1. Trang chủ
  2. » Giáo Dục - Đào Tạo

SKKN môn toán lớp 7 "Hướng dẫn hs lớp 7 giải toán về tỉ lệ thức"

22 3 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Hướng Dẫn Học Sinh Lớp 7 Giải Toán Về Tỉ Lệ Thức
Trường học Trường Trung Học Cơ Sở
Chuyên ngành Toán Học
Thể loại Sáng Kiến Kinh Nghiệm
Định dạng
Số trang 22
Dung lượng 546,37 KB

Nội dung

Toán học không chỉ là môn khoa học có mặt hầu hết trong mọi lĩnh vực của đời sống xã hội mà nó còn góp phần quan trọng trong phát triển chủ thể xã hội đó là con người. Vì vậy môn toán không thể thiếu được. Thực tiễn cho thấy trong quá trình Toán học, rất nhiều học sinh còn bộc lộ những yếu kém, hạn chế về năng lực tư duy sáng tạo. Nhìn các đối tượng Toán học một cách rời rạc, chưa thấy được bản chất và mối quan hệ giữa các yếu tố Toán học. Đặc biệt là không linh hoạt trong điều chỉnh hướng suy nghĩ khi gặp trở ngại, quen với kiểu suy nghĩ rập khuôn, áp dụng một cách máy móc những kinh nghiệm cũ vào những hoàn cảnh mới, điều kiện mới đã chứa đựng những yếu tố thay đổi, nên học sinh chưa có tính độc đáo khi đi tìm lời giải trong các bài toán. Do đó "Rèn luyện năng lực tư duy sáng tạo" chính là một yêu cầu cấp bách trong Toán học. Trong các nội dung ở chương trình Toán lớp 7 THCS thì "Tỉ lệ thức" là một phần rất quan trọng. Đặc thù của toán tỉ lệ thức thì khá đa dạng và phong phú, ẩn bên trong nó là sự khó khăn và thách thức rất lớn khi học sinh đối diện và tìm ra cách giải nó vì không có một phương pháp hay một quy tắc giải nào cụ thể. Đặc biệt như là chứng minh tỉ lệ thức khó và phức tạp ở trong các đề thi học sinh giỏi, thi lớp chọn. Chính vì thế, tuy "Tỉ lệ thức" là một phần nhỏ trong hệ thống kiến thức Toán THCS nhưng trong nó chứa đựng đầy đủ các yếu tố để tạo nên sức hấp dẫn, thú vị và kích thích năng lực tư duy sáng tạo cho các bạn học sinh. Nhận thức được tầm quan trọng của vấn đề nêu trên tôi chọn: “Hướng dẫn học sinh lớp 7 giải toán về tỉ lệ thức” làm đề tài sáng kiến kinh nghiệm.

Trang 1

Trong các nội dung ở chương trình Toán lớp 7 THCS thì "Tỉ lệ thức" là mộtphần rất quan trọng Đặc thù của toán tỉ lệ thức thì khá đa dạng và phong phú, ẩnbên trong nó là sự khó khăn và thách thức rất lớn khi học sinh đối diện và tìm racách giải nó vì không có một phương pháp hay một quy tắc giải nào cụ thể Đặc biệtnhư là chứng minh tỉ lệ thức khó và phức tạp ở trong các đề thi học sinh giỏi, thi lớpchọn Chính vì thế, tuy "Tỉ lệ thức" là một phần nhỏ trong hệ thống kiến thức ToánTHCS nhưng trong nó chứa đựng đầy đủ các yếu tố để tạo nên sức hấp dẫn, thú vị

và kích thích năng lực tư duy sáng tạo cho các bạn học sinh

Nhận thức được tầm quan trọng của vấn đề nêu trên tôi chọn: “Hướng dẫn học sinh lớp 7 giải toán về tỉ lệ thức” làm đề tài sáng kiến kinh nghiệm.

1.2 Lý do chủ quan:

Trong quá trình giảng dạy bộ môn toán tôi thấy phần kiến thức về tỉ lệ thức vàdãy tỉ số bằng nhau là hết sức cơ bản trong chương trình Đại số lớp 7 Từ một tỉ lệthức ta có thể chuyển thành một đẳng thức giữa 2 tích, trong một tỉ lệ thức nếu biếtđược 3 số hạng ta có thể tính được số hạng thứ tư Trong chương II – Đại số 7, khihọc về đại lượng tỉ lệ thuận, tỉ lệ nghịch ta thấy tỉ lệ thức là một phương tiện quantrọng giúp ta giải toán Trong phân môn Hình học, để học được định lý Talet, tamgiác đồng dạng (lớp 8) thì không thể thiếu kiến thức về tỉ lệ thức Mặt khác khi học

tỉ lệ thức và tính chất của dãy tỉ số bằng nhau còn rèn tư duy cho học sinh rất tốtgiúp các em có khả năng khai thác bài toán, lập ra bài toán mới

Tôi là một giáo viên được phân công giảng dạy môn toán nhiều năm liền và khidạy đến phần giải toán về tỉ lệ thức, học sinh vẫn chưa hứng thú và chưa có phươngpháp đầy đủ, còn mắc nhiều lỗi sai trong lời giải Tôi muốn đưa ra một số phương

pháp giúp học sinh không còn sai sót đó nữa nên tôi đã nghiên cứu đề tài: “Hướng dẫn học sinh lớp 7 giải toán về tỉ lệ thức”

2 Cơ sở lý luận và thực tiễn:

2.1 Cơ sở lý luận:

Dạy Toán, học Toán là một quá trình tư duy liên tục, cho nên việc nghiên cứutìm tòi, đúc kết kinh nghiệm của người dạy Toán và học Toán là không thể thiếuđược Trong đó, việc truyền tải kinh nghiệm để dạy tốt là điều trăn trở của nhiều

Trang 2

giáo viên Việc truyền thụ kiến thức sẽ trở nên hấp dẫn học sinh hơn nếu giáo viênhiểu ý đồ của sách giáo khoa, giúp học sinh nắm kiến thức một cách hệ thống, dẫndắt học sinh đi từ điều đã biết đến điều chưa biết

Bên cạnh đó, việc khai thác, mở rộng kiến thức cũng giúp học sinh say mê họcToán, phát huy khả năng tư duy sáng tạo của mình

Chính suy nghĩ trên, bản thân tôi đã tìm tòi, sưu tập và hệ thống kiến thức, giúphọc sinh có những kinh nghiệm giải toán về tỉ lệ thức và tính chất của dãy tỉ số bằngnhau một cách nhẹ nhàng, đơn giản

Trên bục giảng, ở mỗi tiết dạy, để tạo hứng thú cho học sinh, người giáo viênphải luôn tạo ra tình huống có vấn đề để học sinh so sánh, chọn lọc Từ đó rút ranhững kiến thức cần nhớ

2.2 Cơ sở thực tiễn:

Là một giáo viên dược phân công giảng dạy môn Toán khối lớp 7, trình độ củahọc sinh không đồng đều một số em tiếp thu trung bình, còn nhiều học sinh khảnăng tiếp thu rất chậm

Vì vậy trong quá trình giảng dạy nhất là luyện tập các bài tập trong sách giáokhoa, giáo viên cần phải khai thác, xây dựng được các dạng bài tập hoặc hệ thốngcác kiến thức để phụ đạo cho học sinh yếu, kém

Việc giải bài toán về tỉ lệ thức trong đại số 7 là một dạng toán hay, với mongmuốn cung cấp cho các em một số phương pháp giải, giúp các em làm bài tập dạngnày một cách có hệ thống nhằm tích cực hoá hoạt động học tập, phát triển tư duy

3 Mục đích đề tài:

Nghiên cứu những vấn đề cơ bản của năng lực tư duy sáng tạo và biểu hiện tưduy sáng tạo của học sinh lớp 7 THCS để từ đó đề xuất những phương pháp cầnthiết nhằm bồi dưỡng và phát triển năng lực tư duy sáng tạo cho học sinh THCS qua

dạy học giải toán tỉ lệ thức; góp phần nâng cao chất lượng đào tạo của nhà trường

4 Lịch sử đề tài:

Đề tài này thực ra đã được nêu nhiều trong các sách về phương pháp giảng dạyToán ở bậc Trung Học Cơ Sở, đã được nhiều giáo viên quan tâm và viết thành sángkiến kinh nghiệm, những sáng kiến kinh nghiệm này rút ra từ thực tiễn giảng dạy

Do đặc điểm riêng của từng vùng, từng địa phương, học sinh có những hoàn cảnhkhác nhau, sức học và khả năng tiếp thu của các em cũng khác nhau Là một giáoviên trực tiếp giảng dạy Toán 7 vào năm học 2022 – 2023, tôi lựa chọn đề tài

“Hướng dẫn học sinh lớp 7 giải toán về tì lệ thức”

5 Phương pháp nghiên cứu:

Nghiên cứu qua tài liệu: SGK, SGV, SBT Toán 7 cánh diều, tài liệu liên quan.Nghiên cứu qua thực tế giải bài tập của học sinh

Nghiên cứu qua theo dõi các bài kiểm tra

Nghiên cứu qua thực tế giảng dạy, học tập của từng đối tượng học sinh

Trang 3

1 Thực trạng đề tài

1.1 Kết quả khảo sát:

Qua thực tế nhiều năm giảng dạy bộ môn toán 7, kết hợp với dự giờ thăm lớpcủa các giáo viên trong trường, bản thân tôi nhận thấy các em học sinh chưa có kỹnăng thành thạo khi giải các bài toán về tỉ lệ thức, vì lý do đó để giải được các dạngbài tập này cần phải có kỹ năng

Trong chương trình đại số 7 thì phần tỉ lệ thức là một mảng kiến thức quantrọng, phần kiến thức này có thể vận dụng để giải được nhiều dạng toán như tìm x,toán thực tế, độ dài đoạn thẳng, tính số đo góc Nếu như giáo viên giúp học sinhhiểu sâu và mở rộng kiến thức về tỉ lệ thức và tính chất dãy tỉ số bằng nhau thì họcsinh có thể vận dụng giải được rất nhiều dạng toán, từ đó các em có nhiều hứng thú

và say mê tìm hiểu toán học

Kết quả bài kiểm tra cuối kỳ I, thực hiện vào giai đoạn tuần 18 năm học 2021 –

2022, khảo sát đối với 158 học sinh khối lớp 7 trường THCS Vĩnh Công – huyệnChâu Thành – tỉnh Long An như sau:

Bài

kiểm tra

Thời điểm khảo sát (theo PPCT)

Tổng số HS

TL (%) SL

TL (%)

Kiểm tra

cuối kỳ I

Tuần 18 Năm học

hệ với các nội dung kiến thức khác

1.3 Nguyên nhân những hạn chế:

Qua thực tế giảng dạy môn Toán 7, đặc biệt khi hướng dẫn học sinh giải cácdạng bài tập về tỉ lệ thức, tôi nhận thấy ở học sinh còn tồn tại một số hạn chế sau:

- Chưa vận dụng hợp lí kiến thức đã học vào các dạng bài tập cụ thể

- Thường tỏ ra lúng túng, ngại suy nghĩ khi gặp các dạng bài tập mới, đòi hỏikhả năng tư duy, lập luận logic, tính sáng tạo, tổng hợp kiến thức

- Chưa hiểu rõ tính chất, chưa nắm được một số kiến thức cơ bản dẫn đến việcnhầm lẫn trong quá trình biến đổi, thiếu sót khi kết luận

Trang 4

- Nhiều em chưa xác định được các bài toán cùng dạng, chưa tổng quát đượcbài toán để tìm ra cách giải chung cho từng dạng toán.

- Khả năng quan sát bài toán chưa tốt, chưa linh hoạt vận dụng kiến thức,hướng giải quyết bài toán còn hạn chế

2 Nội dung cần giải quyết

2.1 Tổ chức khảo sát chất lượng đầu năm

2.2 Hướng dẫn học sinh giải bài toán tỉ lệ thức

2.3 Phân loại dạng toán giải bài toán tỉ lệ thức

3 Biện pháp giải quyết

3.1 Tổ chức khảo sát chất lượng đầu năm

Ngay từ đầu năm học sau khi nhận lớp tôi đã tiến hành khảo sát chất lượng đểphân loại đối tượng học sinh Qua kết quả khảo sát giúp giáo viên nhận biết được khảnăng nhận thức của học sinh

3.2 Hướng dẫn học sinh giải bài toán tỉ lệ thức

* Để giải bài toán tỉ lệ thức phải dựa vào quy tắc chung gồm các bước như sau:Bước 1: Đưa về tỉ lệ thức

a b trong đó x, y là ẩn ; a, b là hằng sốBước 2: Áp dụng tính chất dãy tỉ số bằng nhau

Bước 3: suy ra giá trị x, y

3.3 Phân loại dạng toán giải bài toán tỉ lệ thức

3.3.1 Dạng I: Tìm các giá trị của biến trong các tỉ lệ thức.

* Các tính chất của tỉ lệ thức và dãy tỉ số bằng nhau:

(Giả thiết các tỉ số đều có nghĩa)

Ví dụ 1: Tìm x trong mỗi tỉ lệ thức sau:

Trang 5

−2 3Vây từ các tỉ số 3,5 : (-5,25) và (-8) : 12 lập được tỉ lệ thức

3 nên từ các tỉ số 0,8 : (-0,6) và 1,2 : (-1,8) không lập được tỉ lệ thức

Ví dụ 3: Tìm x trong mỗi tỉ lệ thức sau:

b/ Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

Ví dụ 5: Tìm x, y, z biết:

8 12 15 và x y z 10  

Trang 6

y 12.2 24 

z 15.2 30 

Vậy: x 16 ; y 24 ; z 30

Nhận xét: Ơ ví dụ 1 và ví dụ 3 ta áp dụng ngay được tính chất dãy tỉ số bằng

nhau Trong thực tế nhiều bài tập phải qua quá trình biến đổi mới có thể đưa được vềdạng để áp dụng được tính chất dãy tỉ số bằng nhau Sau đây là một số dạng và cáchbiến đổi

Ví dụ 6: Tìm x, y, z biết

2 3 4 và 2x 3y z 34  

Phân tích đề bài: Để áp dụng được tính chất dãy tỉ số bằng nhau, ta phải biến

đổi dãy tỉ số sao cho hệ số của x, y, z ở các tử của dãy tỉ số bằng hệ số của x, y, ztrong đẳng thức, bằng cách áp dụng tính chất cơ bản của phân số Cụ thể nhân cả tử

Trang 7

Phân tích đề bài: Để áp dụng được tính chất dãy tỉ số bằng nhau, ta phải biến

đổi dãy tỉ số bằng nhau làm xuất hiện tích x.y bằng cách lập luận để chứng tỏ x 0rồi nhân hai vế của hai tỉ số

Nhận xét: Ở bài này ta còn có thể dùng phương pháp đặt ẩn phụ.

Trang 8

Phân tích đề bài: Để áp dụng được tính chất dãy tỉ số bằng nhau, ta phải biến

đổi dãy tỉ số bằng nhau làm xuất hiện x ; y ;z2 2 2 bằng cách bình phương các tỉ số sau

Phân tích đề bài: Trong hình chữ nhật có hai kích thước là chiều dài và chiều

rộng (còn được gọi là hai cạnh của hình chữ nhật) chiều rộng thì ngắn hơn chiều dài.Hai cạnh của chúng tỉ lệ với 3; 4 vậy cạnh ngắn tỉ lệ với 3 còn cạnh dài tỉ lệ với 4 Nếu gọi hai cạnh của hình chữ nhật là a và b 0 a b   Vì hai cạnh hình chữnhật ti lệ với 3 và 4 nên ta có:

3 4 Chu vi hình chữ nhật là 2 a b   nên ta có: 2 a b   28 a b 14 

Như vậy ta đã đưa bài toán về dạng bài áp dụng tính chất dãy tỉ số bằng nhau

Trang 9

Vậy độ dài hai cạnh hình chữ nhật là 6cm và 8cm.

Ví dụ 2: Ba đội công nhân I, II, III phải vận chuyển tổng cộng 1530 kg hàng từ

kho theo thứ tự đến ba địa điểm cách kho 1500m, 2000m, 3000m Hãy phân chia sốhàng cho mỗi đội sao cho khối lượng hàng tỉ lệ nghịch với khoảng cách cần chuyển

Phân tích đề bài: Vì phân chia số hàng cho mỗi đội sao cho khối lượng hàng tỉ

lệ nghịch với khoảng cách cần chuyển nên ta có: 1500a 2000b 3000c 

Tổng số hàng cần chuyển đến ba kho là 1530 nên ta có: a b c 1530  

Giải:

Gọi số lượng hàng chuyển tới ba kho lần lượt là a, b, c a,b,c 0 

Theo bài ra ta có: 1500a 2000b 3000c  và a b c 1530  

b 3.170 510  ;

c 2.170 340 

Vậy số hàng cần chuyển tới ba kho A, B, C lần lượt là: 680 tạ, 510 tạ, 340 tạ

Ví dụ 3: Độ dài ba cạnh của một tam giác tỉ lệ với 2: 3: 4 Hỏi ba chiều cao

tương ứng ba cạnh đó tỉ lệ với số nào

Phân tích đề bài: Nếu gọi ba chiều cao tương ứng với ba cạnh đó là: h ,h ,h1 2 2

Vì cạnh và chiều cao tương ứng của một tam giác là hai đại lượng tỉ lệnghịch nên ta có

Vậy ba chiều cao tương ứng với ba cạnh đó của tam giác tỉ lệ với 6 : 4 : 3

Trang 10

Ví dụ 4: Một lớp học có 35 em, sau khảo sát chất lượng số học sinh được xếp

thành ba loại: Giỏi, khá và trung bình Số học sinh giỏi và khá tỉ lệ với 2 và 3, số họcsinh khá và trung bình tỉ lệ với 4 và 5 Tính số học sinh mỗi loại

Phân tích đề bài: Nếu gọi số học sinh giỏi, khá, trung bình của lớp đó lần lượt

Ví dụ 5: Độ dài các cạnh góc vuông của một tam giac vuông tỉ lệ với 8: 15,

cạnh huyền dài 51cm Tính độ dài hai cạnh góc vuông

Phân tích đề bài:

Gọi độ dài hai cạnh góc vuông của tam giác vuông đó lần lượt là: a, b

Vì hai cạnh tỉ lệ với 8: 15 nên ta có:

Trang 11

Vậy độ dài hai cạnh góc vuông của tam giác vuông đó là: 24cm, 45cm.

Ví dụ 6: Hai xe ô tô cùng khởi hành từ hai địa điểm A và B Xe thứ nhất đi

quãng đường AB hết 4 giờ 15 phút Xe thứ hai đi quãng đường BA hết 3 giờ 45phút Đến chỗ gặp nhau, xe thứ hai đi được quãng đường dài hơn quãng đường xe

thứ nhất đã đi là 20 km Tính quãng đường AB

Trên cùng một quãng đường thì vận tốc và thời gian là hai đại lượng tỉ lệ nghịch

Từ tỉ số thời gian ta tìm được tỉ số vận tôc của hai xe là:

Với cùng thời gian (Từ lúc xuất phát đến chỗ gặp nhau) vận tốc và quãng đường

là hai đại lượng tỉ lệ thuận

Quãng đường AB là: 150 170 320  (km)

Ví dụ 7: Ba kho A, B, C chứa một số gạo Người ta nhập vào kho A thêm

1

7 số gạo

Trang 12

của kho đó, xuất ở kho B đi

1

9 số gạo của kho đó, xuất ở kho C đi

2

7 số gạo của kho

đó Khi đó số gạo của ba kho bằng nhau Tính số gạo ở mỗi kho lúc đầu, biết rằngkho B chứa nhiều hơn kho A là 20 tạ gạo

Phân tích đề bài: Gọi số gạo ở ba kho lúc đầu lần lượt là a, b, c

Số gạo ở kho A sau khi thêm

Giải:

Gọi số gạo ở ba kho lúc đầu lần lượt là a, b, c a,b,c 0  

Số gạo ở kho A sau khi thêm là:

Vậy: số gạo ở mỗi kho lúc đầu lần lượt là 70 kg, 90 kg và 112 kg

Ví dụ 8: Ba xí nghiệp cùng xây dựng chung một cái cầu hết 38 triệu đồng Xí

nghiệp I có 40 xe ở cách cầu 1,5km, xí nghiệp II có 20 xe ở cách cầu 3km, xí nghiệpIII có 30 xe ở cách cầu 1km Hỏi mỗi xí nghiệp phải trả cho việc xây dựng cầu baonhiêu tiền, biết rằng số tiền phải trả tỉ lệ thuận với số xe và tỉ lệ nghịch với khoảngcách từ xí nghiệp đến cầu

Phân tích đề bài: Gọi số tiền phải góp của ba xí nghiệp lần lượt là: a, b, c

Trang 13

Vì số tiền phải trả tỉ lệ thuận với số xe và tỉ lệ nghịch với khoảng cách từ xí

nghiệp đến cầu nên ta có:

Ba xí nghiệp phải trả cho việc xây dựng cầu lần lượt là: 16 triệu đồng, 4 triệu đồng bà 18 triệu đồng

Ví dụ 9: Tổng ba phân số tối giản bằng

25 5

63 các tử của chúng tỉ lệ nghịch với 20: 4:

5 Các mẫu của chúng tỉ lệ thuận với 1: 3 : 7 Tìm ba phân số đó

Phân tích đề bài: Gọi ba phân số cần tìm lần lượt là: a, b, c.

Vì tử của ba phân số tỉ lệ nghịch với 20: 4: 5 và mẫu của chúng tỉ lệ thuận với

1: 3 : 7 nên ba phân số đó tỉ lệ với

Trang 14

Phân tích đề bài: Quan sát tỉ lệ thức phải chứng minh, dùng phương pháp phân tích

suy luân ngược để tìm ra hướng chứng minh Khi chứng minh ta chứng minh theochiều xuôi Khi chứng minh chú y điều kiện có nghĩa của tỉ lệ thức

Trang 17

Ví dụ 8: Cho

c b với a,b,c 0 Chứng minh rằng:

3a 5b 3c 5d 3a 5b 3c 5d

  (đpcm).

Trang 18

Ví dụ 10: Cho tỉ lệ thức

b d với a,b,c,d 0 và Chứng minh:

7a 5ac 7a 5bd 7b 5ac 7b 5bd

4 Kết quả chuyễn biến của đối tượng

Với kết quả đạt được ở bài kiểm tra cuối kỳ I trong năm học 2022 – 2023, bướcđầu khẳng định rằng với những biện pháp mà tôi đã áp dụng trong các giờ Toán đại

số 7 dạy hướng dẫn học sinh giải các bài toán về tỉ lệ thức đã giúp cho các em họcsinh nâng cao chất lượng học tập môn Toán so với cùng kỳ năm học trước Các emhọc sinh đã có ý thức giải toán tỉ lệ thức kỹ hơn, cẩn thận hơn, trình bày lời giải bàitoán khoa học, chặt chẽ hơn Cụ thể trong bài kiểm tra cuối kỳ I, kết quả làm bài của

120 học sinh khối lớp 7 trong năm học 2022 – 2023 trường THCS đượcnâng lên rõ rệt:

Bài

kiểm tra

Thời điểm khảo sát (theo PPCT)

Tổng số HS

TL (%)

Kiểm tra

cuối kỳ I

Tuần 18 Năm học

158

18 11,4% 26 16,5% 67 42,4% 47 29,7%

Trang 19

2021 - 2022 Kiểm tra

cuối kỳ I

Tuần 18 Năm học

Sau quá trình nghiên cứu thực trạng, áp dụng rèn các kỹ năng giải bài toán tỉ lệ

thức cho học sinh lớp 7 bản thân tôi tự đúc rút bài học kinh nghiệm như sau:

Mỗi giáo viên dạy môn toán THCS cần xác định việc nâng cao chất lượng dạyhọc là một nhiệm vụ quan trọng đòi hỏi phải có sự quan tâm, đầu tư về trí tuệ và sựhợp lực của giáo viên và học sinh

Làm tốt công tác xã hội hoá giáo dục, thu hút sự quan tâm của nhà trường, phụhuynh học sinh cùng tham gia trong việc nâng cao chất lượng dạy học

Giáo viên cần sáng tạo trong công tác vận dụng linh hoạt phương pháp và hìnhthức dạy học tích cực trong quá trình dạy học, tìm tòi học hỏi để nâng cao nghiệp

2 Đối tượng và phạm vi áp dụng:

a Đối tượng: Học sinh khối lớp 7 trường THCS năm học 2022 – 2023

b Phạm vi áp dụng: Tìm ra một số giải pháp hướng dẫn học sinh lớp 7 học tốt

Ngày đăng: 20/05/2024, 11:33

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w