1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn thạc sĩ Kỹ thuật xây dựng: Phân tích ứng xử của tấm nhiều lớp trên nền có độ cứng biến thiên chịu tải trọng di chuyển sử dụng phương pháp phần tử tấm nhiều lớp chuyển động MMPM (multi-layer moving palate method)

118 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 118
Dung lượng 2,49 MB

Nội dung

7Ï07Ҳ7 3+Æ17Ë&+ӬNG XӰ CӪA TҨM NHIӄU LӞ375Ç1Nӄ1&ÏĈӜ CӬNG BIӂ17+,Ç1&+ӎU TҦI TRӐNG DI CHUYӆN SӰ DӨNG 3+ѬѪ1*3+È33+ҪN TӰ TҨM NHIӄU LӞP CHUYӆ1ĈӜNG MMPM MULTI-LAYER MOVING PLATE METHOD 1Jj\QD\

Trang 1

ĈҤI HӐC QUӔC GIA TP HӖ &+Ë0,1+

75ѬӠ1*ĈҤI HӐ&%È&+.+2$

-

NGUYӈN HӲU SANG

3+Æ17Ë&+ӬNG XӰ CӪA TҨM NHIӄU LӞ375Ç1 Nӄ1&ÏĈӜ CӬNG BIӂ17+,Ç1&+ӎU TҦI TRӐNG

DI CHUYӆN SӰ DӨ1*3+ѬѪ1*3+È33+ҪN TӰ TҨM NHIӄU LӞP CHUYӆ1ĈӜNG MMPM

(MULTI-LAYER MOVING PLATE METHOD)

&KX\rQQJjQKKӻ thuұW[k\GӵQJF{QJWUuQKDkQGөQJYjC{QJQJKLӋp 0mVӕ QJjQK: 60 58 02 08

LUҰN VĂN THҤ&6Ƭ

TP HӖ &+Ë0,1+, WKiQJ12 QăP2020

Trang 2

&iQEӝ chҩm nhұQ[pW TS NguyӉn Tҩn &ѭӡng

Luұn văn thҥFVƭÿѭӧc bҧo vӋ tҥi TUѭӡQJĈҥi hӑc %iFK.KRD, Ĉ+4*7P HCM QJj\30 WKiQJ12 năm 2020

7KjQKSKҫn HӝLÿӗQJÿiQKJLiLuұn YăQWKҥFVƭJӗm:

Trang 3

1+,ӊ09Ө/8Ұ19Ă17+Ҥ&6Ƭ

Hӑ YjWrQKӑFYLrQ: NGUYӈN HӲU SANG MSHV: 1670581

1Jj\WKiQJQăm sinh: 16/10/1986 Nѫi sinh: BӃn Tre

ChuyrQQJjQKKӻ thuұt xk\Gӵng F{QJWUuQKDkQGөQJYjC{QJQJKLӋp

0mVӕ QJjQK

I 7Ç1Ĉӄ 7¬,: 3KkQWtFKӭng xӱ cӫa tҩm nhiӅu lӟSWUrQQӅQFyÿӝ cӭng biӃn

WKLrQFKӏu tҧi trӑng di chuyӇn sӱ dөQJSKѭѫQJSKiS SKҫn tӱ tҩm nhiӅu lӟp

chuyӇQÿӝng MMPM (Multi-Layer Moving Plate Method)

II NHIӊM VӨ 9¬1ӜI DUNG

1 Sӱ dөQJ FiF P{ KuQK WtQK WRiQ bҵQJ SKѭѫQJ SKiS MMPM (Multi-Layer Moving Plate Method) ÿӇ SKkQWtFKӭng xӱ cӫa tҩm nhiӅu lӟSWUrQQӅQFyÿӝ cӭng biӃQ WKLrQ FKӏu tҧi trӑng di chuyӇn sӱ dөQJ SKѭѫQJSKiS SKҫn tӱ tҩm nhiӅu lӟp chuyӇQÿӝng MMPM

2 Sӱ dөQJQJ{QQJӳ lұSWUuQK0DWODEÿӇ thiӃt lұSF{QJWKӭFWtQKWRiQFiFYtGө

3 KӃt quҧ cӫDFiFYtGө sӕ sӁ ÿѭDUDFiFNӃt luұn quan trӑng vӅ ӭng xӱ cӫa tҩm

III 1*¬<*,$21+,ӊM VӨ : 10/02/2020

IV 1*¬<+2¬17+¬1H NHIӊM VӨ: 18/12/2020

V HӐ 9¬7Ç1&È1%Ӝ HѬӞNG DҮN 1: TS Hӗ Thu HiӅn

VI HӐ 9¬7Ç1&È1%Ӝ HѬӞNG DҮN 2: PGS TS /ѭѫQJ9ăQ+ҧi

TP+&0QJj\ 18 WKiQJ 12 năm 2020

&È1%Ӝ

HѬӞNG DҮN 01

TS Hӗ Thu HiӅn

&È1%Ӝ HѬӞNG DҮN 02

PGS TS /ѭѫQJ9ăQ+ҧi

CHӪ NHIӊ0&+8<Ç1 1*¬1+ Ĉ¬27ҤO

75ѬӢNG KHOA KӺ THUҰ7;Æ<'ӴNG

Trang 4

/Ӡ,&Ҧ0Ѫ1

/ӡLÿҫXWLrQ, W{L[LQFKkQWKjQKFiPѫQ C{ KѭӟQJGүQ TS +ӗ7KX+LӅQ Yj7Kҫ\PGS 76/ѭѫQJ9ăQ+ҧL, 4Xê7Kҫ\&{ ÿmWұQWuQKGүQGҳWKѭӟQJGүQ

YjÿѭDUDJӧLêÿҫXWLrQÿӇKuQKWKjQKQrQêWѭӣQJFӫDÿӅWjL ÿӃQNKLKRjQWKjQK/XұQYăQ4Xê7Kҫ\ &{ ÿmKѭӟQJGүQJySêFKRW{LUҩWQKLӅXYӅFiFKQKұQÿӏQKÿ~QJÿҳQQKӳQJYҩQÿӅQJKLrQFӭXFNJQJQKѭFiFh WLӃSFұQQJKLrQFӭXKLӋXTXҧ YjQJXӗQWjLOLӋXJLiWUӏWURQJVXӕWWKӡLJLDQWKӵFhLӋQ/XұQYăQ Qj\

7{L[LQFKkQWKjQKFҧPѫQTXê7Kҫ\&{.hoa ӻ7KXұW;k\GӵQJ, WUѭӡQJĈҥLKӑF%iFK.KRD 7S+&0ÿmWұQWuQKJLҧQJGҥ\YjWUX\ӅQÿҥW QKӳQJNLӃQWKӭFFKRW{L WURQJVXӕWWKӡLJLDQKӑFYjWKӵFKLӋQ/XұQYăQYӯDTXD

0һFGEҧQWKkQÿmQJKLrQFӭXYjKRjQtKjQK/XұQYăQWX\QKLrQGREҧQWKkQNLӃQWKӭFFzQKҥQFKӃQrQNK{QJWKӇNK{QJFyQKӳQJWKLӃXVyW.tQKPRQJQXê7Kҫ\&{FKӍGүQWKrPÿӇW{LFyWKӇKӑFKӓLEәVXQJ WKrP QKӳQJNLӃQWKӭFYjKRjQWKLӋQEҧQWKkQPuQKKѫQ

;LQWUkQWUӑQJFҧPѫQ 4Xê7Kҫ\&{

TP HCM QJj\ 18 WKiQJ 12 QăP20

NguyӉn Hӳu Sang

Trang 5

7Ï07Ҳ7 3+Æ17Ë&+ӬNG XӰ CӪA TҨM NHIӄU LӞ375Ç1Nӄ1&ÏĈӜ CӬNG BIӂ17+,Ç1&+ӎU TҦI TRӐNG DI CHUYӆN SӰ DӨNG 3+ѬѪ1*3+È33+ҪN TӰ TҨM NHIӄU LӞP CHUYӆ1ĈӜNG MMPM (MULTI-LAYER MOVING PLATE METHOD)

1Jj\QD\ kӃt cҩu tҩm chӏXWiFÿӝng cӫa tҧi trӑng di chuyӇQÿѭӧc ӭng dөng rӝng UmLWURQJFiFQJjQK F{QJQJKLӋS[k\GӵQJJLDRWK{QJ'RWtQK ӭng dөng rӝng UmL trong thӵc tiӉQQrQYҩQÿӅ SKkQWtFK ӭng xӱ ÿӝng cӫa tҩPÿmQKұQÿѭӧc rҩt nhiӅu sӵ TXDQ WkP cӫD FiF QKj QJKLrQ Fӭu trong Yj QJRjL Qѭӟc *ҫQ ÿk\ FyQKLӅXQJKLrQFӭXQKѭSKkQWtFKӭQJ[ӱÿӝQJFӫDNӃWFҩXWҩPFKӏXWҧLWUӑQJGLFKX\ӇQ VӱGөQJSKѭѫQJSKiS SKҫQ WӱFKX\ӇQ ÿӝQJ 0RYLQJ(OHPHQW0HWKRG-MEM), SKkQ WtFK ӭng xӱ ÿӝng cӫa kӃt cҩu tҩP WUrQ QӅQ ÿjQ QKӟt, nӅn Pasternak, chӏu tҧi trӑng di chuyӇn 7X\QKLrQFiFQJKLrQFӭXWUѭӟFÿk\WKѭӡng chӍ SKkQ WtFK ӭng xӱ cӫa kӃt cҩu tҩP WUrQ QӅn ÿѭӧF ÿѫQ JLҧQ KyD Fy ÿӝ cӭng ÿӗng nhҩWQKѭQJWURQJWKӵc tӃ ÿӝ cӭng cӫa nӅQÿҩWNKiFQKDXYuFұ\P{KuQKkӃt cҩu tҩm nhiӅu lӟSWUrQQӅQFyÿӝ cӭng biӃQWKLrQWURQJ/XұQYăQÿѭӧFSKiWtriӇn nhҵPP{SKӓQJFKtQK[iFKѫQÿӝ cӭQJNK{QJÿӗng nhҩt cӫDÿҩt nӅn trong thӵc tӃ EjLWRiQéWѭӣng mӟi cӫa LuұQYăQQKҵPSKiWWULӇQSKѭѫQJSKiSSKҫQWӱWҩPQKLӅXOӟSFKX\ӇQ ÿӝQJ (Multi-Layer Moving Plate Method-MMPM ÿӇ SKkQ WtFK EjL WRiQ NӃt cҩu tҩm nhiӅu lӟp GjL Y{ Kҥn WUrQ QӅQ Fy ÿӝ cӭng biӃn WKLrQFKӏu tҧi trӑng di chuyӇn TURQJÿy, FiFÿһFWtQKÿӝ cӭQJÿҩt nӅQÿѭӧc giҧ ÿӏnh biӃQ WKLrQ GӑF WKHR SKѭѫQJ FKLӅX GjL Wҩm, tҩm sӁ ÿѭӧc chia nhӓ WKjQKnhӳQJ³SKҫn tӱ chuyӇQÿӝQJ´ Nhӳng phҫn tӱ Qj\NK{QJSKҧi chuyӇQÿӝng thұt

so vӟi tҩP ÿӭQJ \rQ Pj Oj FKX\ӇQ ÿӝng giҧ WѭӣQJ FQJ Yӟi tҧi di chuyӇQ WUrQtҩm ѬXÿLӇm cӫDSKѭѫQJSKiS0030OjWҧLGLÿӝng sӁ NK{QJEDRJLӡ ÿӃQELrQYuSKҫn tӱ ÿѭӧFÿӅ xuҩWOX{QFKX\ӇQÿӝQJYjWҧi sӁ NK{QJSKҧi di chuyӇn tӯ phҫn

tӱ Qj\ÿӃn phҫn tӱ NKiFGRÿyWUiQKÿѭӧc viӋc cұp nhұWYpFWѫWҧi trӑQJKD\YpFWѫchuyӇn vӏ ҦQKKѭӣQJWѭѫQJWiFJLӳa kӃt cҩu tҩm YjP{KuQK nӅQÿѭӧc khҧRViWYjNӃt quҧ cho thҩ\FiF\Ӄu tӕ ҧQKKѭӣng quan trӑQJÿӃn ӭng xӱ ÿӝng cӫa tҩm LuұQYăQK\Yӑng sӁ OjWjLOLӋu tham khҧo hӳXtFKFKRYLӋc thiӃt kӃWKLF{QJYjbҧRGѭӥQJFiFNӃt cҩu trong thӵc tӃ

Trang 6

ABSTRACT

DYNAMIC ANALYSIS OF MULTI-LAYER PLATE RESTING ON A VARIABLE STIFFNESS FOUNDATION SUBJECTED TO MOVING LOAD USING MULTI-LAYER MOVING PLATE METHOD MMPM

Nowadays, the structure of the plate impacted by the moved-load (hereafter FDOOHG ³SODWH-VWUXFWXUH´   LV ZLGHO\ XVHG LQ LQGXVWULHV FRQVWUXFWLRQ WUDIILF HWFDue to its wide applicability in practical situations, the problem this of plate-structure has received much not only from domestic but also from foreign researchers Recently, there are many studies on this topic, such as: dynamic analysis of plate-structure used moving element method (MEM), dynamic analysis of plate-structure resting on viscous-elastic foundation, on Pasternak foundation subjected to moving load using moving element method (MEM) However, previous studies only focus on dynamic analysis of the plate as a simplified foundation with constant stiffness, but in practice the stiffness of the foundation is various, so the dynamic analysis of multi-layer plate resting on the variable stiffness foundation subjected to moving load is researched in order to stimulate more accurately the variable stiffness foundation in the real problems Thesis's new idea is to research on the method of Multi-Layer Moving Plate Method (MMPM) to dynamic analysis of muilti-layer plate structure is infinitely long resting on variable stiffness foundation subjected to moving load In which, the properties of the stiffness foundation are assumed to vary along the length of WKHSODWHDSODWHLVGLVFUHWL]HGLQWR³PRYLQJHOHPHQWV´7KHVHPRYLQJHOHPHQWVare not physical elements fixed to the plate but are conceptual elements that

³IORZ´ZLWKWKHPRYLQJORDGWKURXJKWKHSODWH7KHPDLQDGYDQWDJHRI0030LVthat the load will never reach the boundary end since the proposed elements move along with it and the moving load will not even have to cross from one element into another, thereby avoiding the updating of the force or the displacement vectors Influence of the interaction between the multi-layer plate and the the variable stiffness foundation will be investigated The influence of the interaction between the multi-layer plate and the variable stiffness foundation is modeled and the results show that these factors have important effects on the dynamic response of the plate The thesis is expected to be the useful references for the designs, constructions and maintenance of structures in practices

Trang 7

/Ӡ,&$0Ĉ2$1

7{L[LQFDPÿRDQÿk\OjF{QJYLӋFGRFKtQKW{LWKӵc hiӋQGѭӟi sӵ Kѭӟng dүn

cӫa C{TS Hӗ Thu HiӅn Yj Thҫy 3*676/ѭѫQJ9ăQ+ҧi

&iF NӃt quҧ trong LuұQ YăQ Oj ÿ~QJ Vӵ thұW Yj FKѭD ÿѭӧF F{QJ bӕ ӣ FiFQJKLrQFӭXNKiF

7{L[LQFKӏXWUiFKQKLӋm vӅ F{QJYLӋc thӵc hiӋn cӫDPuQK

73+&01Jj\8 WKiQJQăP

NguyӉn Hӳu Sang

Trang 8

0Ө&/Ө&

NHIӊM VӨ LUҰ19Ă17+Ҥ&6Ƭ i

LӠI CҦ0Ѫ1 ii

7Ï07ҲT LUҰ19Ă17+Ҥ&6Ƭ iii

LӠ,&$0Ĉ2$1 v

MӨC LӨC vi

DANH MӨ&&È&+Î1+9Ӏ ix

DANH MӨ&&È&%ҦNG BIӆU iii

MӜT SӔ é+,ӊU VIӂT TҲT vi

&+ѬѪ1* 1

TӘNG QUAN 1

1.1*LӟLWKLӋX 1

1.2 7uQKKuQKQJKLrQFӭXYjWtQKFҩSWKLӃWFӫDÿӅWjL 4

1.2.1 &iFF{QJWUuQKQJKLrQFӭXWUrQWKӃJLӟL 4

&iFF{QJWUuQKQJKLrQFӭXWURQJQѭӟF 6

1.3 0өFWLrXYjKѭӟQJQJKLrQFӭX 8

1.4 &ҩXWU~FOXұQYăQ 8

&+ѬѪ1* 10

&Ѫ6Ӣ /é7+8<ӂT 10

2.1 0{KuQKQӅQFyÿӝFӭQJELӃQWKLrQ 10

2.2 3KѭѫQJ SKiS SKҫQ Wӱ QKLӅX OӟS WҩP FKX\ӇQ ÿӝQJ 0XOWL-Layer Moving Plate Method-MMPM): 12

/êWKX\Ӄt tҩm Mindlin 12

2.2.2 BiӃn dҥng cӫa tҩPYjPӕi quan hӋ giӳa biӃn dҥng ± chuyӇn vӏ 15 2.2.3 BiӃn dҥng cӫa tҩPYjPӕi quan hӋ giӳa ӭng suҩWYjELӃn dҥng 16 2.2.4 3KѭѫQJWUuQKQăQJOѭӧng cӫa tҩm 18

2.2.5 Phҫn tӱ ÿҷng tham sӕ 19

2.2.6 3KpSWtFKSKkQVӕ - 3KpSFҫXSKѭѫQJ*DXVV 22

Trang 9

2.2.7 ThiӃt lұSF{QJWKӭc ma trұn kӃt cҩu tҩm nhiӅu lӟSWUrQQӅQFyÿӝ cӭng biӃQ WKLrQ Vӱ dөQJ SKѭѫQJ SKiS 0300 0XOWL-Layer Moving Plate

Method) 23

3KѭѫQJSKiS1HZPDUN 34

2.4 7KXұWWRiQVӱGөQJWURQJ/XұQYăQ 36

2.4.1 7K{QJVӕ ÿҫXYjR 36

2.4.2 Giҧi bjLWRiQWKHRGҥng chuyӇn vӏ 37

Ĉӝ әQÿӏQKYjKӝi tө WKHRSKѭѫQJSKiS1HZPDUN 38

/ѭXÿӗWtQKWRiQ 39

&+ѬѪ1* 40

KӂT QUҦ 3+Æ17Ë&+6Ӕ 40

3.1 KiӇm chӭQJFKѭѫQJWUuQK0DWODE 42

%jLWRiQD3KkQWtFKӭng xӱ cӫa tҩP0LQGOLQWUrQQӅn nhiӅu lӟp khi chӏX WiF Gөng cӫa tҧi trӑQJ WƭQK NKL [HP WҩP [L PăQJ ÿi Yj QӅQ Oj cӭQJY{FQg 42

%jLWRiQE3KkQWtFKӭng xӱ cӫa tҩP0LQGOLQWUrQQӅn nhiӅu lӟp khi chӏXWiFGөng cӫa tҧi trӑQJGLÿӝng khi xem tҩP[LPăQJÿiYjQӅQOj cӭQJY{FQJ 46

3.2 3KkQWtFKӭng xӱ cӫa tҩm nhiӅu lӟSWUrQQӅQFyÿӝ cӭng biӃQWKLrQFKӏu tҧi trӑng di chuyӇn sӱ dөQJSKѭѫQJSKiSSKҫn tӱ tҩm nhiӅu lӟp chuyӇn ÿӝng MMPM (Multi-Layer Moving Plate Method) 48

3.2.1 %jLWRiQ2: KhҧRViWVӵ hӝi tө cӫDEjLWRiQ 48

3.2.2 %jL WRiQ  KҧR ViW ӭng xӱ ÿӝng lӵc hӑc cӫa tҩm nhiӅu lӟS WUrQ nӅQFyÿӝ cӭng biӃQWKLrQ 51

%jLWRiQ KhҧRViWӭng xӱ ÿӝng lӵc hӑc cӫa tҩPWUrQQӅQFyÿӝ cӭng biӃQWKLrQFKӏu tҧi trӑQJGLÿӝng khi hӋ sӕ WѭѫQJTXDQĮ WKD\ÿә 55

3.2.4 %jLWRiQ.KҧRViWӭng xӱ ÿӝng lӵc hӑc cӫa tҩPWUrQQӅQFyÿӝ cӭng biӃQWKLrQFKӏu tҧi trӑQJGLÿӝng khi sӕ PNJQWKD\ÿәi 58

%jLWRiQ.KҧRViWӭng xӱ ÿӝng lӵc hӑc cӫa tҩPWUrQQӅQFyÿӝ cӭng biӃQWKLrQFKӏu tҧi trӑnJGLÿӝng khi hӋ sӕ ÿӝ cҧn nӅQWKD\ÿәi 60

Trang 10

%jLWRiQ.KҧRViWӭng xӱ ÿӝng lӵc hӑc cӫa tҩPWUrQQӅQFyÿӝ cӭng biӃQ WKLrQ FKӏu tҧi trӑQJ GL ÿӝng khi vұn tӕc tҧi di chuyӇn V thay

ÿәi 63

%jLWRiQ.KҧRViWӭng xӱ ÿӝng lӵc hӑc cӫa tҩPWUrQQӅQFyÿӝ cӭng biӃQWKLrQFKӏu tҧi trӑQJGLÿӝQJNKLJLiWUӏ tҧi di chuyӇQ3WKD\ÿәi 66 %jLWRiQ.KҧRViWӭng xӱ ÿӝng lӵc hӑc cӫa tҩPWUrQQӅQFyÿӝ cӭng biӃQWKLrQFKӏu tҧi trӑQJGLÿӝQJNKLPRGXOHÿjQKӗi (Ec, Ef) cӫa tҩPWKD\ÿәi 68

%jLWRiQ.KҧRViWӭng xӱ ÿӝng lӵc hӑc cӫa tҩPWUrQQӅQFyÿӝ cӭng biӃQWKLrQFKӏu tҧi trӑQJGLÿӝng khi chiӅXGj\WҩPKWKD\ÿәi 71

%jLWRiQ.KҧRViWӭng xӱ ÿӝng lӵc hӑc cӫa tҩm trrQQӅQFy ÿӝ cӭQJYjFҧn nhӟWFQJELӃQWKLrQFKӏu tҧi trӑQJGLÿӝng 74

%jLWRiQ.KҧRViWӭng xӱ ÿӝng lӵc hӑc cӫa tҩPWUrQQӅQFy ÿӝ cӭQJYjFҧn nhӟWFQJELӃQWKLrQFKӏu tҧi trӑng GLÿӝng khi hҵng sӕ ÿӝ cӭng nӅQNWKD\ÿәi 76

&+ѬѪ1* 80

KӂT LUҰ19¬.,ӂN NGHӎ 80

4.1 KӃt luұn 80

4.2 KiӃn nghӏ 81

7¬,/,ӊU THAM KHҦO 82

PHӨ LӨC 88

/é/ӎ&+75Ë&+1*$1* 99

Trang 11

'$1+0Ө&&È&+Î1+9Ӏ

+uQK 0{KuQKWҩm nhiӅu lӟp WUrQQӅQFyÿӝ cӭng biӃQWKLrQ 10

+uQK 0{KuQKÿӝng hӑc cӫa kӃt cҩu tҩPWKHROêWKX\Ӄt Kirchhoff 13

+uQK 0{KuQKÿӝng hӑc cӫa kӃt cҩu tҩPWKHROêWKX\Ӄt Mindlin 14

+uQK 4X\ѭӟc chiӅXGѭѫQJFӫa chuyӇn vӏ ZYjKDLFKX\Ӈn vӏ xoay ȕx, ȕy cӫa tҩPWUrQQӅQÿjQQKӟt 15

+uQK Phҫn tӱ tӭ JLiFQ9 trong hӋ tӑDÿӝ ÿӏDSKѭѫQJ 19

+uQK Phҫn tӱ tӭ JLiFQ9 trong hӋ tӑDÿӝ tӵ QKLrQ 20

+uQK Phҫn tӱ tӭ JLiFQ~WOӟSWURQJSKѭѫQJSKiS0300 24

+uQK /ѭXÿӗ WtQKWRiQ 39

+uQK 0{KuQKNLӇm chӭng tҩP0LQGOLQWUrQ QӅn nhiӅu lӟp chӏu tҧi trӑQJWƭQKNKL[HPWҩP[LPăQJÿiYjQӅQOjFӭQJY{FQJ 43

+uQK Sӵ hӝi tө chuyӇn vӏ lӟn nhҩt tҥLWkPWҩPErW{QJ 44

+uQK ChuyӇn vӏ tҥLWkPWҩPErW{QJGӑc theo trөc x 45

+uQK ChuyӇn vӏ tҥLWkPWҩPErW{Qg dӑc theo trөc y 46

+uQK 0{KuQKNLӇm chӭng tҩP0LQGOLQWUrQ QӅn nhiӅu lӟp chӏu tҧi trӑQJ ÿӝng khi tҩP [L 0ăQJ ÿi Yj QӅn giҧ thuyӃW Oj FӭQJ Y{ FQJ 47

+uQK Sӵ hӝi tө cӫa chuyӇn vӏ tҥLWkPWҩP%7WKHRFiFEѭӟc thӡi gian 48

+uQK Sӵ hӝi tө cӫa chuyӇn vӏ WKHR FiF Eѭӟc thӡi gian cӫa tҩP Er W{QJ 50

+uQK Sӵ hӝi tө cӫa chuyӇn vӏ WKHR FiF Eѭӟc thӡi gian cӫa tҩm xi PăQJÿi 50

+uQK ChuyӇn vӏ cӫa tҩPErW{QJYjWҩP[LPăQJÿiWҥLFiFYӏ WUt 1/4 tҩm, 2/4 tҩm, 3/4 tҩm khi k f , k c biӃQWKLrQ 52

Trang 12

+uQK ChuyӇn vӏ cӫa tҩPErW{QJWҥLFiFYӏ WUt1/4 tҩm, tҥi 2/4 tҩPYj

tҥi 3/4 tҩm khi k c , k f biӃQWKLrQYjNKLk c , k f OjKҵng sӕ 53+uQK ChuyӇn vӏ cӫa tҩP [L PăQJ ÿi WҥL FiF Yӏ WUt 1/4 tҩm, 2/4 tҩm,

3/4 tҩm khi k f , k c biӃQWKLrQYjNKLk f , k c OjKҵng sӕ 53+uQh 3 12 ChuyӇn vӏ lӟn nhҩt cӫa tҩP ;0Ĉ Wҥi vӏ WUt 1/4 tҩm, 2/4 tҩm,

3/4 tҩm khi k f , k c biӃQWKLrQYjNKLk f , k c OjKҵng sӕ 54+uQK ChuyӇn vӏ cӫa tҩPErW{QJӭng vӟi nӅQFyKӋ sӕ WѭѫQJTXDn Į

WKD\ÿәi tҥi vӏ WUtWҩm, 2/4 tҩPYjWҩm 55+uQK ChuyӇn vӏ lӟn nhҩt cӫa tҩP [L PăQJ ÿi ӭng vӟi nӅQ Fy KӋ sӕ

WѭѫQJTXDQĮ WKD\ÿәi tҥi vӏ WUtWҩm, 2/4 tҩPYjWҩm 56

+uQK ChuyӇn vӏ cӫa tҩP[LPăQJÿiӭng vӟi nӅQFyKӋ sӕ WѭѫQJTXDQ

Į WKD\ÿәi khi tҧi di chuyӇQÿӃQFiFYӏ WUtWҩm, 2/4 tҩPYj

3/4 tҩm 56+uQK ChuyӇn vӏ lӟn nhҩt cӫa tҩm [L PăQJ ÿi ӭng vӟi nӅQ Fy KӋ sӕ

WѭѫQJ quan Į WKD\ÿәi tҥi vӏ WUtWҩm, 2/4 tҩPYjWҩm 57

+uQK ChuyӇn vӏ cӫa tҩPErW{QJӭng vӟi nӅn cyVӕ PNJ n WKD\ÿәi khi

tҧi di chuyӇQÿӃQFiFYӏ WUtWҩm, 2/4 tҩPYjWҩm 58+uQK ChuyӇn vӏ lӟn nhҩt cӫa cӫa tҩPErW{QJ ӭng vӟi nӅQFyVӕ PNJn

WKD\ÿәi khi tҧi di chuyӇQÿӃQFiFYӏ WUtWҩm, 2/4 tҩPYjtҩm 59+uQK ChuyӇn vӏ cӫa tҩm [LPăQJÿi ӭng vӟi nӅQFyVӕ PNJ n thay ÿәi

khi tҧi di chuyӇQÿӃQFiFYӏ WUtWҩm, 2/4 tҩPYjWҩm 59+uQK ChuyӇn vӏ lӟn nhҩt cӫa tҩm [LPăQJÿi ӭng vӟi nӅQFyKӋ sӕ n

WKD\ÿәi khi tҧi di chuyӇQÿӃQFiFYӏ WUtWҩm, 2/4 tҩPYjtҩm 60+uQK1 ChuyӇn vӏ cӫa tҩPErW{QJӭng vӟi nӅQFyKӋ sӕ cҧn WKD\ÿәi 61+uQK ChuyӇn vӏ lӟn nhҩt cӫa tҩPErW{QJӭng vӟi nӅQFyKӋ sӕ cҧn

WKD\ÿәi 61

Trang 13

+uQK ChuyӇn vӏ cӫa cӫa tҩP [L PăQJ ÿi ӭng vӟi nӅQ Fy KӋ sӕ cҧn

WKD\ÿәi khi tҧi di chuyӇQÿӃQFiFYӏ WUtWҩm, 2/4 tҩPYjtҩm 62+uQK ChuyӇn vӏ lӟn nhҩt cӫa xi PăQJ ÿi ӭng vӟi nӅQ Fy KӋ sӕ cҧn

WKD\ÿәi khi tҧi di chuyӇQÿӃQFiFYӏ WUtWҩm, 2/4 tҩPYjtҩm 62+uQK ChuyӇn vӏ cӫa tҩPErW{QJӭng vӟi vұn tӕc tҧi di chuyӇn V thay

ÿәi tҥi vӏ tUtWҩm, 2/4 tҩPYjWҩm 63+uQK ChuyӇn vӏ lӟn nhҩt cӫa tҩP Er W{QJ ӭng vӟi vұn tӕc tҧi di

chuyӇQ9WKD\ÿәi tҥi vӏ WUtWҩm, 2/4 tҩPYjWҩm 64+uQK ChuyӇn vӏ cӫa tҩP[LPăQJÿiӭng vӟi vұn tӕc tҧi di chuyӇn V

WKD\ÿәi tҥi vӏ WUtWҩm, 2/4 tҩm YjWҩm 64+uQK ChuyӇn vӏ lӟn nhҩt cӫa xi PăQJ  ÿi  ӭng vӟi vұn tӕc tҧi di

chuyӇQ9WKD\ÿәi tҥi vӏ WUtWҩm, 2/4 tҩPYjWҩm 65+uQK ChuyӇn vӏ cӫa tҩPErW{QJӭng vӟi JLiWUӏ tҧi di chuyӇn P thay

ÿәi tҥi vӏ WUtWҩm, 2/4 tҩPYjWҩm 66+uQK ChuyӇn vӏ lӟn nhҩt cӫa tҩP Er W{QJ ӭng vӟi JLi WUӏ tҧi di

chuyӇn P WKD\ÿәi tҥi vӏ WUtWҩm, 2/4 tҩPYjWҩm 67+uQK ChuyӇn vӏ cӫa tҩP [L PăQJ ÿi ӭng vӟi JLi WUӏ tҧi di chuyӇn P

WKD\ÿәi tҥi vӏ WUtWҩm, 2/4 tҩPYjWҩm 67+uQK ChuyӇn vӏ lӟn nhҩt cӫa tҩP [L PăQJ ÿi ӭng vӟi JLi WUӏ tҧi di

chuyӇn P WKD\ÿәi tҥi vӏ WUtWҩm, 2/4 tҩPYjWҩm 68+uQK ChuyӇn vӏ cӫa tҩPErW{QJӭng vӟLFiFJLiWUӏ PRGXOHÿjQKӗi

Trang 14

+uQK ChuyӇn vӏ cӫa tҩPErW{QJӭng vӟLFiFJLiWUӏ chiӅXGj\Wҩm h

WKD\ÿәi khi tҧi trӑng ӣ FiFYӏ WUtWҩm, 2/4 tҩPYjWҩm 71+uQK ChuyӇn vӏ lӟn nhҩt cӫa tҩP Er W{QJ ӭng vӟL FiF JLi WUӏ chiӅu

cӭng biӃQWKLrQYjQӅQFyÿӝ cӭng, cҧn nhӟt cQJELӃQWKLrQ 75+uQK ChuyӇn vӏ cӫa tҩP[L PăQJÿiFKӏu tҧi trӑQJGLÿӝQJWUrQQӅn

Fyÿӝ cӭng biӃQWKLrQYjQӅQFyÿӝ cӭng, cҧn nhӟWFQJELӃn WKLrQ 75+uQK ChuyӇn vӏ cӫa tҩP Er W{QJ ӭng vӟi nӅQ Fy ÿӝ cӭng, cҧn nhӟt

Trang 15

'$1+0Ө&&È&%Ҧ1*%,ӆ8

Bҧng 2 1 Tӑa ÿӝ YjWUӑng sӕ WURQJSKpSFҫXSKѭѫQJ*DXVV 23

Bҧng 2 2 7K{QJVӕ cӫa tҧi trӑng 36

Bҧng 2 3 7K{QJVӕ cӫa tҩm ErW{QJ 36

Bҧng 2 4 7K{QJVӕ OLrQNӃt giӳa hai tҩm 37

Bҧng 2 5 7K{QJVӕ cӫa tҩm [LPăQJÿi 37

Bҧng 2 6 7K{QJVӕ nӅQÿҩt 37

Bҧng 3.1 7K{QJVӕ cӫa tҧi trӑng ««««««««««««««««40

Bҧng 3.2 7K{QJVӕ cӫa tҩPErW{QJ 40

Bҧng 3.3 7K{QJVӕ OLrQNӃt giӳa hai tҩm 41

Bҧng 3.4 7K{QJVӕ cӫa tҩP[LPăQJÿi 41

Bҧng 3.5 7K{QJVӕ nӅQÿҩt 41

Bҧng 3.6 Sӵ hӝi tө chuyӇn vӏ lӟn nhҩW î-5 m) tҥLWkPWҩPErW{QJ 44

Bҧng 3.7 Sai sӕ (%) chuyӇn vӏ lӟn nhҩt tҥL WkP WҩP Er W{QJ FӫD FiF SKѭѫQJSKiSYӟLOѭӟi chia 30x30 so vӟi SAP 2000 45

Bҧng 3.8 Sӵ hӝi tө chuyӇn vӏ lӟn nhҩW î-5 m) tҥLWkPWҩPErW{QJ 48

Bҧng 3.9 KӃt quҧ khҧR ViW Vӵ hӝi tө cӫa chuyӇn vӏ tҩP Er W{QJ YӟL FiF NtFKWKѭӟFOѭӟLNKiFQKDX 49

Bҧng 3.10 KӃt quҧ khҧR ViW Vӵ hӝi tө cӫa chuyӇn vӏ tҩP [L PăQJ ÿi vӟi FiFNtFKWKѭӟFOѭӟLNKiFQKDX 49

Bҧng 3.11 ChuyӇn vӏ lӟn nhҩt cӫa tҩPErW{QJYjWҩP[LPăQJÿiWҥLFiFYӏ trtWҩm (x=5m), tҥi 2/4 tҩP [ P YjWҥi 3/4 tҩm (x=15m) khi kf, kc biӃQWKLrQ 52

Bҧng 3.12 ChuyӇn vӏ lӟn nhҩt cӫa tҩP Er W{QJ WҥL FiF Yӏ WUt  Wҩm (x=5m), tҥi 2/4 tҩP [ P YjWҥi 3/4 tҩm (x=15m) khi kf, kc biӃQWKLrQYjNKLNINFOjKҵng sӕ 54

Trang 16

Bҧng 3.13 ChuyӇn vӏ lӟn nhҩt cӫa tҩP[L PăQJÿiWҥLFiFYӏ WUtYӏ WUt

tҩm (x=5m), tҥi 2/4 tҩP [ P  Yj Wҥi 3/4 tҩm (x=15m) khi

kf, kc biӃQWKLrQYjNKLNINFOjKҵng sӕ 54Bҧng 3.14 ChuyӇn vӏ lӟn nhҩt cӫa tҩPErW{QJӭng vӟi nӅQFyKӋ sӕ WѭѫQJ

TXDQĮWKD\ÿәi khi tҧi di chuyӇQÿӃQFiFYӏ WUtWҩm, 2/4 tҩm Yj tҩm 56Bҧng 3.15 ChuyӇn vӏ lӟn nhҩt cӫa tҩP [L PăQJ ÿi ӭng vӟi nӅQ Fy KӋ sӕ

WѭѫQJTXDQĮWKD\ÿәi khi tҧi di chuyӇQÿӃQFiFYӏ WUtWҩm, 2/4 tҩPYjWҩm 57Bҧng 3.16 ChuyӇn vӏ lӟn nhҩt cӫa tҩPErW{QJӭng vӟi nӅQFyKӋ sӕ n thay

ÿәi khi tҧi di chuyӇQÿӃQFiFYӏ WUtWҩm, 2/4 tҩPYjWҩm 58Bҧng 3.17 ChuyӇn vӏ lӟn nhҩt cӫa tҩP[LPăQJÿiӭng vӟi nӅQFyKӋ sӕ n

WKD\ÿәi khi tҧi di chuyӇQÿӃQFiFYӏ WUtWҩm, 2/4 tҩPYjtҩm 59Bҧng 3.18 ChuyӇn vӏ lӟn nhҩt cӫa tҩPErW{QJӭng vӟi nӅQFyKӋ sӕ cҧn

WKD\ÿәi khi tҧi di chuyӇQÿӃQFiFYӏ WUtWҩm, 2/4 tҩPYjtҩm 61Bҧng 3.19 ChuyӇn vӏ lӟn nhҩt cӫD [L PăQJ ÿi ӭng vӟi nӅQ Fy KӋ sӕ cҧn

WKD\ÿәi khi tҧi di chuyӇQÿӃQFiFYӏ WUtWҩm, 2/4 tҩPYjtҩm 63Bҧng 3.20 ChuyӇn vӏ lӟn nhҩt cӫa tҩP Er W{QJ ӭng vӟi vұn tӕc tҧi di

chuyӇQ9WKD\ÿәi tҥi vӏ WUtWҩm, 2/4 tҩPYjWҩm 64Bҧng 3.21 ChuyӇn vӏ lӟn nhҩt cӫa tҩP [L PăQJÿiӭng vӟi vұn tӕc tҧi di

chuyӇQ9WKD\ÿәi tҥi vӏ WUtWҩm, 2/4 tҩPYjWҩm 65Bҧng 3.22 ChuyӇn vӏ lӟn nhҩt ӣ giӳa tҩm Er W{QJ NKL JLi WUӏ tҧi trӑng di

chuyӇQ3WKD\ÿәi 67Bҧng 3.23 ChuyӇn vӏ lӟn nhҩt ӣ giӳa tҩP[LPăQJÿiNKLJLiWUӏ tҧi trӑng

di chuyӇQ3WKD\ÿәi 68Bҧng 3.24 ChuyӇn vӏ lӟn nhҩt cӫa tҩP Er W{QJ NKL Wҧi trӑng ӣ vӏ WUt JLӳa

tҩm vӟLFiFJLiWUӏ PRGXOHÿjQKӗi E WKD\ÿәi 70

Trang 17

Bҧng 3.25 ChuyӇn vӏ lӟn nhҩt cӫa tҩP [L PăQJ ÿi khi tҧi trӑng ӣ vӏ WUt

giӳa tҩm vӟLFiFJLiWUӏ PRGXOHÿjQKӗL(WKD\ÿәi 70Bҧng 3.26 ChuyӇn vӏ lӟn nhҩt cӫa tҩP Er W{QJ NKL Wҧi trӑng ӣ vӏ WUt JLӳa

tҩm vӟLFiFJLiWUӏ chiӅXGj\WҩPKWKD\ÿәi 71Bҧng 3.27 ChuyӇn vӏ lӟn nhҩt cӫa tҩP [L PăQJ ÿi NKL Wҧi trӑng ӣ vӏ WUt

giӳa tҩm vӟLFiFJLiWUӏ chiӅXGj\WҩPKWKD\ÿәi 72Bҧng 3.28 ChuyӇn vӏ lӟn nhҩt cӫa tҩm khi tҧi trӑng ӣ vӏ WUtJLӳa tҩm vӟi

FiFJLiWUӏ chiӅXGj\WҩPKWKD\ÿәi 73Bҧng 3.29 6RViQKFKX\Ӈn vӏ ӣ giӳa tҩPErW{QJNKLQӅQFyÿӝ cӭng biӃn

WKLrQYjQӅQFyÿӝ cӭng, cҧn nhӟWFQJELӃQWKLrQ 75Bҧng 3.30 6RViQKFKX\Ӈn vӏ ӣ giӳa tҩP[L PăQJÿiNKLQӅQFyÿӝ cӭng

biӃQWKLrQYjQӅQFyÿӝ cӭng, cҧn nhӟWFQJELӃQWKLrQ 76Bҧng 3.31 ChuyӇn vӏ lӟn nhҩt cӫa tҩP Er W{QJ ӭng vӟi nӅQ Fy ÿӝ cӭng,

cҧn nhӟW FQJ ELӃQ WKLrQ Fy KӋ sӕ ko WKD\ ÿәi khi tҧi trӑng ӣ FiFYӏ WUtWҩm, 2/4 tҩPYjWҩm 78Bҧng 3.32 ChuyӇn vӏ lӟn nhҩt cӫa tҩm [LPăQJÿiӭng vӟi nӅQFyÿӝ cӭng,

cҧn nhӟW FQJ ELӃQ WKLrQ Fy KӋ sӕ ko WKD\ ÿәi khi tҧi trӑng ӣ FiFYӏ WUtWҩm, 2/4 tҩPYjWҩm 78

Trang 18

HDQ Hamornic Differential Quadrature

EEM Eigenfunction Expansion Method

DSC Discrete Singular Convolution

DOF Bұc tӵ do (Degree of Freedom)

Meff Ma trұn khӕLOѭӧng hiӋu dөng

Peff Ma trұn tҧi trӑng hiӋu dөng

Keff Ma trұQÿӝ cӭng hiӋu dөng

.êKLӋu

Trang 19

k c HӋ sӕ ÿӝ cӭng OLrQNӃt giӳa lӟp iRÿѭӡQJYjOӟp BTCT

c c HӋ sӕ ÿӝ cҧQOLrQNӃt giӳa lӟp iRÿѭӡQJYjOӟSEr%7&7

Trang 20

+uQK1 0i\ED\WUrn ÿѭӡQJEăQJ [1]

+uQK2 ;HWUrQÿѭӡng cao tӕc [2]

Trang 21

Trong thiӃt kӃt ÿѭӡQJEăQJKD\ÿѭӡng cao tӕc, nӅQÿѭӡQJWKѭӡQJÿѭӧc cҩu tҥo nhiӅu lӟp bao gӗm: LӟS Er W{QJ Oӟp nhӵD ÿѭӡng, lӟp xi PăQJ ÿi ÿһW WUrQnӅQÿҩWÿѭӧc thӇ hiӋQQKѭWURQJ+uQKWKHR:XYjFӝng sӵ (2014) [26] KӃt cҩu iRÿѭӡQJWKѭӡQJÿѭӧFP{KuQKQKѭOjGҫm hay tҩPÿһWWUrQQӅQÿҩt

+uQK3 Mһt cҳt nӅQÿѭӡQJEăQJQKLӅu lӟp Ĉӕi vӟi tҧi trӑng di chuyӇn, vӏ WUtFӫa tҧi trӑng trong kӃt cҩXWKD\ÿәi theo thӡi gian ViӋc pKkQWtFKҧQKKѭӣng cӫa tҧLGLÿӝQJOrQNӃt cҩXWKѭӡQJÿѭӧc tiӃn KjQKEҵQJFiFKVӱ dөQJSKѭѫQJSKiSJLҧLWtFKKRһFSKѭѫQJSKip phҫn tӱ hӳu hҥQ)(0 )LQLWH(OHPHQW0HWKRG QKѭHuQK 1.4

+uQK4 0{KuQKWҧi trӑQJGLÿӝQJYjSKҫn tӱ tҩm cӕ ÿӏnh (FEM)

Sӱ dөQJSKѭѫQJSKiSJLҧLWtFKÿӇ giҧLEjLWRiQÿӝng sӁ gһSNKyNKăQNKLtҧL Oj Pӝt hӋ gӗm nhiӅu bұc tӵ do 7URQJ NKL ÿy JLҧi quyӃW EjL WRiQ FKӏu tҧi trӑQJGLÿӝng bҵQJSKѭѫQJSKiSphҫn tӱ hӳu hҥn )(0FNJQJJһSNKyNKăQkhi tҧi trӑng tiӃQÿӃn gҫQELrQFӫa miӅn hӳu hҥn phҫn tӱ YjGLFKX\ӇQYѭӧWUDQJRjLELrQQJRjLUDSKѭѫQJSKiSQj\FzQ\rXFҫu phҧi OX{QFұp nhұt vӏ WUtFӫDYpFWѫ

Phҫn tӱ cӕ ÿӏnh

Tҧi trӑQJGLÿӝng

x

y

Trang 22

tҧi trӑng, GR ÿy viӋc giҧi quyӃW EjL WRiQ VӁ tӕn nhiӅX FKL SKt WtQK WRiQ Yj Pҩt nhiӅu thӡLJLDQKѫQ

Trong LuұQYăQQj\ EjLWRiQWҩPGj\GjLY{KҥQÿһWWUrQQӅQFyÿӝ cӭng biӃQWKLrQFKӏu tҧi trӑng di chuyӇn sӁ ÿѭӧc giҧi quyӃWQKDQKKѫQYjtWWӕQNpPKѫQ EҵQJ SKѭѫQJ SKiS SKҫn tӱ tҩm nhiӅu lӟp chuyӇQ ÿӝng (Multi-Layer Moving Plate Method-MMPM) PKѭѫQJ SKiS Qj\ ÿѭӧF ÿӅ [XҩW GӵD WUrQSKѭѫQJSKiSSKҫQWӱFKX\ӇQÿӝQJ 0RYLQJ(OHPHQW0HWKRG-0(0 7URQJÿyWҩPVӁÿѭӧFFKLDQKӓWKjQKQKӳQJ³SKҫQWӱQKLӅXOӟSFKX\ӇQÿӝQJ´ÿѭӧF[k\dӵng trong mӝt hӋ tӑD ÿӝ WѭѫQJ ÿӕi, gҳn liӅn vӟi tҧi chuyӇQ ÿӝng, OѭX ê FiFphҫn tӱ chuyӇQÿӝQJNK{QJSKҧLOjSKҫn tӱ vұt chҩt (gҳn liӅn vӟi vұt liӋX PjOjFiFSKҫn tӱ NKiLQLӋm chҥy dӑc theo kӃt cҩu %rQ cҥQKÿyLuұn YăQVӱ dөng P{ KuQK QӅn Fy ÿӝ cӭng biӃQ WKLrQ QKѭ WURQJ +uQK 1.5 QKҵP P{ SKӓQJ JҫQÿ~QJKѫQÿһFWtQKӭQJ[ӱFӫDFiFOӟSÿҩWQӅQNK{QJÿӗQJQKҩWWURQJWKӵFWӃ YӟLJLҧWKX\ӃW[HPOӟSErW{QJYjOӟS[LPăQJÿiQKѭOjWҩPQKLӅXOӟSOLrQNӃWJLӳDKDLWҩPEҵQJOӟSQKӵDÿѭӡQJÿѭӧFP{KuQKKyDWKjQKKӋVӕÿӝFӭQJÿjQKӗLELӃQWKLrQkc(x) Yj KӋ Vӕ ÿӝ FҧQ ELӃQ WKLrQcc (x) 7ѭѫQJ WiF JLӳD KDL WҩP

ÿѭӧFÿһWWUrQQӅQÿҩWFyKӋVӕÿӝFӭQJQӅQELӃQWKLrQk f (x) YjKӋVӕÿӝFҧQQӅQ ELӃQWKLrQc f (x)

Trang 23

1.2 7uQKKuQKQJKLrQFӭX YjWtQKFҩSWKLӃWFӫDÿӅWjL

6ӵSKiWWULӇQQKDQKFKyQJFӫDSKѭѫQJSKiSVӕÿmFҧLWKLӋQUҩWQKLӅXNӃWTXҧWtQh WRiQ FiF EjL WRiQ Fѫ KӑF QyL FKXQJ Yj FiF EjL WRiQ ÿӝQJ OӵF KӑF NӃW FҩX QyLULrQJ &iF EjL WRiQ SKkQ WtQK ӭQJ [ӱ ÿӝQJ FӫD NӃW FҩX WҩP Yӓ Fy [pW ÿӃQ ҧQKKѭӣQJ FӫD ÿҩW QӅQ NӃW FҩX WҩP nKLӅX OӟS«ÿm ÿѭӧF UҩW QKLӅX QKj QJKLrQ FӭXWURQJYjQJRjLQѭӟFQJKLrQFӭXYjSKiWWULӇQ

1.2.1 &iFF{QJWUuQKQJKLrQFӭXWUrQWKӃJLӟL

%jLWRiQNӃt cҩu chӏu tҧi trӑQJGLÿӝQJOjPӝt vҩQÿӅ WKѭӡng gһp trong thӵc tӃ Yjÿk\ FNJQJ Oj Pӝt trong nhӳQJ EjL WRiQ ÿѭӧF QJKLrQ Fӭu tӯ rҩt sӟm Mathews (1958) [3], (1959) [4] ÿm JLҧL TX\ӃW EjL WRiQ GҫP Fy FKLӅX GjL Y{ KҥQ WUrQ QӅQÿjQKӗLFKӏXWҧLWUӑQJGLFKX\ӇQW\êEҵQJSKѭѫQJSKiSELӇQÿәL)70 )RXULHU7UDQVIRUP0HWKRG 3KѭѫQJSKiS)70WKӵFFKҩWOjPӝWSKѭѫQJSKiSPLӅQWҫQVӕFyWKӇFKROӡLJLҧLFKtQK[iFQKѭQJJһSEӃWҳFNKLEjLWRiQSKӭFWҥSQKLӅXEұFWӵGRNKLWҧLWUӑQJWiFÿӝQJFy[pWÿӃQVӵWKD\ÿәLFӫDJLDWӕF0LFKDHOYjEdward (1989) [5] ÿmJLҧLTX\ӃWEjLWRiQWҩP.LUFKRIIYӟLÿLӅXNLӋQELrQEҩWNǤVӱ GөQJ SKѭѫQJ SKiS 6,0 6WUXFWXUDO ,PSHGDQFH 0HWKRG

Ngày đăng: 03/08/2024, 13:21

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w