1. Trang chủ
  2. » Luận Văn - Báo Cáo

skkn cấp tỉnh phương pháp đặt ẩn phụ giải một số bài toán hàm hợp ôn thi tốt nghiệp trung học phổ thông

21 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Phương pháp đặt ẩn phụ giải một số bài toán hàm hợp ôn thi tốt nghiệp trung học phổ thông
Tác giả Nguyễn Thị Thanh Tâm
Trường học Trường THPT Hậu Lộc 2
Chuyên ngành Toán học
Thể loại Sáng kiến kinh nghiệm
Định dạng
Số trang 21
Dung lượng 1,48 MB

Nội dung

Chính vì vậy tôi đi sâu vào việc nghiên cứu đề tài: "Phương pháp đặt ẩn phụ giải một số bài toán hàm hợp ôn thi tốt nghiệp trung học phổ thông".. Từ việc sử dụng phương pháp đặt ẩn phụ đ

Trang 1

MỤC LỤC Trang

1 MỞ ĐẦU:

1.1 Lí do chọn đề tài ………

1.2 Mục đích nghiên cứu ………

1.3 Đối tượng nghiên cứu ………

1.4 Phương pháp nghiên cứu ………

1.5 Những điểm mới của SKKN ………

01 01 01 02 02 02 2 NỘI DUNG SÁNG KIẾN KINH NGHIỆM 03 2.1 Cơ sở lí luận của sáng kiến kinh nghiệm ……… 03

2.2 Thực trạng vấn đề trước khi áp dụng sáng kiến kinh nghiệm … 03 2.3 Các giải pháp đã sử dụng để giải quyết vấn đề ………

2.3.1 Mục tiêu của giải pháp 2.3.2 Nội dung và cách thức thực hiện giải pháp 2.4 Hiệu quả của SKKN ………

04 05 05 17 3 KẾT LUẬN, KIẾN NGHỊ 17 3 1 Kết luận 17 3 2 Kiến nghị Tài liệu tham khảo

18 19

Trang 2

1 MỞ ĐẦU

1.1 Lí do chọn đề tài

Hình thức thi trắc nghiệm được Bộ giáo dục đào tạo triển khai từ năm học2016-2017 với nội dung kiến thức nằm trong chương trình lớp 12 Năm 2017-

2018 với 20% kiến thức lớp 11 và 80% kiến thức lớp 12 Từ năm 2018 đến năm

2023 chủ yếu kiến thức lớp 12 và có một số ít kiến thức lớp 10 và 11 Tuy đãqua 7 năm làm quen và thi trắc nghiệm nhưng học sinh thường lúng túng vàchưa quen cách làm hoặc có làm được nhưng lại mất nhiều thời gian Đa số các

em chưa xác định được cách giải quyết bài toán sao cho nhanh nhất

Thực tế trên cho thấy khi làm bài thi 50 câu trong 90 phút, bao gồm nhiều

kiến thức Trong đó có cả nhưng câu khó, đòi hỏi học sinh phải vận dụng kiến

thức và tính toán thật nhanh nhạy mới hoàn thành bài thi được Cụ thể khi gặpcác bài toán “Cho hàm số yf x , biết bảng biến thiên của hàm yf x hoặc đồ thị yf x  hoặc bảng xét dấu của yf x  Yêu cầu bài toán hỏi vềtính đồng biến, nghịch biến, điểm cực trị của hàm số hợp yf u x    , sốnghiệm của phương f u x  ” Đa phần sẽ gây khó khăn cho đa số học sinh    0khi tìm lời giải và dẫn đến tình trạng bỏ qua loạt bài toán dạng này không làmhoặc đánh lụi một đáp án nào đó

Từ năm 2025, dạng thức đề thi sẽ thay đổi, các câu ở mức độ Vận dụng,Vận dụng cao sẽ không còn ở dạng trắc nghiệm 4 lựa chọn hay ở dạng trắcnghiệm đúng – sai để học sinh có thể chọn lụi nữa mà sẽ ở dạng trả lời ngắn, tức

là phải giải được kết quả mới có thể hy vọng đúng Vì vậy, dạy học cần phải

tăng cường hướng dẫn các em nắm chắc kiến thức bài học ngay tại lớp, tiếp thu

bài giảng một cách nhanh nhất và hiệu quả nhất Đồng thời cung cấp thêm chocác em thêm các phương pháp hỗ để giải toán nhanh nhất, hiệu quả nhất và dễtiếp thu nhất để tạo ra sự thích thú, kích thích tính tò mò, lôi kéo được sự tậptrung chú ý cao của học sinh góp phần nâng cao chất lượng dạy học, giúp họcsinh có thể tự tin xử lý được các câu ở mức độ khó trong đề thi

Xuất phát từ những thực trạng trên, là giáo viên tham gia trực tiếp giảngdạy các lớp ôn thi TN THPT một số năm qua, tôi đã thu thập, tập hợp một sốbiện pháp nhằm góp phần nâng cao chất lượng thi TN THPT môn Toán học

Chính vì vậy tôi đi sâu vào việc nghiên cứu đề tài: "Phương pháp đặt ẩn phụ giải một số bài toán hàm hợp ôn thi tốt nghiệp trung học phổ thông"

Từ việc sử dụng phương pháp đặt ẩn phụ để giải một số bài toán hàm hợp,tôi thấy có thể chuyển các bài toán lạ về các bài toán quen thuộc, đồng thời giúphọc sinh dễ dàng hơn trong ôn tập và tiếp thu kiến thức, giúp học sinh có cáchnhìn mới về giải toán để phù hợp với hình thức thi trắc nghiệm hiện nay và trongthời gian sắp tới

1.2 Mục đích nghiên cứu

Mục đích: Tạo hứng thú niềm vui cho học sinh, đồng thời giúp học sinh có

thêm cách giải quyết các bài toán đang gặp khó khăn trong khi ôn thi tốt nghiệptrung học phổ thông Từ đó nâng cao được chất lượng chất lượng dạy học Hơn

Trang 3

nữa qua đó còn nhằm giúp học sinh hình thành và phát triển các năng lực, kỹnăng sau đây:

- Năng lực tư duy, kết nối kiến thức; năng lực đánh giá, tính toán

- Kỹ năng xử lý các bài toán có chứa hàm số hợp, hàm số hợp chứa tham số

- Kỹ năng tính toán bằng máy tính cầm tay tốt để nhanh chóng giải quyết đượcvấn đề khi gặp các tính toán phức tạp

- Giúp học sinh loại bỏ tâm lí “sợ” các bài toán liên quan đến hàm hợp, liênquan đến tham số phức tạp

- Tạo cho học sinh hứng thú học tập, khơi dậy khả năng tìm tòi, kết nối các kiếnthức để giải toán

Nhiệm vụ của đề tài:

- Xây dựng một số kết quả tổng quát bằng cách đặt ẩn phụ cho bài toán hàm hợphoặc hàm hợp chứa tham số

- Áp dụng các kết quả đã xây dựng để giải quyết một số dạng bài toán thườnggặp trong các đề ôn thi TN THPT

- Đánh giá, rút kinh nghiệm

- Đề ra các giải pháp nhằm nâng cao hiệu quả giải toán liên quan đến hàm hợpchứa tham số phức tạp

1.3 Đối tượng nghiên cứu

- Đề tài này sẽ nghiên cứu cách giải bài toán tìm cực trị, tìm các khoảng đơn

điệu của hàm số và tìm số nghiệm của phương trình liên quan đến hàm số hợpchứa tham số phức tạp bằng cách tiếp cận theo hướng đặt ẩn phụ để đưa về cácdạng phương trình đơn giản, thường gặp và dễ dàng xử lý

- Đề tài này sẽ tổng hợp một số kết quả của việc đặt ẩn phụ nhằm phục vụ chocác dạng bài toán thường gặp liên quan đến các loại hàm số hợp, hàm số chứatham số phức tạp

1.4 Phương pháp nghiên cứu

Phương pháp nghiên cứu sử dụng trong đề tài bao gồm:

- Phương pháp điều tra khảo sát thực tế, thu thập thông tin: điều tra, khảosát thực tế việc giải đề ôn thi THPT Quốc gia của học sinh lớp 12 nói chung vàviệc giải các bài tập về hàm số đặc biệt là bài tập dạng hàm số hợp phức tạp cóchứa tham số của học sinh trường THPT Hậu Lộc 2 để từ đó thấy được thựctrạng và nêu lên được tác dụng của việc sử dụng cách đặt ẩn phụ trong việc giảicác bài tập đó

Trang 4

- Phương pháp nghiên cứu xây dựng cơ sở lý thuyết: trên cơ sở các kiếnthức về cơ bản hàm số như: cực trị, tính đơn điệu, giá trị lớn nhất, nhỏ nhất,tương giao giữa các đồ thị hàm số, đã được học, cùng với việc nghiên cứu cácđặc điểm của dạng bài tập nâng cao loại này để xây dựng các kết quả tổng quát,các công thức nhanh nhằm áp dụng khi giải các bài tập loại này, giúp học sinhhứng thú học, tiết kiệm thời gian làm bài khi thi Trắc nghiệm.

1.5 Những điểm mới của SKKN.

Giúp học sinh biết quy các bài toán lạ, khó về các bài toán quen thuộc hơn,lời giải ngắn gọn hơn

Giúp học sinh giải quyết nhanh chóng các bài toán liên quan đến hàm sốhợp – là những bài toán khó trong đề thi tốt nghiệp trung học phổ thông

2 NỘI DUNG SÁNG KIẾN KINH NGHIỆM

2 1 Cơ sở lí luận của sáng kiến kinh nghiệm

a Đạo hàm của hàm số hợp: Nếu hàm số u g x   có đạo hàm tại xu và x

hàm số yf u  có đạo hàm tại uy thì hàm hợp u yf g x    có đạo hàmtại xyxy u u x 

b Tính đơn điệu của hàm số:

+) Nếu các hàm số f x g x cùng chiều đơn điệu (cùng tăng hoặc cùng ,  giảm) thì hàm f g x là hàm tăng    

+) Nếu các hàm số f x g x ngược chiều đơn điệu (một hàm tăng, một hàm ,  giảm) thì hàm f g x là hàm giảm    

Xét hàm số đa thức yf x  có tập xác định là  và có điểm cực trị Khi đó:

+) Số điểm cực trị của hàm số yf x  bằng số nghiệm đơn (nghiệm bội lẻ)của phương trình f x  0

Trang 5

x x

thì số điểm cực đại và số điểm

cực tiểu của hàm số yf x  bằng nhau

d Số nghiệm của phương trình f x  g x : Số nghiệm của phương trìnhchính là số giao điểm của hai đồ thị hàm số yf x  và y g x  

2.2 Thực trạng vấn đề trước khi áp dụng sáng kiến kinh nghiệm

- Thực trạng: Khi chưa biết phương pháp ẩn phụ học sinh thường làm các bàitoán liên quan tới hàm hợp bằng cách đạo hàm trực tiếp, dẫn đến lời giải có thểdài, khó tưởng tượng, khó tiếp thu được nội dung và chán nản khi gặp các loạibài tập này

Ví dụ: Cho hàm số f x , bảng biến thiên của hàm số   f x  như sau:

0;11;

Trang 6

b c d  do thuộc các khoảng khác nhau (như  * ) nên các nghiệm

2, , , , ,3 4 5 6 7

x x x x x x đều khác nhau và khác 1 1

2

x  Do đó y có 7 nghiệm0

đơn phân biệt nên y đổi dấu 7 lần suy ra hàm số có 7 điểm cực trị.

- Nhận xét: lời giải này tương đối dài dòng và phức tạp, tuy nhiên vẫn còn có

thể chấp nhận được vì biểu thức hàm hợp là đa thức không chứa tham số, khôngchứa dấu giá trị tuyệt đối Những bài toán khác sẽ trình bày sau đây nếu giảitheo cách thông thường như trên sẽ trở nên phức tạp, dài dòng và gây khó khăncho học sinh trong việc theo dõi hay nắm bắt tiến trình lời giải

2.3 Các giải pháp đã sử dụng để giải quyết vấn đề

Trên cơ sở là việc tìm cách khắc phục khó khăn cho học sinh khi làm cácdạng Toán này, tôi đã tìm tòi và sử dụng thành công cách đặt ẩn phụ để đưa bàitoán về dạng đơn giản, quen thuộc và xử lý được một cách nhanh chóng

Xét lại ví dụ trên theo phương pháp đặt ẩn phụ như sau:

Ví dụ: Cho hàm số f x , bảng biến thiên của hàm số   f x  như sau:

0;11

(theo giả thiết)

Phương trình t a vô nghiệm, các phương trình t b ;t c ;t d mỗi phươngtrình đều có hai nghiệm bội lẻ, sáu nghiệm này đều khác nhau và khác 1

2

Do đó hàm số yf 4x2 4x có 7 điểm cực trị

Trang 7

- Nhận xét: thông qua việc đặt ẩn phụ t 4x2 4x ta đã đưa bài toán về dạngđơn giản và sử dụng được trực tiếp BBT của hàm số đã cho, từ đó thấy được sốnghiệm bội lẻ một cách dễ dàng và đi đến kết luận nhanh chóng.

Sau đây là một số bài toán tương tự được sử dụng phương pháp đặt ẩn phụ

Hay yêu cầu bài toán tương đương với y t  0, t 0;1

x m

 

 đồng biến trên khoảng 1;2 

A m 0 hoặc m 1 B m 1 C m 1 D m 1

Lời giải Chọn C

Hay yêu cầu bài toán tương đương với y t  0, t 0;1

Trang 8

Ví dụ 3 Cho hàm đa thức bậc ba yf x  có hai điểm

cực trị 1;1 như hình vẽ bên Tổng tất cả các giá trị

nguyên của tham số m  5;5 sao cho hàm số

Đặt tf x   t 1;5 và hàm số tf x  đồng biến trên khoảng 1;1

Trang 9

Ví dụ 5 Cho hàm số f x xác định trên   , bảng biến thiên của hàm số f x như hình vẽ:

Số điểm cực đại của hàm số g x  f x 22x là

Lời giải Chọn A

Đặt t x 2 2x suy ra bảng biến thiên của hàm số t x 2 2x

Xét hàm số

 

11;0

0;11

Trang 10

Ví dụ 6 (Trích đề liên trường Nghệ An năm học 2022-2023)

Đặt tf x  , bảng biến thiên của hàm số tf x  :

Trang 11

Phương trình t a ; t c ;t 2 2; t 4 không có nghiệm bội lẻ thuộc khoảng

0;8 , phương trình  t d có hai nghiệm Tất cả hai nghiệm này đều nghiệm bội

lẻ khác nhau thuộc khoảng 0;8 và khác   4 Do đó hàm số

g x  f x   x

  có 3 điểm cực trị

Ví dụ 8 Cho hàm số yf x  liên tục trên  có đạo hàm f x  liên tục trên

 và có bảng xét dấu như hình vẽ bên

Hỏi hàm số g x  f x 2  4 x 3 có tất cà bao nhiêu điểm cực tiểu?

Lời giải Chọn B

Trang 12

Số giá trị nguyên của tham số m để hàm số g x  f x 3 3x2 1m có 10

điểm cực trị là

Lời giải Chọn A

Hàm số t x 3  3x2  1 không có đạo hàm tại x 1

Ta có bảng biến thiên của hàm số t x 3  3 x2  1

Dễ thấy hàm số đã cho luôn có bốn điểm cực trị x   1;0;1;2 Giờ chỉ cần tìm

m sao cho mỗi phương trình t m1;tm 2 có ba nghiệm phân biệt khác

1;0;1;2 Do đó yêu cầu của bài toán có ba trường hợp có thể thỏa mãn

Trang 13

2 2

Trang 14

Bảng biến thiên của hàm số t 3 2x x 2

Do m là số tự nhiên nên m0;1;2; ;2019 Vậy có 2019 số m thỏa mãn

Số nghiệm thuộc đoạn 0;2 của phương trình  3f sin 2x  4 0 là

Lời giải Chọn C

Đặt t sin 2x thì ta được phương trình

Trang 15

Từ bảng biến thiên ta có:

+) Với t a  1 hoặc t d 1 thì phương trình 3f sin 2x  4 0 vô nghiệm+) Với t b   1;0 thì phương trình 3f sin 2x  4 0 có 4 nghiệm

+) Với t c 0;1 thì phương trình 3f sin 2x  4 0 có 4 nghiệm

Vậy phương trình đã cho có tất cả 8 nghiệm

Phương trình f x 3  3x2 2 2 có bao nhiêu nghiệm thực phân biệt?

Lời giải Chọn B

Lại có:

22

Trang 16

Từ bảng biến thiên ta thấy phương trình t a có một nghiệm, phương trình

t b t c t d   mỗi phương trình có 3 nghiệm phân biệt khác nhau và khácnghiệm của phương trình t a

Do đó phương trình f x 3  3x2 2 2 có tất cả 7nghiệm thực phân biệt

1

12

m

m m

BÀI TẬP ĐỀ NGHỊ

Câu 15 Cho hàm số f x có bảng biến thiên như hình vẽ 

Trang 17

Tìm tất cả các giá trị nguyên của tham số m  100;100 để hàm số

Trang 18

Có tất cả bao nhiêu giá trị nguyên của tham số mđể hàm số

2.4 Hiệu quả của Sáng kiến kinh nghiệm

- Để biết được hiệu quả của phương pháp trên tôi tiến hành thực hiện bài kiểmtra với 2 đối tượng học sinh thuộc 2 lớp khác nhau nhưng mức độ học tập tươngđương (Lớp 12A3 và 12A5 của trường THPT Hậu Lộc 2) giữa một lớp (12A5)được nghiên cứu phương pháp với lớp (12A3) chưa được nghiên cứu

Tôi thu được những kết quả như sau:

BẢNG THỐNG KÊ KẾT QUẢ KHI SO SÁNH Ở 2 LỚP NHƯ SAU:

- Bài khảo sát chất lượng thi TN THPT lần 1 (đề của Sở)

Trang 19

(Nghiên cứu câu hàm số hợp trong đề thi và mức độ học sinh tiếp cận được)

Giải quyết được trên 70% bài toán 3 8

- Bài khảo sát chất lượng thi TN THPT lần 2 (đề cử Sở)

(Nghiên cứu câu hàm số hợp trong đề thi và mức độ học sinh tiếp cận được)

Nội dung Số HSLớp 12A3% Số HSLớp 12A5%

Giải quyết được trên 70% bài toán 3 10

Từ bảng số liệu lần 1, ta thấy số học sinh làm được bài toán ở lớp 12A5(được học phương pháp đặt ẩn phụ) nhiều hơn hẳn lớp 12B2 (lớp đối chứng,không được học chi tiết về phương pháp ẩn phụ), điều này thể hiện hiệu quả củanội dung áp dụng phương pháp đặt ẩn phụ đã nêu Vì là nội dung khó nên cả hailớp vẫn còn nhiều học sinh không tiếp cận được bài toán

Từ bảng số liệu lần 2, ta thấy số học sinh làm được bài toán ở lớp 12A3

và lớp 12A5 đã tăng lên sau một thời gian thực hành giải toán Tuy nhiên mức

độ tăng của lớp 12A5 nhiều hơn và có độ bền vững hơn lớp 12A3 Điều này thểhiện sự khắc sâu phương pháp cũng như kĩ năng thực hành của lớp 12A5 là tốthơn hẳn lớp 12A3

Tuy nhiên, cả bảng số liệu trên cũng cho ta thấy số lượng học sinh khôngtiếp cận được bài toán là khá nhiều Điều này là hợp lí, vì đây là vấn đề khó và

là câu phân loại điểm từ 9 đến 10 của đề thi nên không phải phù hợp cho mọihọc sinh Do đó, trong quá trình dạy học cũng cần có những giải pháp để họcsinh tiếp cận dần những thao tác thực hành giải toán cơ bản

Nói chung hiệu quả sau hai ần thi thể hiện lớp 12A5 có chất lượng và sựtiến bộ vượt hẳn so với lớp 12A3, đây là một minh chứng thực tiễn thuyết phục

để khẳng định ưu điểm khi dạy cho học sinh phương pháp đặt ẩn phụ trong việcgiải quyết các bài toán hàm số hợp

3 KẾT LUẬN, KIẾN NGHỊ

3.1 Kết luận.

Muốn thành công trong công tác giảng dạy trước hết đòi hỏi người giáoviên phải có tâm huyết với công việc, phải đam mê tìm tòi học hỏi, phải nắmvững các kiến thức cơ bản, phổ thông, tổng hợp các kinh nghiệm áp dụng vàobài giảng Phải thường xuyên trau dồi, học tập nâng cao trình độ chuyên môncủa bản thân, phải biết phát huy tính tích cực chủ động chiếm lĩnh tri thức của

Trang 20

học sinh Trong quá trình giảng dạy phải coi trọng việc hướng dẫn học sinh conđường tìm ra kiến thức mới, khơi dậy óc tò mò, tư duy sáng tạo của học sinh, tạohứng thú trong học tập, dẫn dắt học sinh từ chỗ chưa biết đến biết, từ dễ đến khó.

Thông việc tổng kết hiệu quả SKKN có thể khẳng định một điều: Việc triểnkhai các buổi học mở rộng mang lại hiệu quả rất nhiều Và điều này sẽ càng phùhợp hơn đối với chương trình SGK mới, nó có thể được thực hiện rất tốt cho cácchuyên đề tự chọn của học sinh Không những giúp học sinh trong việc địnhhướng giải toán với một nội dung cụ thể mà thông qua đó để học sinh thấy đượcrằng việc đặt ẩn phụ để giải quyết các bài toán hàm số hợp là rất tốt và có hiệuquả Từ đó thôi thúc học sinh tìm tòi sáng tạo để trang bị cho mình những quytrình và lượng kiến thức cần thiết

Nhìn chung vì phương pháp đưa ra là đơn giản và có thể áp dụng cho phầnnhiều cho các bài toán Do đó đa số các học sinh nắm vững được quy trình và

có định hướng rõ rệt trong quá trình giải toán Tuy nhiên đối với một số học sinhtrung bình và trung bình khá thì khả năng vận dụng vào giải toán còn đang lúngtúng, nhất là trong các bài toán cần sự linh hoạt lựa chọn ẩn phụ thích hợp haykhi gặp bế tắc trong giải toán học sinh thường không chuyển hướng được cáchsuy nghĩ để giải bài toán (thể hiện sức “ỳ” tư duy vẫn còn lớn) Vì vậy khi dạycho học sinh nội dung này, giáo viên cần tạo ra cho học sinh cách suy nghĩ linhhoạt và sáng tạo trong khi vận dụng quy trình Đó cũng chính là nhược điểm củacách giải toán theo phương pháp này, điều đó đòi hỏi người giáo viên cần phảikhéo léo truyền thụ phương pháp và cách giải toán linh hoạt đối với các bàitoán

3.2 Kiến nghị.

Qua sự thành công bước đầu của việc áp dụng nội dung này thiết nghĩ rằngchúng ta cần thiết phải có sự đổi mới trong cách dạy và học Không nên dạy họcsinh theo những quy tắc máy móc nhưng cũng cần chỉ ra cho học sinh nhữngquy trình mô phỏng đang còn mang tính chọn lựa để học sinh tự mình tư duy tìm

ra con đường giải toán

Sáng kiến kinh nghiệm này chỉ là một phần rất nhỏ nó là kinh nghiệm bảnthân thu được qua quá trình dạy một phạm vi học sinh nhỏ hẹp Vì vậy sự pháthiện những ưu nhược điểm chưa được đầy đủ và sâu sắc

Mong rằng qua báo cáo kinh nghiệm này các đồng nghiệp cho tôi thêmnhững ý kiến và phản hồi những ưu nhược điểm của cách dạy nội dung này.Cuối cùng tôi mong rằng nội dung này sẽ được các đồng nghiệp nghiên cứu và

áp dụng vào thực tiễn dạy học để rút ra những điều bổ ích

Bài viết chắc chắn còn nhiều thiếu sót rất mong được sự đóng góp ý kiến,phê bình, phản hồi của các đồng nghiệp

XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ

Thanh Hóa, ngày 11 tháng 05 năm 2024

Tôi xin cam đoan đây là SKKN của mình viết,không sao chép nội dung của người khác

Ngày đăng: 17/06/2024, 08:49

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w