghiỆm c1 1322211111111 1113118811111 8211 rrrey 76

3.4 Tổ chức thực nghiệm - + 2 E2 +SESE£E+E£EEEEEEEEEEEEEEEEEEEEEEEEEEEErErrrree 763.4.1 Đối tượng thực nghiệm - 2 - £©s+SSE+E£EE£E£EEEEEEEEEEEEEEEErrrkrrrreee 763.4.2 Chuan bị thực nghiệm - ¿+ 2 SE +E+E£EE+EEEEEEEEEEEEEEEEEEEEEEEEErrrree 71

3.4.3 Bài giảng thực nghiệm sư phạm - 255 S322 1333 Evsseeeerrsee 78

3.5 Đánh giá kết quả thực nghiệm - 2 552 £SE+E£EE£E£E£EE£EEEEzEerxrkeree 81

3.5.1 Danh gia dimh tinh 4 81 3.5.2 Đánh giá định lượng - - 52+ 1332311133131 39311 1911 S9 kg ng kg 82

Tiểu kết chương 3 52 SE EEEE321E212111121111212111121111111 012111 xe 86KẾT LUẬN 5- 52-521 2223 2EE212112171211211212112111111211111121121 11 e 87

TÀI LIEU THAM KHAO 0ooocccccccccccccsccscssesessesscsessesesssesessessesvsatssesveaseneaves 88

Trang 8

DANH MỤC BANG BIEUBảng 1.1 Một một số đặc trưng của chương trình định hướng nội dung và chương

trình định hướng năng ÌỰC - - - - - c1 1E E9 vn ng 6

Bang 1.2 Các mức độ của phương pháp dạy học giải quyết van đè 27

Bang 3.1 Kết quả bài kiểm tra khảo sát chất lượng đầu năm học 77Bang 3.2 Kết qua bài kiểm tra của học sinh hai lớp 8A2 và lớp 8A1 trường Trung

học cơ sở Vĩnh Quỳnh - - «s11 191119101 19v HH ng rh 83

Bang 3.3 Bang thống kê kết quả - - ¿2 52292 £E+E£EE+EEEEEEEEErErrrkrrereee 84

VI

Trang 9

DANH MỤC BIEU DOBiểu đồ 1.1 Nội dung hoạt động dé giải quyết một vấn đề - 30Biểu đồ 1.2 Thời gian cần thiết phải tổng hợp kiến thức dé giải quyết một van đề

¡1800 eee ccceccscscccccccccccccccccccccesseeeeeeeeeeeeeeeeeeesessassuausausseaesesssssseseeeseeeeeeecceeeeeceeees 31

Biểu đồ 1.3 Van đề khi rèn luyện năng lực giải quyết van đề 31

Biểu đồ 1.4 Biểu hiện co ban của năng lực giải quyết van đề - 32Biểu đồ 1.5 Giải pháp phát triển năng lực giải quyết van dé cho học sinh 32Biểu đồ 1.6 Khó khăn trong việc huy động kiến thức cho học sinh trong dạy họcchủ đề Biểu thức đại SỐ 5: 5t tt x2 33

Biểu đồ 1.7 Thực trạng rèn luyện năng lực giải quyết van đề cho học sinh 33

Biểu đồ 1.8 Tầm quan trọng của phát triển năng lực giải quyết van dé cho học

sinh trong việc dạy và hỌC - SH Hy 34

Biểu đồ 3.1 Biéu đồ thé hiện kết quả bài kiểm tra khảo sát đầu năm 71

Biểu đồ 3.2 Biéu đồ thé hiện bài kiểm tra của học sinh hai lớp 8A2 va lớp 8A1

"¬ 83

Vil

Trang 10

MỞ ĐẦU1 Lý do chọn đề tài

Toán học được coi là một trong những lĩnh vực khoa học lâu đời nhất Tuynhiên, chưa bao giờ sự phát triển toán học lại sâu rộng và có tác động đáng kê đến

xã hội như ngày nay Ở bậc đại học, Toán học là một trong những môn học có vai

trò quan trọng và cốt lõi như Albert Einsten đã nói: “Toán học thuần túy theo cáchriêng của nó là thơ ca của tư duy logic” Vì vậy, ngoài việc cung cấp cho học sinhnhiều kiến thức toán cơ bản, việc giúp các em vận dụng kiến thức, kĩ năng dé giảithích, giải quyết các vấn đề trong đời sống cũng rất quan trọng

Quá trình giảng dạy là một chuỗi các hành động được lên kế hoạch và dự

định nhằm tạo điều kiện thuận lợi cho việc tiếp thu các kĩ năng tư duy phê phán,giúp hoc sinh có thé giải quyết các van đề thực tế trong cuộc sống Việc dạy toánkhông chỉ đơn giản là cung cấp những lý thuyết toán học trống rỗng và hỗ trợ học

sinh hoàn thành bài tập mà còn là phát triển một cách tiếp cận chung đối với các

bài toán dé hỗ trợ học sinh tham gia tích cực Tự do sáng tạo dé phat trién khanăng kỹ thuật va phát trién nhân cách

Trong Toán học thì đại số là một môn đặc biệt Đại số được định nghĩa rõ

ràng là việc sử dụng các phương trình Toán học dé mô hình hóa các ý tưởng Thường mô hình hóa các ý tưởng dưới dạng phương trình Toán học để giải quyết

các van đề xung quanh chúng ta Trong phan đại số, phần “Rút gọn biểu thức” cóý nghĩa quan trọng trong chương trình Toán học phố thông Các dạng bài tập củabiểu thức đại số thường có trong các bài kiểm tra như: các kì thi học kỳ, thi học

sinh giỏi, thi tuyên sinh Trung học phổ thông Có thé thấy, điều quan trong là phải có kĩ năng biến đổi tốt, nó có ý nghĩa quan trọng trong việc rèn luyện khả

năng phân tích và biểu diễn toán học các mối quan hệ của các đại lượng trong thực

Trang 11

tế Phục vụ như một nền tang dé phát triển các kĩ năng Toán học và khám phá các

môn khoa học khác.

Thông qua quá trình dạy học Toán lớp 8, bên cạnh quá trình kiểm tra đánh

giá mức độ hiểu và vận dụng kiến thức của học sinh dé giải “Vấn đề rút gọn biéu

thức và xoay quanh các câu hỏi phụ của bài toán” Do chương trình Đại số lớp 8

được rút ngắn, tôi nhận thấy việc học sinh vận dụng kiến thức toán học phần này

còn thiếu sót và chưa hoàn thiện Lúng túng trong khi trình bày bài và thường mắcsai lầm khi làm các bài toán phụ liên quan Thảo luận một van đề khó diễn đạt nhưthế nào, phương pháp giải quyết vấn đề đó như thế nào Giúp mỗi học sinh định

hướng nâng cao khả năng khám phá kiến thức và nâng cao chất lượng giáo dục.

Từ những lý do trên, tác giả đã chọn đề tài: “Phát triển năng lực giải quyếtvấn dé thông qua dạy học chủ đề Biểu thức đại số cho học sinh lớp 8 trường Trunghọc cơ sở” để làm luận văn Thạc sĩ

2 Mục đích nghiên cứu.

Trong chương trình môn toán tại trường Trung học cơ sở, đặc biệt là phân

môn Đại số, việc rút gọn biêu thức được coi là một trong những yếu tố quan trọngvà không thê thiếu trong các bài kiểm tra cuối kỳ, đặc biệt là trong kỳ thi tuyênsinh vào lớp 10 Dé giải quyết được các bài tập dạng này, học sinh cần phải hiểuvà vận dụng được kiến thức từ các lớp trước, như phép toán cộng, trừ, nhân, chiađa thức; các hằng đăng thức quan trọng: kĩ năng phân tích đa thức thành nhân tửvà các phép toán liên quan đến phân thức

Tuy nhiên, phần lớn học sinh khi chuyên lên lớp 9 thường quên mất nhiềukiến thức cơ bản từ các lớp trước và đây chính là nguyên nhân chủ yếu khiến họ

gặp khó khăn trong việc rút gọn biểu thức Do đó, mục tiêu của đề tài này là dựa

trên việc nắm vững lý thuyết về việc rút gọn biéu thức, điều này đi kèm với yêucầu từ chuẩn kiến thức, kĩ năng và kinh nghiệm giảng dạy của bản thân Từ đó, tôi

2

Trang 12

đã đề xuất một số phương pháp hiệu quả nhằm giúp học sinh Trung học cơ sở, đặc

biệt là học sinh trường Trung học cơ sở Vĩnh Quỳnh nâng cao khả năng rút gọn

biểu thức

3 Nhiệm vụ nghiên cứu

Xác định cơ sở lý luận và thực tiễn của việc giảng dạy và học nội dung rút

gọn biéu thức đại số trong chương trình lớp 8

Phát hiện và phân tích các sai lầm thường gặp của học sinh trong quá trìnhhọc và cách dé khắc phục những sai lầm đó, nhằm tăng cường hiệu quả trong quá

trình dạy và học.

Đánh giá thực trang của việc giảng dạy kĩ năng rút gọn biéu thức đại số cũng

như khả năng thực hiện của học sinh trong lĩnh vực này.

Thực hiện áp dụng dé tài vào thực tế giảng dạy và đánh giá kết quả dé xemxét hiệu quả và sự áp dụng thực tế của quá trình học và giảng dạy

4 Khách thể và đối tượng nghiên cứu

Việc tô chức, rèn luyện phát triển năng lực giải quyết van dé về chủ đề biéu

thức đại sô như thê nào và thực hiện triên khai ra sao tại trường Trung học cơ sở?

Trang 13

6 Phương pháp nghiên cứu

Nghiên cứu lí luận về dạy học phát hiện và giải quyết van dé

Nghiên cứu thực tiễn: Khảo sát, thăm dò học sinh, dự giờ thông qua

bài kiểm tra, khảo sát câu hỏi giáo viên

Thống kê toán học

7 Giả thuyết khoa học

Nếu xác định được các thành tố cơ bản của năng lực giải quyết van đề và déxuất một số giải pháp phát triển năng lực giải quyết vấn đề của học sinh trong dạyhọc “Chủ đề biểu thức đại số” ở trường Trung học cơ sở, thì sẽ góp phan nâng caochất lượng dạy học trên mục tiêu và yêu cầu đổi mới phương pháp dạy học của

Sách giáo khoa hiện hành.

8 Cấu trúc luận văn

Ngoài phần mở đầu, phần kết luận và danh mục tài liệu tham khảo, luận văn

được chia làm 3 chương.

Chương 1 Cơ sở lý luận và thực tiễn.

Chương 2 Một số biện pháp phát triển năng lực giải quyết van đề thông quadạy học chủ đề Biéu thức đại số cho học sinh lớp 8 trường Trung học cơ sở

Chương 3 Thực nghiệm sư phạm.

Trang 14

CHUONG 1 CƠ SỞ LÍ LUẬN VÀ THỰC TIEN

1.1 Định hướng đỗi mới giáo dục phé thông1.1.1 Định hướng doi mới giáo duc

Xuất phát từ những quan điểm dẫn đến đổi mới giáo dục phổ thông của Đảngvà Nhà nước, Hội nghị Trung ương 8 khóa 11 và Nghị quyết số 44/NQ-CP banhành ngày 9/6/2014 đã dành chương trình đổi mới giáo dục [3]

Thứ nhất, từ cách tiếp cận dựa trên nội dung sang cách tiếp cận dựa trên nănglực: Giáo dục dựa vào năng lực thúc đây chất lượng đầu ra giảng dạy nhằm đảmbảo sự phát triển toàn diện các phẩm chất, tính cách, trọng tâm là khả năng sửdụng kiến thức trong các tình huống thực tế nhăm chuẩn bị cho con người khảnăng giải quyết các vẫn đề cuộc sống và nghề nghiệp

Thứ hai, chuẩn định hướng dau ra về chất lượng và năng lực giáo dục phôthông: Các nhà khoa học Việt Nam chủ trương chuẩn định hướng đầu ra về chất

lượng và năng lực của chương trình Ở trường trung học, người ta đánh giá nhữngđặc điểm, năng lực chung của từng học sinh cũng như những đặc điểm, năng lựccụ thé mà mỗi học sinh phải có và tham gia dé tham gia vào các hoạt động giáo

dục khác nhau.

Thứ ba, có nhiều sự tích hợp và phân hóa trong quá trình giảng dạy Phân hóatrong giảng dạy (hoặc giảng dạy phân hóa) là một triết lý giảng dạy liên quan đếnviệc tính đến các loại học sinh khác nhau (dựa trên hoàn cảnh, sinh lý, khả năng,nhu cầu và sở thích của học sinh) nhằm tối đa hóa lợi ích và tiềm năng của mỗi

Trang 15

học sinh đạt được cấp độ học tập chất lượng tiếp theo Chất lượng hoặc sự tham

gia vào lực lượng lao động.

Bảng 1.1 Một một số đặc trưng của chương trình định hướng nội dung

và chương trình định hướng năng lực.

Mục tiêu dạy học được mô tả

không rõ ràng, chưa quan tâm đến

đánh giá và sự tiên bộ của học sinh

Việc mô tả chi tiết kết quả học

tập là cần thiết, cung cấp thông

tin có thể quan sát và đánh giá

một cách rõ ràng Việc chứng

minh sự tiễn bộ của học sinh cần

được thực hiện liên tục thông qua nhiều phương pháp đánh giá

khác nhau.

Nội dung giáo dục

Việc lựa chọn nội dung dựa trên những kiến thức khoa học chuyên

ngành, chuyên sâu về một số lĩnhvực nhất định, ít liên quan đếnthực tế, không gắn liền với tìnhhuống thực tế Nội dung được

trình bay chỉ tiết và cụ thé theo

chương trình.

Chọn nội dung sẽ tạo ra kết quả mong muốn gắn liền với các tình

huống thực tế Quy định duy nhất

của chương trình là nội dung

chính không phải chỉ tiết cụ thể

Phương

pháp dạy

học

Giáo viên là hạt nhân của quá

trình giảng dạy, là người truyền tảikiến thức Học sinh tiếp thu kiến

Giáo viên là người lãnh đạo và

ung hộ sự hiêu biệt cua học sinh.

Quan tâm đên việc phát triên các khả năng đã được ghi nhận trước.

Trang 16

thức đã được xác định trước thông

qua quá trình tiếp thu thụ động

Quan tâm đến sự thay đôi và tạo

điều kiện thuận lợi cho việc sử

Phan lớn việc giảng day là lý

thuyết, kết hợp với các bài học

thực hành.

Chương trình định hướng năng

lực tập trung vào việc phát triển

các kĩ năng và phương pháp giảng

dạy hiệu quả cho giáo viên và

người học Chương trình nay giúp

giáo viên hiểu rõ về cách sử dụng

các công cụ, phương tiện, và tài

liệu học tập dé tạo ra môi trường

học tập thú vi va tương tác Ngoài

ra, cũng khuyến khích sáng tạotrong việc thiết kế bài giảng vàphát triển các hoạt động học tập

đa dạng Chương trình định

hướng năng lực về hình thức dạyhọc giúp nâng cao chất lượnggiảng dạy và cải thiện hiệu suất

học tập của học sinh.

Đánh giá

kết quả

Tiêu chí đánh giá chủ yêu dựa

vào khả năng ghi nhớ và khả năng

Tiêu chí đánh giá dựa trên năng

lực tạo ra kêt quả đâu ra, có tính

Trang 17

tái hiện thông tin đã học qua các | đên sự tiên triên của quá trình học bài học tập và sự tập trung vào năng lực.

Sau mười năm thực hiện Nghị quyết sô 29-NQ/TW về cải cách giáo dục toàndiện và năm năm triển khai Chương trình giáo dục phố thông mới, có thé thay ranghệ thống giáo dục Việt Nam đã đạt được những tiền bộ đáng kê

Theo đó, chương trình giáo dục đã dịch chuyên từ tiếp cận truyền thống chú

trọng trang bị kiến thức sang tiếp cận mới coi trọng việc phát triển năng lực vàphẩm chất người học Sự thay đổi này phù hợp xu thế giáo dục tiên tiễn trên thégiới, được kỳ vọng sẽ giúp học sinh Việt Nam phát triển toàn diện và có khả năngthích ứng cao trong tương lai Nội dung chương trình cũng được cải tiến theo

hướng tinh giản, hiện đại và nhắn mạnh tính kế thừa cũng như đổi mới sáng tạo.

Nhìn chung, sau hơn 10 năm đổi mới, giáo dục Việt Nam đã có những chuyênbiến tích cực, tiễn gần hơn tới mục tiêu xây dựng một nền giáo dục tiên tiễn, hiện

đại.

Nhờ đó, trong quá trình dạy và học, giáo viên đóng vai trò là người hướng

dẫn, tổ chức cho học sinh tiếp thu kiến thức, phát triển kĩ năng thông qua các hoạt

động thảo luận, ôn tập, đánh giá ngoại khóa (nhóm, cặp), v.v

1.1.2 Dạy học phát hiện và giải quyết vấn đề

Phương pháp dạy học phát hiện và giải quyết vấn đề được coi là một hìnhthức lập kế hoạch dạy học hoặc một trong những cách thức mà giáo viên vận dụngdé xay dung ké hoạch dạy hoc cho một môn hoc Cách tiếp cận này được tạo ravào năm 1970 tại Đại học Hamilton-Canada, sau đó ngày cảng pho bién tai Daihoc Maastricht-Ha Lan Cach tiép can nay duoc hinh thanh va phô biến dựa trêncác tiền đề sau:

- Kiến thức của người học ngày càng cạn kiệt theo thời gian, cộng thêm có

sự chênh lệch giữa kiến thức thực tế và kiến thức được học trên trường.

8

Trang 18

- Vai trò thụ động của người học so với chức năng truyền đạt của giáo viênvẫn còn đáng kể, số lượng học sinh trong một lớp ngày càng tăng.

- Phương pháp đánh giá học sinh chưa tốt, đánh giá quá tập trung vào việc

kiêm tra khả năng ghi nhớ thông tin của học sinh.

Vì những lý do nêu trên, phương pháp dạy học dựa vào vấn đề xuất phát từ

những yêu cau sau:

- Các tài nguyên (giảng viên, người hướng dẫn, tài liệu, cơ sở dữ liệu ) được

tích hợp vào tài liệu học tập và được chuẩn bị sẵn sảng để phục vụ người học

- Các hoạt động nên được học sinh thực hiện như thử thách bản thân, quan

sát, phân tích, nghiên cứu, đánh giá và tư duy.

- Kiến thức cần được tông hợp thành một dạng duy nhất (không liệt kê), điềunày cũng hàm ý việc giải quyết vấn đề dựa trên nhiều góc độ và thể hiện sự liênkết giữa các thành phần, kiến thức cần được tiếp cận

1.1.2.1.Vấn đề và cách tiếp cận vấn để

Bộ vấn đề cần phát huy khả năng nhận thức cũng như nỗ lực xã hội của họcsinh Chúng tôi tin răng những hoạt động này thường gắn liền với nghiên cứu thựctế đòi hỏi học sinh phải:

Đặt van đề (Van dé cần giải quyết là gì?) và hiểu rõ van dé đó.Xác định các giả thuyết (Các đáp án có thể được đưa ra và so sánh chúng vớicác câu hỏi được đặt ra ban đầu)

Thực hiện các hoạt động thích hợp để kiểm tra những giả thuyết này (nghiêncứu, phân tích, đánh giá các tài liệu có liên quan, sau đó tổng hợp kết quả từ việc

nghiên cứu).

Xây dựng một cái nhìn tổng quan và rút ra kết luận từ quá trình nghiên cứu và phân tích.

Trang 19

1.1.2.2 Các đặc trưng của tình huống có van dé

Thế giới thực đã chứng minh rằng có nhiều loại van đề và chủ đề có thé đượcxem xét Điều này tùy thuộc vào tình huống cụ thể, cách thức đặt vấn đề và cáchoạt động được đề xuất cho người học

Theo Nguyễn Bá Kim [6] trình bày một vài cách xây dựng vấn đề:

- Toàn bộ bài giảng bao gồm một câu hỏi sẽ gây tò mò và hứng thú cho ngườihọc Sự phức tạp hay dễ dàng của vấn đề thường là một yếu tổ được xem xét

- Xây dựng van đề dựa trên các tiêu chí thường xuyên được thay đổi trong nỗlực chuyên môn và cá nhân (vấn đề phải được đóng khung xung quanh một tình

huống có thật (một sự kiện, hiện tượng hoặc tình huống khác) trong cuộc sống.

Van đề cần phải được giải quyết một cách cụ thé và mang tính thâm van Ngoàira, van đề phải đơn giản dé học sinh có thể mô tả và thực hiện các hoạt động liênquan Một van đề tốt là một van đề không quá khó cũng không quá đơn giản Cuốicùng, cách trình bày vấn đề và các giải pháp khả thi phải đa dạng

Van dé đặt ra cần phải tham khảo nhiều, nhưng mục đích chính là giúp họcsinh tìm kiếm tài liệu, khai thác thông tin và nâng cao kiến thức; các phương tiệnthông tin đại chúng như sách, trò chơi máy tinh, internet, v.v cũng cần thiết déthực hiện được điều này

1.1.2.3 Hiệu quả tích cực của phương pháp day học phát hiện và giải quyết vanđề

Phương pháp dạy học phát hiện và giải quyết vấn đề không chỉ là một cáchtiếp cận tiên tiễn mà còn là một công cụ mạnh mẽ dé nang cao hiéu qua hoc tap

Không chi don thuần là việc truyền đạt kiến thức mà phương pháp này còn khuyến

khích học sinh tìm hiểu, phát hiện ra van dé và tạo ra các giải pháp sáng tạo.

Điểm mạnh của phương pháp này nằm ở việc kích thích sự tò mò và khả năng

tư duy sáng tạo của học sinh Thay vì chỉ đưa ra những thông tin sẵn có, phương

10

Trang 20

pháp dạy học này thúc đầy học sinh tự mình phân tích, suy luận và tìm ra giải phápcho các tình huống thực tế.

Qua việc sử dụng phương pháp này, học sinh học được cách nhìn nhận vấnđề một cách toàn diện hơn Họ học cách phân tích từng khía cạnh của vấn đề, từđó xác định ra các giải pháp khả thi Điều này không chỉ giúp họ giải quyết vấn đềhiện tại mà còn phát triển kỹ năng và năng lực dé áp dụng trong tương lai

Không chỉ có lợi ích cho học sinh, mà còn làm tăng cường vai trò của giáo

viên Phương pháp dạy học phát hiện và giải quyết vấn đề yêu cầu giáo viên đóngvai trò của một người hướng dẫn, khuyến khích và hỗ trợ học sinh trong quá trìnhhọc tập, thay vì chỉ là người truyền đạt kiến thức

Tóm lại, hiệu quả tích cực của phương pháp dạy học phát hiện và giải quyếtvan đề không chỉ nằm ở việc nâng cao kiến thức mà còn ở việc phát triển kĩ năngtư duy, sáng tạo và khả năng giải quyết van dé cho học sinh

1.2 Năng lực giải quyết vẫn đề trong dạy học toán

1.2.I Năng lực

Khái niệm về năng lực đã trở thành một khái niệm quan trọng trong quá trìnhphát triển cá nhân và xã hội Nó không chỉ đề cập đến khả năng hay kĩ năng củamột người trong lĩnh vực cụ thể nào đó mà còn ám chỉ đến khả năng thích ứng,học hỏi và phản ứng trước các thách thức Năng lực không chỉ đơn thuần là sựthành thạo về kiến thức hay kĩ năng kỹ thuật Nó bao gồm cả khả năng áp dụngkiến thức vào các tình huống thực tế, khả năng tư duy logic và sáng tạo, cũng nhưkha năng làm việc nhóm và giao tiếp hiệu quả [7]

Một trong những điểm quan trọng của năng lực là tính linh hoạt và khả năng

thích nghi với môi trường mới Không chỉ biết cách giải quyết vẫn đề hiện tại, mà

còn có khả năng học hỏi và thích ứng đề đối phó với những thay đổi và tình huống

mới mà cuộc sông đặt ra Năng lực cũng góp phân quan trọng vào sự phát triên cá

11

Trang 21

nhân và sự thành công trong sự nghiệp Khả năng tự quản lý, quyết định và giảiquyết van đề được xem là những yếu tố quan trong của năng lực Đồng thời, việcphát triển năng lực cần sự đầu tư và rèn luyện liên tục [6] Qua việc học hỏi, trải

nghiệm và thực hành, con người có thê phát triển và cải thiện năng lực của mình.

OECD định nghĩa “năng lực” là khả năng khám phá, hiểu, giải thích, mô

phỏng, giao tiếp và tính toán để hoàn thành các nhiệm vụ trong các môi trường

khác nhau Khả năng được nâng cao liên tục trong quá trình học tập giúp các cá

nhân hoàn thành mục tiêu, nâng cao kiến thức và tiềm năng cũng như tham giavào cộng đồng và xã hội của mình

sống hàng ngày mà còn phản ánh sức mạnh tư duy logic, khả năng giải quyết vấndé và sự linh hoạt trong suy nghĩ

Toán học không chỉ là một môn học tập, mà còn là một công cụ quý giá dé

giải quyết các vấn đề phức tạp trong cuộc sống Từ việc tính toán đơn giản trongmua săm hàng ngày đến việc áp dụng toán học phức tạp trong nghiên cứu khoahọc hay công nghệ, năng lực toán học giúp con người phát triển kĩ năng cần thiếtdé đối phó với thách thức của thế giới hiện đại

Không chỉ giúp hình thành cơ sở kiến thức vững chắc, năng lực toán học còn

kích thích tư duy sáng tạo và khả năng phát triển nhận thức Việc giải quyết các

vân đê toán học không chỉ yêu câu kĩ năng tính toán ma còn đòi hỏi sự tư duy

12

Trang 22

logic, khả năng phân tích và suy luận Trong môi trường học tập, năng lực toán

học giúp học sinh xây dựng khả năng phân tích, tự tin và kiên nhẫn Trong các

lĩnh vực như khoa học dữ liệu, công nghệ thông tin, kinh tế học và nhiều lĩnh vựckhác, năng lực toán học được đánh giá cao và cần thiết cho sự thành công

Khả năng toán học bao gồm khả năng thực hiện các phép tính và ước tính số,

mô tả mối quan hệ không gian giữa các vật thé, đo lường sự vật, quan lý dữ liệu,sử dụng lý luận logic để suy ra kết luận và áp dụng các khái niệm toán học khácnhau trong các tình huéng khác nhau [8]

Từ đây, tôi đề xuất ý kiến như sau: Năng lực toán học là năng lực của một

người sử dụng tính toán, ước lượng, tư duy sáng tạo, tư duy phê phán với các con

số, ký hiệu toán học và mô hình toán học, học điều gì đó mới mỗi ngày, từ đó xâydựng khả năng hiểu biết bằng kiến thức vững chắc, những lập luận đã được chứngminh và niềm tin rằng mọi thứ đều có thể xảy ra, cùng với việc khám phá cuộc

sống.1.2.2.2 Thành tổ năng lực toán học

Theo [2], các thành phan năng lực toán học bao gồm 5 thành phan:Kha năng tư duy va lý luận toán học: Có thé thực hiện các hoạt động như: sosánh, phân tích, tổng hợp, chuyên môn hóa, khái quát hóa và tương tự

Khả năng mô hình hóa toán học: Nhận biết các mô hình toán học (bao gồm

công thức, phương trình, bảng biểu, đồ thị ) gan liền với các tình huống thực tếsẽ dẫn đến việc giải quyết các tình huống đó Vấn đề, đánh giá giải pháp trong bốicảnh thực tế và thay đổi mô hình nếu câu trả lời không phù hợp

Khả năng giải quyết van đề toán học: Nhận biết và phát hiện các van đề đòi hỏi phải có toán học.

13

Trang 23

Khả năng giao tiếp toán học: Nghe, hiểu, đọc và viết các thông tin toán họcquan trọng ở dạng nói và viết Giao tiếp và chia sẻ thông tin và ý tưởng kỹ thuật

số Kết hợp cả ngôn ngữ trang trọng và ngôn ngữ hàng ngày một cách hiệu quả

Năng lực sử dụng các dụng cụ và phương pháp học toán: Nhận biết tên, tácdụng, hướng dẫn liên quan đến việc sử dụng các phương pháp trực quan và khoahọc để học toán Sử dụng các phương pháp và công cụ toán học để khám phá vàgiải quyết các vấn đề toán học, đồng thời nhận ra lợi ích và hạn chế của các công

cụ và hỗ trợ một cách có trách nhiệm.

Theo V.A.Cruchetxki [10] có 6 thành tố của năng lực:

Khả năng giao tiếp: Có khả năng đọc, hiểu, giải mã và báo cáo thông tin số

theo cách toán học Đầu ra: giải thích, thảo luận và tranh luận về thông tin đã nhận

Khả năng tư duy chiến lược: Lựa chọn một chiến lược vừa sáng tạo vừa thực

tế, sau đó triển khai nó dé giải quyết các van đề hoặc tình huống

Khả năng sử dụng các công thức và thuật ngữ kĩ thuật: Hiểu, thao tác và sửdụng các biểu thức tượng trưng; sử dụng các cấu trúc dựa trên các định nghĩa vàquy ước có hệ thống

1.2.2.3 Xác định năng lực cốt lõi và chuyên biệt của môn Toán

- Có kiến thức cơ bản về toán và các khả năng, làm nền tảng đề phát triển cáckhả năng tông quát cũng như các khả năng cụ thể về Toán (ở cấp độ cá nhân)

14

Trang 24

- Hình thành và nâng cao tư duy phê phan, tư duy sáng tạo, suy luận quy nap,

tat cả đều được coi là yếu tố quan trọng nhất dé nâng cao năng lực tư duy của conngười Phát triển khả năng hình dung không gian và tính toán một cách toán học

- Vận dụng kiến thức dé học toán, hoc các môn khác và thảo luận, giải quyết

các vấn đề khác nhau xảy ra trong thực tế (tương ứng với trình độ) Điều này sẽgiúp tạo điều kiện thuận lợi cho việc giải quyết các vấn đề và mô hình hóa các quy

trình dựa trên toán học.

- Tăng khả năng ngôn ngữ của bạn (Toán học và thông thường) kết hợp với

nhau và giao tiếp hiệu quả.

- Tham gia vào các lĩnh vực nghiên cứu của ngành khác nhằm tạo ra góc nhìnkhoa học, thấu hiểu nguồn gốc thực tiễn và tam quan trọng rộng rãi của Toán họctrong mọi lĩnh vực của xã hội Biết cách lập kế hoạch, chuẩn bị, thực hiện và họchỏi từ người khác; có thói quen tò mò, thích mở rộng kiến thức Biết học tập có kế

hoạch, tận tâm, chính xác và hợp tác với người khác.

1.2.2.4 Sự cân thiết phải bôi dưỡng năng lực giải quyết van dé

Khi gặp một thử thách hay một thông tin mới thuộc nhiều môn học khác nhau,học sinh gặp rất nhiều khó khăn trong việc quyết định kiến thức nào sẽ hiệu quảvà ngắn gọn nhất Ngoài ra, việc kết nối kiến thức Trung học cơ sở với kiến thức

mới còn nhiều hạn chế.

Trong quá trình dạy học toán, giáo viên không chỉ phải hướng dẫn cách giải

toán mà còn phải bồi đưỡng năng lực giải toán cho học sinh nhằm giúp học sinh

lựa chọn được những kiến thức đúng, phủ hợp Điều này giúp học sinh giải quyết

van đề một cách nhanh chóng và dé dàng

Khả năng khám phá giải pháp và tìm ra vấn đề của học sinh được gọi là khả

năng định hướng Điều này xuất phát từ những thông tin xác định năng lực của

học sinh:

15

Trang 25

Năng lực nhận biết vấn đề, hình thành các ý tưởng, đối tượng mới và mối

quan hệ nhân quả Tuy nhiên, năng lực thu thập kiến thức đòi hỏi trình độ cao hơn

Nếu bạn sở hữu cả khả năng giải quyết vấn đề và khả năng đặc biệt để giảiquyết vẫn đề, kết quả sẽ tốt hơn Nếu học sinh liên kết chưa tốt thì việc giải bàitoán sẽ khó khăn hoặc mắt nhiều thời gian, lời giải sẽ sai Trong quá trình giảiquyết một van dé cụ thé, người giải quyết chi sử dung một phan kiến thức mà họđã có Sử dụng thông tin này, người giải có thể xem xét mối quan hệ nào phụ thuộc

vào khả năng chọn lọc của người giải.

Vì vậy, việc tiếp thu, lưu trữ kiến thức một cách khoa học cũng có ý nghĩaquan trọng trong viéc giải quyét các van dé, từng loại toán, một đơn vi kiến thứcnếu chúng ta biết sắp xếp nó theo một thứ tự phù hợp như chúng ta Hãy tách sáchra khỏi kệ và bạn có thê dễ dàng lấy chúng khi cần thiết

Trong các thành phần của cấu trúc năng lực toán học, điều quan trọng là rèn

luyện cho học sinh khả năng liên kết, khả năng giải quyết van dé, năng lực van

dụng kiến thức dé giải quyết van dé, ví dụ trong phương trình bậc hai Đối với sinhoặc cos, học sinh phải đặt ân phụ dé giải phương trình bậc hai cho ân số đó

Ngoài ra, khả năng giảng dạy cũng như thu thập kiến thức một cách chính

xác, hiệu quả là nhiệm vụ thường xuyên của giáo viên với học sinh hoặc với chính học sinh Khi bồi duéng năng lực giải quyết van đề, cần yêu cầu học sinh tìm ra

những kiến thức cơ bản của van dé; điều này sẽ có tác dụng củng cô và kiêm trakhả năng hiểu của hoc sinh Nếu hoc sinh hiểu sai bản chất van dé sẽ duoc sửangay và sẽ có thêm thông tin, phương pháp giải quyết van đề, điều này sẽ khiếnquá trình giải quyết vấn đề trở nên khó khăn và trong một số trường hợp dẫn đến

kết quả không như mong muốn.

Giải toán là một trong những nội dung quan trọng nhất của Toán học, nó giúp

giải quyét các tranh chap trong quá trình giải toán cũng như các yêu câu của Toán

16

Trang 26

học Giải quyết vấn đề một cách tự tin là rất quan trọng đối với việc dạy Toán và

học Toán.

Nếu bạn hoàn thành thành công những hoạt động này, bạn sẽ có năng lực giải

quyết vấn đề tốt Học sinh sẽ lĩnh hội được các kiến thức toán ở bậc phô thông,

thấy được mối liên hệ giữa các kiến thức trong từng chương, từng phan và bài tậptrong sách Giúp bạn phát triển tư duy logic, tư duy phản biện và khả năng tự tạora kiến thức cho bản thân

1.2.3 Năng lực giải quyết vấn đề

1.2.3.1 Khái niệm

Thực tiễn — Van đề thực tiễn toán họcThực tiễn có tính chất lịch sử, lịch sử và xã hội có mục đích và liên quan đếnsự biến đổi của thế giới tự nhiên và xã hội [7]

Thực hành là một thủ tục được thực hiện bởi một chủ đề nhằm đạt được mụctiêu đã xác định trước Thực hành là nỗ lực của con người dé sản xuất ra hàng hóa,trước hết là lao động có năng suất, thực hành này nhăm tạo ra những điều kiện cầnthiết để xã hội tồn tại

Một vấn đề toán học thực tế là một vấn đề trong thế giới thực có thể đượcbiểu diễn, giải thích, phân tích và giải quyết bằng các phương pháp Toán học Vanđề này cần được đặt ra khi điều hành, tham gia hoạt động và chuyển hướng thayđổi theo hướng tích cực hơn

Năng lực giải quyết vấn déOECD báo cáo trong PISA 2012: “Năng lực giải quyết van đề” là năng lựccủa một người tham gia vào quá trình xử lý nhận thức nhằm hiểu và giải quyết vấnđề một cách không rõ ràng về câu trả lời Năng lực là mong muốn được tham gia

vào các tình huông có vân đê, tiêm năng cá nhân có thê được phát triên như một

17

Trang 27

công dân có đóng góp cho xã hội và khả năng tự nhận thức có thê được thể hiện.

[11]

Năng lực giải quyết van dé một cách sáng taoGiải quyết van dé sáng tạo là khả năng của một người hiểu và giải quyết cácvan đề mà không có giải pháp hiện có Năng lực là sự phát triển tiềm năng củamột công dân để tham gia vào các tình huống sau và nâng cao nhận thức của họ

với tư cách là người đóng góp cho xã hội và cá nhân [8]

Năng lực hop tác giải quyết van déGiải quyết van dé hợp tác là kha năng của một người tham gia vào quá trìnhgiải quyết với hai hoặc nhiều bên băng cách chia sẻ sự hiểu biết và nỗ lực của họdé tìm ra giải pháp và bằng cách chia sẻ kiến thức, khả năng và nguồn lực dé theođuổi giải pháp đó [4]

Năng lực giải quyết vấn đề phức tạpNăng lực giải quyết vấn đề phức tạp là tập hợp các quá trình tâm lý, tự điềuchỉnh và các hoạt động cần thiết trong môi trường cường độ cao với mục tiêu đạtđược các mục tiêu mà các phương pháp thông thường không thé đạt được Do đó,việc giải quyết các vấn đề đòi hỏi nỗ lực hợp tác về tính sáng tạo, kiến thức vàchiến lược [4]

1.2.3.2 Năng lực thành phần của năng lực giải quyết vấn dé thực tiễn

Năng lực giải quyết van đề thực tiễn là sự kết hợp giữa năng lực tổng quát vànăng lực chuyên môn của môn Toán Sử dụng phương pháp này, một vấn đề thựctế có thê được chuyền đổi thành một van đề ngôn ngữ hình thức Day là một quátrình giải quyết các vấn dé thực tế Năng lực là cần thiết dé tạo ra nhu cầu giảiquyết và thu thập các phương pháp, khả năng, thông tin để tìm ra giải pháp chocác vấn đề thực tiễn Sau đây là những khả năng liên quan đến việc giải quyết vấnđề thực tế

18

Trang 28

* Năng lực phát hiện van dé và tìm kiếm thông tin từ cuộc sống thực tiễn délàm rõ vấn đề.

- Phân tích các tình huéng nảy sinh dé tìm van dé.- Dự đoán, giả định các tình huống có liên quan dé tìm kiếm thông tin

* Năng lực dự đoán, định hướng việc lựa chọn các công cụ thích hợp dé gidiquyết van dé

Con đường tim ra một vấn đề Toán học cụ thể gan liền với kiến thức hiện cócủa học sinh về ý tưởng, quy tắc logic và ngôn ngữ Theo Nguyễn Bá Kim: “Kiếnthức đặc biệt là kiến thức mang tính phương pháp, vừa là nguyên nhân, vừa là kết

qua của hoạt động nhận thức ”,

Khi gặp một van dé trong cuộc sông hoặc Toán học, chúng ta thường mongđợi nó xảy ra trong một số tình huống nhất định Khi không thể tìm ra giải phápcho vấn đề này, chúng ta chuyển sang dự đoán một phần cụ thể, một thuộc tínhcủa giải pháp, một phương pháp cu thé dé đạt được mục tiêu va sau đó mở rộng

dự đoán của mình Ngoài ra, hãy tìm cách đánh gia liệu dự báo đó có phù hợp với

van đề này hay không Không thé đánh giá ngay liệu dự báo có chính xác haykhông, nhưng trong một số trường hợp, người giải phải tin vào tiềm năng của dự

báo đó.

Dự đoán là một phương pháp phổ biến của khoa học và đời sống dựa trên hệtư tưởng Nó bắt nguồn từ các nguyên tắc và sự kiện được ghi lại cho phép chúngta đưa ra suy luận về các nguyên tắc và quy luật chưa biết

Năng lực dự đoán vấn đề là năng lực cơ bản và thiết yêu giúp học sinh có thểdự đoán vấn đề: từ ý tưởng, định lý, chuyển hóa các đối tượng kiến thức khác

nhau Điều này giúp học sinh không bị vấp ngã hay chỉ nhìn nhận van đề một cách

đơn giản mà có thê đưa ra những hướng dẫn phù hợp

19

Trang 29

Dự đoán van dé là rat quan trong trong việc phát triển một giải pháp cho vanđề Nhà Toán học G Polya cho rằng Toán học là một lĩnh vực khoa học chuyênbiệt liên quan đến việc xác minh bằng chứng Một khía cạnh của nó là Toán học.Toán học có tính toàn diện, nó được thể hiện một cách toàn diện Trong lịch sửToán học, việc phát triển năng lực dự đoán cho học sinh có ý nghĩa quan trọng,điều này sẽ giúp học sinh hiểu được sự hình thành các nguyên lý, định lý, khái

niệm

Bước quan trọng trong việc định hướng hướng giải quyết vấn đề là những dựđoán, những dự đoán này dựa trên những nền tảng vững chắc hướng tới giải phápcho van đề Các dự đoán chủ yếu dựa vào kiến thức và kinh nghiệm của người giảiquyết vấn đề Kiến thức tự nhiên của mỗi người rất hữu ích trong việc nhận ra vấnđề, điều này làm giảm số lượng phán đoán sai lầm và sửa chữa sai lầm Sau khinhận ra vấn đề, chúng ta bắt đầu tính toán và giải quyết nó

Dé giải quyết van đề thành công, bước đầu tiên là giải quyết thành công nhiềuloại vấn đề khác nhau và rút ra nhiều bài học từ các phương pháp giải quyết

* Năng lực chuyển hóa bài toán thực tiễn sang mô hình toán học.- Xem lại các thông tin đã thu thập rồi lựa chọn, sắp xếp, đơn giản hóa cácthông tin liên quan đến Toán học

- Chuyén ngôn ngữ tự nhiên sang ngôn ngữ hình thức, biểu diễn thông tin

một cách hình thức như thông qua ký hiệu, phương trình, sơ đồ, bảng biểu

Khi gặp khó khăn, học sinh có nhiều cách giải quyết khác nhau Khả năngchuyền đổi ngôn ngữ sẽ tạo điều kiện thuận lợi cho sinh viên giải quyết những vấn

dé khó khăn nêu trên Khả năng chuyền đổi ngôn ngữ được minh họa thông qua

việc xem xét một vấn đề từ góc độ đại số sang hình học hoặc từ góc độ lượng giác.Điều này tạo điều kiện cho học sinh có nhiều cách tiếp cận dé giải quyết van đề.theo phong cách hình học hoặc đại số nhanh chóng

20

Trang 30

Nhiều cách tiếp cận khác nhau để giải quyết van đề giúp học sinh kết hopnhiều lĩnh vực kiến thức khác nhau Trong hình học có mối liên hệ với đại số, việckiểm chứng hình học có thê được thực hiện thông qua đại số.

* Năng lực dé xuất và lựa chọn chiến lược giải quyết mô hình toán học.

- Dựa trên dữ liệu thu thập được và hiểu biết Toán học, đề xuất giải pháp.- Thảo luận về ưu, nhược điểm của từng giải pháp đề xuất, từ đó lựa chọngiải pháp hiệu quả nhất dé giải quyết van đề

* Năng lực hành động và đánh giả - Thực hiện chiến lược giải pháp dự kiến - Đối chiếu và phân tích các thủ tục, quy trình dé vận dụng vào thực té.

* Năng lực phan chiếu lời giải của bài toán trong mô hình về thực tiễn.- Chuyên lời giải thực tế đã chọn thành bài toán tối ưu

- Kết hợp đặc điểm của các biến xác định khi phản ánh từ thực tiễn vào mô

hình hình thức.

* Nang lực hình thành và phát triển ý trởng mới.- Phân tích, đối chiếu, tổng hợp, khái quát hóa, chuyên biệt hóa van dé vừagiải quyết dé tìm ra ý tưởng mới

- Nghiên cứu thay đôi các giải pháp nhằm giải quyết các điều kiện môi trườngđang thay đồi

* Năng lực xem xét bài toán dưới nhiều góc độ khác nhauMột khái niệm có nhiều thuộc tính, trong một kịch bản giả định có nhiều vấnđề liên quan đến nhiều lĩnh vực tri thức khác nhau, cùng với đó là nhìn vấn đềdưới góc độ biện chứng Một bài toán có thể có nhiều cách giải, điều này phụ thuộcvào khả năng vận dụng kiến thức và giải quyết vấn đề của học sinh Kết quả là,cùng một ý tưởng và cùng một van đề có thé được áp dụng phô biến hoặc đượcxem xét từ nhiều góc độ khác nhau Tuy nhiên, quan điểm này đôi khi cũng đáng

21

Trang 31

được xem xét lại, điều này có thể dẫn tới những kết quả tích cực hoặc tiêu cực.Một xung đột được xem xét đưới nhiều góc độ khác nhau và được giải quyết theonhiều hướng khác nhau sẽ giúp học sinh có sự hiểu biết toàn diện hơn về mdi liênhệ giữa các lĩnh vực kiến thức Đại số và Hình học.

Giáo viên phải có khả năng xem xét vấn đề từ những quan điểm và góc độ

khác nhau Việc kết hợp năng lực chuyên đổi ngôn ngữ khó và làm quen với họcsinh sẽ tạo điều kiện phát triển năng lực giải quyết van đề trong môn Toán

Dựa vào bản chất của tri thức Toán học và mối quan hệ duy vật biện chứng,chúng ta sẽ có thể đánh giá được nội dung, mỗi van đề có thé được xem xét dướinhiều góc độ khác nhau và bằng nhiều cách thể hiện khác nhau

1.2.3.3 Mô hình giải quyết vấn dé thực tiễn

22

Trang 32

Quá trình mô hình hóa toán học

cose Chuyénhéa - Be cescige oo

Thé gidi thuc + _ Tìm hiểu van đề Thê giới toán học

* Đưa ra các giả định dé đơn giản hóa van đề

Mô tả vân đê dưới hình thức toán học Bài toán trong thế giới thực Mô hình toán học

« Giải quyết ván đề, giải trình giải pháp

Giải pháp trong thế giới thực Lời giải toán học

Giải thích

Giải thích lời giải toán học trong bôi cảnh bài toán thực tê

Trình bày lời giải cho bài toán thực tế

Hình 1.1 Quá trình mô hình hóa toán học để giải quyết vẫn đề thực tiễn

(Nguôn: Chương trình giáo dục pho thông Singapore 2020)Quan sát mô hình hóa Toán học của chương trình giáo dục phổ thông

Singapore bao gồm 4 giai đoạn:

Giai đoạn 1 Chuyển hóa van dé ở thế giới thực về thế giới Toán học (môhình Toán học) Đây là quá trình phức tạp đòi hỏi người chuyển hóa phải có kiếnthức nền tảng Toán học và hiểu biết chuyên sâu về một lĩnh vực thực tiễn Từ đócó thê đưa ra các giả định phù hợp dưới hình thức Toán học dẫn đến các mô hìnhToán học phù hợp với thực tiễn và thỏa mãn một vài yếu tố của Toán học

Giai đoạn 2 Đây là quá trình tìm tòi, huy động các kiến thức Toán học, kiếnthức liên môn và thực tế dé đưa ra và lựa chọn tốt các phương án phù hợp với môhình dẫn đến việc tìm lời giải hợp lý, thuyết phục

Giai đoạn 3 Giải thích mô hình Toán về với giải pháp trong thực tế Đây là

giai đoạn giải thích, thuyết phục, chứng minh, trình bày lời giải Toán học phù hợp

với bối cảnh thực tiễn

23

Trang 33

Giai đoạn 4 Đối chiếu so sánh, kiểm tra với bài toán ở thế giới thực, kiểmtra cải tiến mô hình Tiếp tục hoàn thiện mô hình quay lại với giai đoạn 1, từ đó

hoàn thiện hơn các phương án 1.3 Dạy học nhằm phát triển năng lực giải quyết vấn đề thực tiễn

1.3.1 Giải quyết van dé trong day học

Khi nói đến việc giải quyết van dé trong quá trình day học, cuốn sách “The

Ideal Problem Solver” [12] là một tài liệu quý giá mang lại những góc nhìn sâu

sắc và phương pháp hiệu quả Quyên sách này không chỉ là một nguồn tài liệu họcthuật mà còn là hướng dẫn thực tế giúp người đọc áp dụng các kĩ thuật giải quyếtvan đề vào môi trường giáo dục Cuốn sách tập trung vào việc xây dựng kha nănggiải quyết vấn đề cho cá nhân, từ đó cũng áp dụng trong lớp học Nó trang bị chogiáo viên những cách tiếp cận sáng tạo và kĩ thuật để giúp học sinh đối mặt và giảiquyết vấn đề một cách hiệu quả

Một trong những điểm đáng chú ý của là việc giới thiệu phương pháp giảiquyết vấn đề theo giai đoạn, từ việc xác định vấn đề, thu thập thông tin, đánh giátình huống đến việc đưa ra giải pháp và đánh giá kết quả Những giai đoạn nàykhông chỉ giúp học sinh hiểu rõ van dé mà còn hỗ trợ họ phát triển kĩ năng phântích và tư duy logic Đồng thời, luận văn cũng cập đến việc tạo điều kiện thuận lợi

để học sinh có thể áp dụng kiến thức và kĩ năng giải quyết vấn đề vào thực tế.

Bằng cách cung cấp môi trường học tập linh hoạt và khuyến khích sự tò mò, cuốnsách giúp học sinh phát triển tư duy sáng tao và trở thành những người giải quyếtvấn đề thông minh

Tóm lại, việc áp dụng những nguyên lý và kĩ thuật giải quyết vấn đề từ cuốn

sách “The Ideal Problem Solver” có thể đem lại nhiều lợi ích trong quá trình dạyhọc Nó không chỉ giúp học sinh hiểu biết vấn đề mà còn khuyến khích sự sángtạo và phát triển kĩ năng giải quyết vấn đề, từ đó định hình một môi trường học

24

Trang 34

tập sáng tạo và tích cực, ta có thé suy ra quan điểm: Quá trình giải các bài toántrong môn toán là chủ thể thực hiện những suy nghĩ, hành động, tính toán phù hợpdé đạt được kết quả mong muốn của bài toán Trong day học toán, giáo viên cóthé hướng học sinh tìm cách giải quyết van dé băng cách tận dung ba khía cạnh

sau:

Ban dau, khi can phát triển khái niệm, có ba hướng tiếp cận chính: quy nap,

suy dién và xây dựng Thông thường, giáo viên sẽ áp dụng cả ba phương pháp này

dé giúp học sinh hiểu rõ hơn về khái niệm đó

Thứ hai, nếu vấn đề là chứng minh một định lý, hình thành quy tắc, công

thức , giáo viên có thé đi theo con đường suy luận, phỏng đoán

Thứ ba, nếu vấn đề là giải quyết các câu hỏi hoặc giải các bài toán thì hãy sử

dụng các thao tác tư duy, đặc biệt là suy luận tương tự, chuyên biệt hóa, khái quát

hóa, phân tích và tổng hợp.1.3.2 Quá trình giải quyết vấn đề trong dạy học

Theo Nguyễn Bá Kim [6], quá trình giải quyết vấn đề trong dạy học là mộtphần quan trọng và không thê thiếu trong việc phát triển năng lực tư duy và khámphá của học sinh Không chỉ giúp học sinh nắm vững kiến thức mà còn hướng họđến việc áp dụng kiến thức vào thực tế Quá trình này không chỉ đơn thuần là giảiquyết một van dé mà còn là cơ hội dé phát triển kĩ năng, tư duy logic và sự sáng

tạo.

PBL - Problem-Based Learning tập trung vào việc giúp học sinh tự mình giải

quyết các vấn đề phức tạp thông qua việc nghiên cứu, phân tích và giải quyết vấnđề thực tế Thông qua quá trình này, học sinh được khuyến khích tìm kiếm thông

tin, hợp tác với nhau và áp dụng kiến thức để tìm ra giải pháp hiệu quả.

Ngoài ra, việc tạo ra môi trường học tập kích thích và động não cũng đóng

vai trò quan trọng trong quá trình giải quyêt vân đê Giáo viên có thê sử dụng các

25

Trang 35

phương pháp sáng tạo như trò chơi, thực hành, hoạt động nhóm dé khuyến khíchhọc sinh tham gia tích cực và phát triển kĩ năng xử lý vấn đề.

Trong quá trình giải quyết vấn đề, học sinh cần phải thông qua các bước cụ

thé như nhận diện van đề, thu thập thông tin, phân tích, đánh giá các giải pháp va

chọn lựa phương án tối ưu Quá trình này không chỉ giúp học sinh rèn luyện kĩnăng ma còn tao điều kiện đề họ tự tin hơn khi đối mặt với những thách thức trongcuộc sống sau này

Tóm lại, quá trình giải quyết van đề trong dạy học không chỉ là cách dé họcsinh tiếp cận kiến thức mà còn là cơ hội dé học sinh phát triển những kĩ năng quantrong Bang cách tạo điều kiện và hỗ trợ thích hợp từ giáo viên, học sinh có thé trởthành những người tự tin, sáng tạo và có khả năng giải quyết van dé trong mọi lĩnhvực của cuộc sống Trong dạy học, quá trình dạy học và giải quyết vấn đề có thểkhông diễn ra theo một trình tự tuyến tính; chúng ta có thể áp dụng chúng đề đạt

được mục tiêu dự định một cách linh hoạt.

1.3.3 Các mức độ của dạy học giải quyết vấn đề

Tuy theo năng lực của học sinh, mức độ phức tap của nhiệm vụ va điều kiện

học tập, giáo viên sẽ hướng dẫn học sinh các bước đặt câu hỏi, đặt giả thuyết, lập

kế hoạch và giải quyết van dé, cải thiện quá trình dạy và học và giải quyết các vanđề trong các lĩnh vực khác nhau

26

Trang 36

Bảng 1.2 Các mức độ của phương pháp dạy học giải quyết vẫn đề.

Mức ‘os oo og Giai quyét Lek

Dat van dé | Nêu gia định |Lập kê hoạch ¬¬ Kêt luận

độ van dé

1 Gido vién Giáo viên Giáo viên Học sinh Giáo viên

oo Giáo vién+ | Giáo viên + Giáo viên +

2 Giáo viên ; ; Hoc sinh ;

Hoc sinh Hoc sinh Hoc sinh Cñáo viên + ; ; Giáo viên + 3 Học sinh Học sinh Học sinh ;

Hoc sinh Hoc sinh

; ; Giáo viên +

4 Học sinh Học sinh Học sinh Học sinh ;

Hoc sinh

5 Hoc sinh Hoc sinh Hoc sinh Hoc sinh Hoc sinh

Biểu đồ trên cho thấy thái độ tích cực của hoc sinh tăng dan từ cấp độ 1 lên

cấp độ 5 Đối với những học sinh chưa quen với việc thực hành học tập thông qua

các phương pháp giải quyết van đề, giáo viên nên sử dung cấp độ 1 Cấp độ 2thường được sử dụng khi học sinh có nhiều năng lượng Cấp độ 3 và 4 thườngđược sử dụng khi học sinh có nhiều kinh nghiệm giải quyết vấn đề

Chúng ta thấy rằng việc giúp học sinh tự mình giải quyết vẫn đề là quan trọngnhất sau đó định hướng dần dần để học sinh nắm được quy trình giải quyết vấn

đề Từ đó, học sinh sẽ học được cách giải quyết các vấn đề thực tế Học sinh phải

thực hành phân tích van dé, phát triển giải pháp cho van dé và cô gắng giải quyếtchúng theo các hướng khác nhau Từ đó, họ có thé đánh giá kết qua và chọn ragiải pháp tốt nhất

27

Trang 37

1.3.4 Uu điểm và nhược điểm của dạy học giải quyết vấn đềUu điểm

Học sinh thường giải thích sự khác biệt giữa lý thuyết và thực hành, những

xung đột về nhận thức gan liền với động cơ học tập, hứng thú học tập thông qua

các ứng dụng thực tẾ và khuyến khích sự tò mò trí tuệ Học sinh thu được nhiều

năng lực tong quát và cụ thé, bao gồm kĩ năng giao tiếp, kĩ năng toán học, kĩ năng

công nghệ thông tin, kĩ năng tư duy phản biện, kĩ năng tự quản lý và năng lực hợp

tác.

Nhược điểm

Rat tốn thời gian dé giải quyết van đề Giáo viên khó có thé tạo ra các bàitoán tinh huống, phải thiết kế nhiều chi tiết và yêu cầu nội dung phù hợp Học sinh

phải rèn luyện khả năng tự học và tham gia học tập tích cực thì mới đạt hiệu quả

cao Trong một số trường hợp, thiết bị dạy học cơ sở vật chất cần thiết, phong tràohọc tập, khơi gợi trí tò mò, sự yêu thích là yếu tô cần dé giải quyết van đề thành

công Thêm vào đó là khó khăn trong việc đánh gia sự tham gia của từng cá nhân

hay các thành viên trong một nhóm hoặc một tập thê.

1.3.5 Phát triển năng lực giải quyết vẫn đề cho học sinh thông qua dạy học pháthiện và giải quyết van dé

Dạy học phát hiện và giải quyết vấn đề giúp học sinh huy động, tổ hợp tốt

các kiến thức, giáo viên đưa ra tình huống có van dé dé học sinh phát hiện van dé,gợi động cơ, hướng dẫn học sinh khai thác bài toán nhằm định hướng cho học sinh

dự đoán, suy luận Mỗi bước thực hiện trong giải toán là việc thực hiện hàng loạt

các kiến thức khi được huy động và học sinh phải phân tích lựa chọn để tìm rakiến thức nào là phù hợp nhất Từ đó, giúp học sinh làm quen khả năng tri giácvấn đề và lựa chọn đúng đắn mảng kiến thức vận dụng Học sinh phải chủ độngtích cực xây dựng và đóng góp ý kiến, phân tích vấn đề một cách rõ ràng Từ việc

28

Trang 38

nghiên cứu phương pháp dạy học phát hiện và giải quyết vấn đề, giáo viên cần xáclập một quy trình giải toán dé phát triển năng lực huy động kiến thức cho học sinh.

* Vai trò của phương pháp này mang tính dẫn dắt người học đi tìm và khámphá tri thức mới, vận dụng các kiến thức đã học, kĩ năng tư duy khoa học theohướng tích cực Phát huy được năng lực giải quyết các vấn đề không chỉ trong

môn Toán mà còn ở các lĩnh vực, môn học khác.

1.4 Thực trạng việc phát triển năng lực giải quyết vấn đề của học sinh trong

dạy học chủ đề Biểu thức đại số

Biéu thức đại số là một chủ dé học tập quan trọng trong chương trình toán

học lớp 8, giúp học sinh làm quen với ngôn ngữ của đại số Thông qua chủ đề này,

học sinh được hệ thống hóa các kiến thức cơ bản như: khái niệm biến, hằng số vàbiểu thức đại số; cách thực hiện các phép tính trong biểu thức đại số; quy tắc ưutiên phép tính; cách tính giá trị biểu thức đại số với các giá trị cho trước của biến.Bên cạnh đó, học sinh cũng được làm quen với một số dạng toán hay gặp liên quanđến biểu thức đại số như: so sánh hai biêu thức, chứng minh bằng cách cho giá tribiến, giải phương trình và hệ phương trình bậc nhất một an

Dé có cơ sở thực tiễn cho việc đề xuất các giải pháp phát triển năng lực giảiquyết vấn đề cho học sinh, chúng tôi đã tiến hành khảo sát thực tiễn thông qua hệthống câu hỏi thăm dò giáo viên về thực trạng phát triển năng lực giải quyết vanđề của học sinh trong dạy học Biểu thức đại số

Chúng tôi đã tiến hành dự giờ, khảo sát qua các giờ dạy, tìm hiểu giáo viêntriển khai các giải pháp giúp học sinh phát triển năng lực phát triển năng lực giảiquyết vấn đề ở trường Trung học cơ sở Vĩnh Quỳnh, Thanh Trì, Hà Nội

29

Trang 39

1.4.3 Kết quả đạt được

Dé tìm hiểu thực trạng việc phát triển năng lực giải quyết van dé của học sinh

trong dạy học chủ đề Biểu thức đại số cho học sinh lớp 8, tôi tiến hành khảo sát

15 giáo viên dạy môn Toán tại trường Trung học cơ sở Vĩnh Quỳnh, Thanh Trì,

Hà Nội với câu hỏi khảo sát ở Phu lục, kết quả khảo sát cụ thé như sau:

Câu 1: Thầy (cô) quan niệm hoạt động đề giải quyết một van dé nào đó, bao

gom những dạng hoạt động nào trong các hoạt động sau

Huy động các kiến thức nhằm từ đó để suy luận và rút ra

vấn đề cần giải quyết Huy động các kiến thức liên quan đến bài toán nhằm liên kết giả thiết và kết luận

Huy động nhóm các kiến

thức để giải thích làm rõ vấn đề

Biểu đồ 1.1 Nội dung hoạt động để giải quyết một van đề

30

Trang 40

Kết quả khảo sát câu 2:

ø Khi mà van đề cần giải thích chưa có thể giải quyết ngay bằng kiến thức

Kết quả khảo sát câu 3:

m Liên tưởng các kiến thức

Ngày đăng: 27/09/2024, 01:04

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w