Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
381,5 KB
Nội dung
http://NgocHung.name.vn các phơng pháp giải bài toánchiahết Phần I: Tóm tắt lý thuyết I. Định nghĩa phép chia Cho 2 số nguyên a và b trong đó b 0 ta luôn tìm đợc hai số nguyên q và r duy nhất sao cho: a = bq + r Với 0 r |b| Trong đó: a là số bị chia, b là số chia, q là thơng, r là số d. Khi a chia cho b có thể xẩy ra | b| số d r {0; 1; 2; ; | b|} Đặc biệt: r = 0 thì a = bq, khi đó ta nói a chiahết cho b hay b chiahết a. Ký hiệu: ab hay b\ a Vậy: a b Có số nguyên q sao cho a = bq II. Các tính chất 1. Với a 0 a a 2. Nếu a b và b c a c 3. Với a 0 0 a 4. Nếu a, b > 0 và a b ; b a a = b 5. Nếu a b và c bất kỳ ac b 6. Nếu a b (a) (b) 7. Với a a (1) 8. Nếu a b và c b a c b 9. Nếu a b và cb a c b 10. Nếu a + b c và a c b c 11. Nếu a b và n > 0 a n b n 12. Nếu ac b và (a, b) =1 c b 13. Nếu a b, c b và m, n bất kỳ am + cn b 14. Nếu a b và c d ac bd 15. Tích n số nguyên liên tiếp chiahết cho n! III. Một số dấu hiệu chiahết Gọi N = n n 1 1 0 a a a a 1. Dấu hiệu chiahết cho 2: Một số chiahết cho 2 chữ số tận cùng của nó là chữ số chẵn. N 2 a 0 2 a 0 {0; 2; 4; 6; 8} 2. Dấu hiệu chiahết cho 5: Một số chiahết cho 5 chữ số tận cùng của nó là 0 hoặc 5. N 5 a 0 5 a 0 {0; 5} 3. Dấu hiệu chiahết cho 4 và 25: Một số chiahết cho 4 (hoặc 25) số tạo bởi 2 chữ số tận cùng của nó chiahết cho 4 hoặc 25. N 4 (hoặc 25) 01 aa 4 (hoặc 25) 4. Dấu hiệu chiahết cho 8 và 125: Một số chiahết cho 8 (hoặc 125) số tạo bởi 3 chữ số tận cùng của nó chiahết cho 8 hoặc 125. N 8 (hoặc 125) 01 aaa 2 8 (hoặc 125) 5. Dấu hiệu chiahết cho 3 và 9: Một số chiahết cho 3 (hoặc 9) tổng các chữ số của nó chiahết cho 3 (hoặc 9). N 3 (hoặc 9) a 0 +a 1 + +a n 3 (hoặc 9) * Chú ý: một số chiahết cho 3 (hoặc 9) d bao nhiêu thì tổng các chữ số của nó chia cho 3 (hoặc 9) cũng d bấy nhiêu. 6. Dấu hiệu chiahết cho 11: Một số chiahết cho 11 hiệu giữa tổng các chữ số ở hàng lẻ và tổng các chữ số ở hàng chẵn tính từ trái sang phải chiahết cho http://NgocHung.name.vn N 11 [(a 0 +a 1 + ) - (a 1 +a 3 + )] 11 7. Một số dấu hiệu khác: N 101 [( 01 aa + 45 aa + ) - ( 23 aa + 67 aa + )] 101 N 7 (hoặc 13) [( 01 aaa 2 + 67 aaa 8 + ) - [( 34 aaa 5 + 910 aaa 11 + ) 11 (hoặc 13) N 37 ( 01 aaa 2 + 34 aaa 5 + ) 37 N 19 ( a 0 +2a n-1 +2 2 a n-2 + + 2 n a 0 ) 19 IV. Đồng d thức a. Định nghĩa: Cho m là số nguyên dơng. Nếu hai số nguyên a và b cho cùng số d khi chia cho m thì ta nói a đồng d với b theo modun m. Ký hiệu: a b (modun) Vậy: a b (modun) a - b m b. Các tính chất 1. Với a a a (modun) 2. Nếu a b (modun) b a (modun) 3. Nếu a b (modun), b c (modun) a c (modun) 4. Nếu a b (modun) và c d (modun) a+c b+d (modun) 5. Nếu a b (modun) và c d (modun) ac bd (modun) 6. Nếu a b (modun), d Uc (a, b) và (d, m) =1 d b d a (modun) 7. Nếu a b (modun), d > 0 và d Uc (a, b, m) d b d a (modun d m ) V. Một số định lý 1. Định lý Euler Nếu m là 1 số nguyên dơng (m) là số các số nguyên dơng nhỏ hơn m và nguyên tố cùng nhau với m, (a, m) = 1 Thì a (m) 1 (modun) Công thức tính (m) Phân tích m ra thừa số nguyên tố m = p 1 1 p 2 2 p k k với p i p; i N * Thì (m) = m(1 - `1 1 p )(1 - 2 1 p ) (1 - k p 1 ) 2. Định lý Fermat Nếu t là số nguyên tố và a không chiahết cho p thì a p-1 1 (modp) 3. Định lý Wilson Nếu p là số nguyên tố thì ( P - 1)! + 1 0 (modp) phần II: các phơng pháp giải bài toánchiahết 1. Phơng pháp 1: Sử dụng dấu hiệu chiahết Ví dụ 1: Tìm các chữ số a, b sao cho a56b 45 Giải: Ta thấy 45 = 5.9 mà (5 ; 9) = 1 để a56b 45 a56b 5 và 9 Xét a56b 5 b {0 ; 5} Nếu b = 0 ta có số a56b 9 a + 5 + 6 + 0 9 a + 11 9 a = 7 Nếu b = 5 ta có số a56b 9 a + 5 + 6 + 0 9 a + 16 9 a = 2 Vậy: a = 7 và b = 0 ta có số 7560 a = 2 và b = 5 ta có số 2560 http://NgocHung.name.vn Ví dụ 2: Biết tổng các chữ số của 1 số là không đổi khi nhân số đó với 5. CMR số đó chiahết cho 9. Giải: Gọi số đã cho là a Ta có: a và 5a khi chia cho 9 cùng có 1 số d 5a - a 9 4a 9 mà (4 ; 9) = 1 a 9 (Đpcm) Ví dụ 3: CMR số 1 số 81 111 111 81 Giải: Ta thấy: 111111111 9 Có 1 số 81 111 111 = 111111111(10 72 + 10 63 + + 10 9 + 1) Mà tổng 10 72 + 10 63 + + 10 9 + 1 có tổng các chữ số bằng 9 9 10 72 + 10 63 + + 10 9 + 1 9 Vậy: 1 số 81 111 111 81 (Đpcm) Bài tập tơng tự Bài 1: Tìm các chữ số x, y sao cho a. 34x5y 4 và 9 b. 2x78 17 Bài 2: Cho số N = dcba CMR a. N 4 (a + 2b) 4 b. N 16 (a + 2b + 4c + 8d) 16 với b chẵn c. N 29 (d + 2c + 9b + 27a) 29 Bài 3: Tìm tất cả các số có 2 chữ số sao cho mỗi số gấp 2 lần tích các chữ số của số đó. Bài 4: Viết liên tiếp tất cả các số có 2 chữ số từ 19 đến 80 ta đợc số A = 192021 7980. Hỏi số A có chiahết cho 1980 không ? Vì sao? Bài 5: Tổng của 46 số tự nhiên liên tiếp có chiahết cho 46 không? Vì sao? Bài 6: Chứng tỏ rằng số 1 số 100 11 11 2 số 100 22 22 là tích của 2 số tự nhiên liên tiếp. Hớng dẫn - Đáp số Bài 1: a. x = và y = 2 x = và y = 6 b. 2x78 = 17 (122 + 6x) + 2(2-x)17 x = 2 Bài 2: a. N4 ab 4 10b + a4 8b + (2b + a) 4 a + 2b4 b. N16 1000d + 100c + 10b + a16 (992d + 96c + 8b) + (8d + 4c + 2b + a) 16 a + 2b + 4c + 8d16 với b chẵn c. Có 100(d + 3c + 9b + 27a) - dbca 29 Mà (1000, 29) =1 dbca 29 (d + 3c + 9b + 27a) 29 Bài 3: Gọi ab là số có 2 chữ số Theo bài ra ta có: ab = 10a + b = 2ab (1) ab 2 b {0; 2; 4; 6; 8} thay vào (1) a = 3; b = 6 Bài 4: Có 1980 = 2 2 .3 2 .5.11 Vì 2 chữ số tận cùng của a là 80 4 và 5 A 4 và 5 Tổng các số hàng lẻ 1+(2+3+ +7).10+8 = 279 Tổng các số hàng chẵn 9+(0+1+ +9).6+0 = 279 Có 279 + 279 = 558 9 A 9 279 - 279 = 0 11 A 11 Bài 5: Tổng 2 số tự nhiên liên tiếp là 1 số lẻ nên không chiahết cho 2. http://NgocHung.name.vn Có 46 số tự nhiên liên tiếp có 23 cặp số mỗi cặp có tổng là 1 số lẻ tổng 23 cặp không chiahết cho 2. Vậy tổng của 46 số tự nhiên liên tiếp không chiahết cho 46. Bài 6: Có 1 số 100 11 11 2 số 100 22 22 = 1 số 100 11 11 0 số 99 02 100 Mà 0 số 99 02 100 = 3. 3 số 99 34 33 1 số 100 11 11 2 số 100 22 22 = 3 số100 33 33 3 số 99 34 33 (Đpcm) 2. Phơng pháp 2: Sử dụng tính chất chiahết * Chú ý: Trong n số nguyên liên tiếp có 1 và chỉ 1 số chiahết cho n. CMR: Gọi n là số nguyên liên tiếp m + 1; m + 2; m + n với m Z, n N * Lấy n số nguyên liên tiếp trên chia cho n thì ta đợc tập hợp số d là: {0; 1; 2; n - 1} * Nếu tồn tại 1 số d là 0: giả sử m + i = nq i ; i = n1, m + i n * Nếu không tồn tại số d là 0 không có số nguyên nào trong dãy chiahết cho n phải có ít nhất 2 số d trùng nhau. Giả sử: +=+ +=+ r qjn j m n j i;1 r nqi i m i - j = n(q i - q j ) n i - j n mà i - j< n i - j = 0 i = j m + i = m + j Vậy trong n số đó có 1 số và chỉ 1 số đó chiahết cho n Ví dụ 1: CMR: a. Tích của 2 số nguyên liên tiếp chiahết cho 2. b. Tích của 3 số nguyên liên tiếp chiahết cho 6. Giải: a. Trong 2 số nguyên liên tiếp bao giờ cũng có 1 số chẵn Số chẵn đó chiahết cho 2. Vậy tích của 2 số nguyên liên tiếp luôn chiahết cho 2. Tích 2 số nguyên liên tiếp luôn chiahết cho 2 nên tích của 3 số nguyên liên tiếp luôn chiahết cho 2 b. Trong 3 sô nguyên liên tiếp bao giơ cũng có 1 số chiahết cho 3. Tích 3 số đó chiahết cho 3 mà (1; 3) = 1. Vậy tích của 3 số nguyên liên tiếp luôn chiahết cho 6. Ví dụ 2: CMR: Tổng lập phơng của 3 số nguyên liên tiếp luôn chiahết cho 9. Giải: Gọi 3 số nguyên liên tiếp lần lợt là: n - 1 , n , n+1 Ta có: A = (n - 1) 3 + n 3 + (n + 1) 3 = 3n 3 - 3n + 18n + 9n 2 + 9 = 3(n - 1)n (n+1) + 9(n 2 + 1) + 18n Ta thấy (n - 1)n (n + 1) 3 (CM Ví dụ 1) 3(n - 1)n (n + 1) 9 mà + 918 9)1(9 2 n n A 9 (ĐPCM) Ví dụ 3: CMR: n 4 - 4n 3 - 4n 2 +16n 384 với n chẵn, n4 Giải: Vì n chẵn, n4 ta đặt n = 2k, k2 Ta có n 4 - 4n 3 - 4n 2 + 16n = 16k 4 - 32k 3 - 16k 2 + 32k = 16k(k 3 - 2k 2 - k + 2) = 16k(k - 2) (k - 1)(k + 1) Với k 2 nên k - 2, k - 1, k + 1, k là 4 số tự nhiên liên tiếp nên trong 4 số đó có 1 số chiahết cho 2 và 1 số chiahết cho 4. (k - 2)(k - 1)(k + 1)k 8 http://NgocHung.name.vn Mà (k - 2) (k - 1)k 3 ; (3,8)=1 (k - 2) (k - 1) (k + 1)k 24 16(k - 2) (k - 1) (k + 1)k (16,24) Vậy n 4 - 4n 3 - 4n 2 +16n 384 với n chẵn, n 4 Bài tập tơng tự Bài 1: CMR: a. n(n + 1) (2n + 1) 6 b. n 5 - 5n 3 + 4n 120 Với n N Bài 2: CMR: n 4 + 6n 3 + 11n 2 + 6n 24 Với n Z Bài 3: CMR: Với n lẻ thì a. n 2 + 4n + 3 8 b. n 3 + 3n 2 - n - 3 48 c. n 12 - n 8 - n 4 + 1 512 Bài 4: Với p là số nguyên tố p > 3 CMR : p 2 - 1 24 Bài 5: CMR: Trong 1900 số tự nhiên liên tiếp có 1 số có tổng các chữ số chiahết cho 27. Hớng dẫn - Đáp số Bài 1: a. n(n + 1)(2n + 1) = n(n + 1) [(n + 1) + (n + 2)] = n(n + 1) (n - 1) + n(n + 1) (n + 2) 6 b. n 5 - 5n 3 + 4n = (n 4 - 5n 2 + 4)n = n(n 2 - 1) (n 2 - 4) = n(n + 1) (n - 1) (n + 2) (n - 2) 120 Bài 2: n 4 + 6n 3 + 6n + 11n 2 = n(n 3 + 6n 2 + 6 + 11n) = n(n + 1) (n + 2) (n + 3) 24 Bài 3: a. n 2 + 4n + 3 = (n + 1) (n + 3) 8 b. n 3 + 3n 2 - n - 3 = n 2 (n + 3) - (n + 3) = (n 2 - 1) (n + 3) = (n + 1) (n - 1) (n + 3) = (2k + 4) (2k + 2) (2k với n = 2k + 1, k N) = 8k(k + 1) (k +2) 48 c. n 12 - n 8 - n 4 + 1 = n 8 (n 4 - 1) - (n 4 - 1) = (n 4 - 1) (n 8 - 1) = (n 4 - 1) 2 (n 4 + 1) = (n 2 - 1) 2 (n 2 - 1) 2 (n 4 + 1) = 16[k(k + 1) 2 (n 2 + 1) 2 (n 4 + 1) Với n = 2k + 1 n 2 + 1 và n 4 + 1 là những số chẵn (n 2 + 1) 2 2 ; n 4 + 1 2 n 12 - n 8 - n 4 + 1 (2 4 .2 2 . 2 2 . 1 . 2 1 ) Vậy n 12 - n 8 - n 4 + 1 512 Bài 4: Có p 2 - 1 = (p - 1) (p + 1) vì p là số nguyên tố p > 3 p 3 ta có: (p - 1) (p + 1) 8 và p = 3k + 1 hoặc p = 3k + 2 (k N) (p - 1) (p + 1) 3 Vậy p 2 - 1 24 Bài 5: Giả sử 1900 số tự nhiên liên tiếp là n, n +1; n + 2; ; n + 1989 (1) trong 1000 tự nhiên liên tiếp n, n + 1; n + 2; ; n + 999 có 1 số chiahết cho 1000 giả sử n 0 , khi đó n 0 có tận cùng là 3 chữ số 0 giả sử tổng các chữ số của n 0 là s khi đó 27 số n 0 , n 0 + 9; n 0 + 19; n 0 + 29; n 0 + 39; ; n 0 + 99; n 0 + 199; n 0 + 899 (2) Có tổng các chữ số lần lợt là: s; s + 1 ; s + 26 Có 1 số chiahết cho 27 (ĐPCM) * Chú ý: n + 899 n + 999 + 899 < n + 1989 Các số ở (2) nằm trong dãy (1) 3. Phơng pháp 3: xét tập hợp số d trong phép chia http://NgocHung.name.vn Ví dụ 1: CMR: Với n N Thì A (n) = n(2n + 7) (7n + 7) chiahết cho 6 Giải: Ta thấy 1 trong 2 thừa số n và 7n + 1 là số chẵn. Với n N A (n) 2 Ta chứng minh A (n) 3 Lấy n chia cho 3 ta đợc n = 3k + 1 (k N) Với r {0; 1; 2} Với r = 0 n = 3k n 3 A (n) 3 Với r = 1 n = 3k + 1 2n + 7 = 6k + 9 3 A (n) 3 Với r = 2 n = 3k + 2 7n + 1 = 21k + 15 3 A (n) 3 A (n) 3 với n mà (2, 3) = 1 Vậy A (n) 6 với n N Ví dụ 2: CMR: Nếu n 3 thì A (n) = 3 2n + 3 n + 1 13 Với n N Giải: Vì n 3 n = 3k + r (k N); r {1; 2; 3} A (n) = 3 2(3k + r) + 3 3k+r + 1 = 3 2r (3 6k - 1) + 3 r (3 3k - 1) + 3 2r + 3 r + 1 ta thấy 3 6k - 1 = (3 3 ) 2k - 1 = (3 3 - 1)M = 26M 13 3 3k - 1 = (3 3 - 1)N = 26N 13 với r = 1 3 2n + 3 n + 1 = 3 2 + 3 +1 = 13 13 3 2n + 3 n + 1 13 với r = 2 3 2n + 3 n + 1 = 3 4 + 3 2 + 1 = 91 13 3 2n + 3 n + 1 Vậy với n 3 thì A (n) = 3 2n + 3 n + 1 13 Với n N Ví dụ 3: Tìm tất cả các số tự nhiên n để 2 n - 1 7 Giải: Lấy n chia cho 3 ta có n = 3k + 1 (k N); r {0; 1; 2} Với r = 0 n = 3k ta có 2 n - 1 = 2 3k - 1 = 8 k - 1 = (8 - 1)M = 7M 7 với r =1 n = 3k + 1 ta có: 2 n - 1 = 2 8k +1 - 1 = 2.2 3k - 1 = 2(2 3k - 1) + 1 mà 2 3k - 1 7 2 n - 1 chia cho 7 d 1 với r = 2 n = 3k + 2 ta có : 2 n - 1 = 2 3k + 2 - 1 = 4(2 3k - 1) + 3 mà 2 3k - 1 7 2 n - 1 chia cho 7 d 3 Vậy 2 3k - 1 7 n = 3k (k N) Bài tập tơng tự Bài 1: CMR: A n = n(n 2 + 1)(n 2 + 4) 5 Với n Z Bài 2: Cho A = a 1 + a 2 + + a n B = a 5 1 + a 5 2 + + a 5 n Bài 3: CMR: Nếu (n, 6) =1 thì n 2 - 1 24 Với n Z Bài 4: Tìm số tự nhiên n để 2 2n + 2 n + 1 7 Bài 5: Cho 2 số tự nhiên m, n để thoả mãn 24m 4 + 1 = n 2 . CMR: mn 55 Hớng dẫn - Đáp số Bài 1: + A (n) 6 + Lấy n chia cho 5 n = 5q + r r {0; 1; 2; 3; 4} r = 0 n 5 A (n) 5 r = 1, 4 n 2 + 4 5 A (n) 5 r = 2; 3 n 2 + 1 5 A (n) 5 A (n) 5 A (n) 30 Bài 2: Xét hiệu B - A = (a 5 1 - a 1 ) + + (a 5 n - a n ) Chỉ chứng minh: a 5 i - a i 30 là đủ Bài 3: Vì (n, 6) =1 n = 6k + 1 (k N) Với r {1} http://NgocHung.name.vn r = 1 n 2 - 1 24 Bài 4: Xét n = 3k + r (k N) Với r {0; 1; 2} Ta có: 2 2n + 2 n + 1 = 2 2r (2 6k - 1) + 2 r (2 3k - 1) + 2 2n + 2 n + 1 Làm tơng tự VD3 Bài 5: Có 24m 4 + 1 = n 2 = 25m 4 - (m 4 - 1) Khi m 5 mn 5 Khi m 5 thì (m, 5) = 1 m 4 - 1 5 (Vì m 5 - m 5 (m 4 - 1) 5 m 4 - 1 5) n 2 5 n i 5. Vậy mn 5 4. Phơng pháp 4: sử dụng phơng pháp phân tích thành nhân tử Giả sử chứng minh a n k Ta có thể phân tích a n chứa thừa số k hoặc phân tích thành các thừa số mà các thừa số đó chiahết cho các thừa số của k. Ví dụ 1: CMR: 3 6n - 2 6n 35 Với n N Giải: Ta có 3 6n - 2 6n = (3 6 ) n - (2 6 ) n = (3 6 - 2 6 )M = (3 3 + 2 3 ) (3 3 - 2 3 )M = 35.19M 35 Vậy 3 6n - 2 6n 35 Với n N Ví dụ 2: CMR: Với n là số tự nhiên chăn thì biểu thức A = 20 n + 16 n - 3 n - 1 232 Giải: Ta thấy 232 = 17.19 mà (17;19) = 1 ta chứng minh A 17 và A 19 ta có A = (20 n - 3 n ) + (16 n - 1) có 20 n - 3 n = (20 - 3)M 17M 16 n - 1 = (16 + 1)M = 17N 17 (n chẵn) A 17 (1) ta có: A = (20 n - 1) + (16 n - 3 n ) có 20 n - 1 = (20 - 1)p = 19p 19 có 16 n - 3 n = (16 + 3)Q = 19Q 19 (n chẵn) A 19 (2) Từ (1) và (2) A 232 Ví dụ 3: CMR: n n - n 2 + n - 1 (n - 1) 2 Với n >1 Giải: Với n = 2 n n - n 2 + n - 1 = 1 và (n - 1) 2 = (2 - 1) 2 = 1 n n - n 2 + n - 1 (n - 1) 2 với n > 2 đặt A = n n - n 2 + n - 1 ta có A = (n n - n 2 ) + (n - 1) = n 2 (n n-2 - 1) + (n - 1) = n 2 (n - 1) (n n-3 + n n-4 + + 1) + (n - 1) = (n - 1) (n n-1 + n n-2 + + n 2 +1) = (n - 1) [(n n-1 - 1) + +( n 2 - 1) + (n - 1)] = (n - 1) 2 M (n - 1) 2 Vậy A (n - 1) 2 (ĐPCM) Bài tập tơng tự Bài 1: CMR: a. 3 2n +1 + 2 2n +2 7 b. mn(m 4 - n 4 ) 30 Bài 2: CMR: A (n) = 3 n + 63 72 với n chẵn n N, n 2 Bài 3: Cho a và b là 2 số chính phơng lẻ liên tiếp. CMR: a. (a - 1) (b - 1) 192 Bài 4: CMR: Với p là 1 số nguyên tố p > 5 thì p 4 - 1 240 Bài 5: Cho 3 số nguyên dơng a, b, c và thoả mãn a 2 = b 2 + c 2 . CMR: abc 60 Hớng dẫn - Đáp số Bài 1: a. 3 2n +1 + 2 2n +2 = 3.3 2n + 2.2 n = 3.9 n + 4.2 n http://NgocHung.name.vn = 3(7 + 2) n + 4.2 n = 7M + 7.2 n 7 b. mn(m 4 - n 4 ) = mn(m 2 - 1)(m 2 + 1) - mn(n 2 - 1) (n 2 + 1) 30 Bài 3: Có 72 = 9.8 mà (8, 9) = 1 và n = 2k (k N) có 3 n + 63 = 3 2k + 63 = (3 2k - 1) + 64 A (n) 8 Bài 4: Đặt a = (2k - 1) 2 ; b = (2k - 1) 2 (k N) Ta có (a - 1)(b - 1) = 16k(k + 1)(k - 1) 64 và 3 Bài 5: Có 60 = 3.4.5 Đặt M = abc Nếu a, b, c đều không chiahết cho 3 a 2 , b 2 và c 2 chiahết cho 3 đều d 1 a 2 b 2 + c 2 . Do đó có ít nhất 1 số chiahết cho 3. Vậy M 3 Nếu a, b, c đều không chiahết cho 5 a 2 , b 2 và c 2 chia 5 d 1 hoặc 4 b 2 + c 2 chia 5 thì d 2; 0 hoặc 3. a 2 b 2 + c 2 . Do đó có ít nhất 1 số chiahết cho 5. Vậy M 5 Nếu a, b, c là các số lẻ b 2 và c 2 chiahết cho 4 d 1. b 2 + c 2 (mod 4) a 2 b 2 + c 2 Do đó 1 trong 2 số a, b phải là số chẵn. Giả sử b là số chẵn Nếu C là số chẵn M 4 Nếu C là số lẻ mà a 2 = b 2 + c 2 a là số lẻ b 2 = (a - c) (a + b) + = 222 2 cacab 2 b chẵn b 4 m 4 Vậy M = abc 3.4.5 = 60 5. Phơng pháp 5: biến đổi biểu thức cần chứng minh về dạng tổng Giả sử chứng minh A (n) k ta biến đổi A (n) về dạng tổng của nhiều hạng tử và chứng minh mọi hạng tử đều chiahết cho k. Ví dụ 1: CMR: n 3 + 11n 6 với n z. Giải: Ta có n 3 + 11n = n 3 - n + 12n = n(n 2 - 1) + 12n = n(n + 1) (n - 1) + 12n Vì n, n - 1; n + 1 là 3 số nguyên liên tiếp n (n + 1) (n - 1) 6 và 12n 6 Vậy n 3 + 11n 6 Ví dụ 2: Cho a, b z thoả mãn (16a +17b) (17a +16b) 11 CMR: (16a +17b) (17a +16b) 121 Giải: Có 11 số nguyên tố mà (16a +17b) (17a +16b) 11 + + 1116b 17a 1117b 16a (1) Có 16a +17b + 17a +16b = 33(a + b) 11 (2) Từ (1) và (2) + + 1116b 17a 1117b 16a Vậy (16a +17b) (17a +16b) 121 Ví dụ 3: Tìm n N sao cho P = (n + 5)(n + 6) 6n. Giải : Ta có P = (n + 5)(n + 6) = n 2 + 11n + 30 = 12n + n 2 - n + 30 Vì 12n 6n nên để P 6n n 2 - n + 30 6n http://NgocHung.name.vn (2)n30 (1)3 1) -n(n 6n30 6n - n2 Từ (1) n = 3k hoặc n = 3k + 1 (k N) Từ (2) n {1; 2; 3; 5; 6; 10; 15; 30} Vậy từ (1); (2) n {1; 3; 6; 10; 15; 30} Thay các giá trị của n vào P ta có n {1; 3; 10; 30} là thoả mãn Vậy n {1; 3; 10; 15; 30} thì P = (n + 5)(n + 6) 6n. Bài tập tơng tự Bài 1: CMR: 1 3 + 3 3 + 5 3 + 7 3 2 3 Bài 2: CMR: 36n 2 + 60n + 24 24 Bài 3: CMR: a. 5 n+2 + 26.5 n + 8 2n+1 59 b. 9 2n + 14 5 Bài 4: Tìm n N sao cho n 3 - 8n 2 + 2n n 2 + 1 Hớng dẫn - Đáp số Bài 1: 1 3 + 3 3 + 5 3 + 7 3 = (1 3 + 7 3 ) + (3 3 + 5 3 ) = 8m + 8N 2 3 Bài 2: 36 2 + 60n + 24 = 12n(3n + 5) + 24 Ta thấy n và 3n + 5 không đồng thời cùng chẵn hoặc cùng lẻ n(3n + 5) 2 ĐPCM Bài 3: a. 5 n+2 + 26.5 n + 8 2n+1 = 5 n (25 + 26) + 8 2n+1 = 5 n (59 - 8) + 8.64 n = 5 n .59 + 8.59m 59 b. 9 2n + 14 = 9 2n - 1 + 15 = (81 n - 1) + 15 = 80m + 15 5 Bài 4: Có n 3 - 8n 2 + 2n = (n 2 + 1)(n - 8) + n + 8 (n 2 + 1) n + 8 n 2 + 1 Nếu n + 8 = 0 n = -8 (thoả mãn) Nếu n + 8 0 n + 8 n 2 + 1 ++ ++ + 807n 809n 81n8n 81-n8n 2 2 2 2 nn nn n n Với Với Với Với n {-2; 0; 2} thử lại. Vậy n {-8; 0; 2} 6. Phơng pháp 6: Dùng quy nạp toán học Giả sử CM A (n) P với n a (1) Bớc 1: Ta CM (1) đúng với n = a tức là CM A (n) P Bớc 2: Giả sử (1) đúng với n = k tức là CM A (k) P với k a Ta CM (1) đúng với n = k + 1 tức là phải CM A (k+1) P Bớc 3: Kết luận A (n) P với n a Ví dụ 1: Chứng minh A (n) = 16 n - 15n - 1 225 với n N * Giải: Với n = 1 A (n) = 225 225 vậy n = 1 đúng Giả sử n = k 1 nghĩa là A (k) = 16 k - 15k - 1 225 Ta phải CM A (k+1) = 16 k+1 - 15(k + 1) - 1 225 Thật vậy: A (k+1) = 16 k+1 - 15(k + 1) - 1 = 16.16 k - 15k - 16 = (16 k - 15k - 1) + 15.16 k - 15 = 16 k - 15k - 1 + 15.15m = A (k) + 225 mà A (k) 225 (giả thiết quy nạp) 225m 225 Vậy A (n) 225 http://NgocHung.name.vn Ví dụ 2: CMR: với n N * và n là số tự nhiên lẻ ta có 22 21 + n n m Giải: Với n = 1 m 2 - 1 = (m + 1)(m - 1) 8 (vì m + 1; m - 1 là 2 số chẵn liên tiếp nên tích của chúng chiahết cho 8) Giả sử với n = k ta có 22 21 + k k m ta phải chứng minh 32 21 1 + + k k m Thật vậy 22 21 + k k m )(.21 22 zqqm k k = + 1.2 22 += + qm k k có ( ) ( ) k 1 k 2 2 2 2 k 2 k 4 2 k 3 m 1 m 1 2 .q 1 1 2 .q 2 .q + + + + = = + = + = 3213 2)2(2 +++ + kkk qq Vậy 22 21 + n n m với n 1 Bài tập tơng tự Bài 1: CMR: 3 3n+3 - 26n - 27 29 với n 1 Bài 2: CMR: 4 2n+2 - 1 15 Bài 3: CMR số đợc thành lập bởi 3 n chữ số giống nhau thì chiahết cho 3 n với n là số nguyên dơng. Hớng dẫn - Đáp số Bài 1: Tơng tự ví dụ 1. Bài 2: Tơng tự ví dụ 1. Bài 3: Ta cần CM { n 3 số a aa a 3 n (1) Với n = 1 ta có aaa 3111 a = Giả sử (1) đúng với n = k tức là sốa k aaa 3 3 k Ta chứng minh (1) đúng với n = k + 1 tức là phải chứng minh asố 1 3 + k aaa 3 k+1 ta có 3 k+1 = 3.3 k = 3 k + 3 k +3 k Có { { { kkk k aaaaaaaaa 333 3 1 = + asố { k kk aaaaaaaa 3 33.2 10 10 ++= ( ) 133.2 3 311010 + ++= k kk k aaa 7. Phơng pháp 7: sử dụng đồng d thức Giải bài toán dựa vào đồng d thức chủ yếu là sử dụng định lý Euler và định lý Fermat Ví dụ 1: CMR: 2222 5555 + 5555 2222 7 Giải: Có 2222 - 4 (mod 7) 2222 5555 + 5555 2222 (- 4) 5555 + 4 5555 (mod 7) Lại có: (- 4) 5555 + 4 2222 = - 4 5555 + 4 2222 = - 4 2222 (4 3333 - 1) = ( ) ( ) 144 - 1111 32222 Vì 4 3 = 64 (mod 7) ( ) 014 1111 3 (mod 7) 2222 5555 + 5555 2222 0 (mod 7) Vậy 2222 5555 + 5555 2222 7 Ví dụ 2: CMR: 22533 1414 32 ++ ++ nn với n N Giải: Theo định lý Fermat ta có: 3 10 1 (mod 11) 2 10 1 (mod 11) [...]... (5k + 3)2 + 1 = (25k2 + 30k + 9 + 1) 5 Vy : A(n) chia ht cho 2 v 5 nờn phi chia ht cho 10 Cỏch 3: chng minh A(n) chia ht cho k, cú th bin i A(n) thnh tng (hiu) ca nhiu hng t, trong ú mi hng t u chia ht cho k (ó hc trong tớnh cht chia ht ca mt tng lp 6) (Liờn h: A(n) khụng chia ht cho k ) Vớ d 1: Chng minh n3 - 13n (n > 1) chia ht cho 6 (Trớch thi HSG cp II ton quc nm 1970) Giải: n3 - 13n = n3 -... +1) 2 b) Xét mọi trờng hợp: n chiahết cho 3; n=3q+1; n = 3q+2 + Nếu n chiahết cho 3, hiển nhiên A(n) chiahết cho 3 + Nếu n = 3q+1 => n+2 = 3q+3 chiahết cho 3 + Nếu n= 3q+2 => n+1 = 3q+2+1 = 3q+3 chiahết cho 3 Trong mọi trờng hợp A(n) luôn chứa một thừa số chiahết cho 3 Vậy A(n) chiahết cho 3 (đpcm) Cỏch 2: chng minh A(n) chia ht cho k, cú th phõn tớch k ra tha s: k = pq + Nu (p, q) = 1, ta... Phõn tớch A(n) thnh nhõn t Nu cú mt nhõn t chia ht cho k thỡ A(n) chia ht cho k http://NgocHung.name.vn H qu: Nu A(n) = B(n).C(n) m B(n)v C(n) u khụng chia ht cho k thỡ A(n) khụng chia ht cho k A(n) = k B(n) Trờng hợp này thờng sử dụng các kết quả: * (an - bn ) chiahết cho (a - b) với (a b) n n * (a - b ) chiahết cho (a - b) với (a b; n chẵn) (an - bn ) chiahết cho (a - b) với (a - b; n lẻ) Vớ... 1: chng minh A(n) chia ht cho k, cú th xột mi trng hp s d khi chia n cho k Vớ d: Chng minh rng: a) Tớch ca hai s nguyờn liờn tip chia ht cho 2 b) Tớch ca ba s nguyờn liờn tip chia ht cho 3 Giải: a) Vit tớch ca hai s nguyờn liờn tip di dng A(n) = n(n + 1) Cú hai trng hp xy ra : * n 2 => n(n + 1) 2 * n khụng chia ht cho 2 (n l) => (n + 1) 2 => n(n +1) 2 b) Xét mọi trờng hợp: n chiahết cho 3; n=3q+1;... 22 + 23 + + 260 chia ht cho 15 Giải: Ta cú: 2 + 22 +23 + + 260 = (2 + 22 + + 24) + (25+ + 28) + + (257 + + 260) = 2(1 + 2 + 4 + 8) + 25(1 + 2 + 4 + 8) + + 257(1 + 2 + 4 + 8) = 15.(2 + 25 + + 257) 15 Vớ d 2: Chứng minh rằng: 27 + 37 + 57 chiahết cho 5 Giải: Vì 7 là số lẻ nên (27 + 37) chiahết cho (2 + 3) hay 27 + 37 chiahết cho 5 => 27 + 37 + 57 chiahết cho 5 (đpcm) mà 57 chiahết cho 5 Cỏch... lot cỏc bi toỏn chia ht khỏ cng knh Vớ d 1: Chng minh cú chia ht cho 125 http://NgocHung.name.vn Giải: Cú Xột nhng nờn (pcm) Vớ d 2: Chng minh Giải: Cú cú chia ht cho 64 Xột Li ỏp dng phng phỏp trờn vi Cỏch 7: Phng phỏp phn chng: chng minh A(n) k ta chng minh A(n) khụng chia ht cho k l sai A => B B => A Vớ d: Chng minh nu a2 + b2 3 thỡ a v b u chia ht cho 3 Giải: Gi s a v b khụng chia ht cho 3 =>... +1)(n + 2) 6 b) Chng minh: tớch ca hai s chn liờn tip chia ht cho 8 Giải: a) Ta cú 6 = 2.3; (2,3) = 1 Theo chng minh trờn ó cú A(n) chia ht cho 2 v 3 Do ú A(n) chia ht cho 6 b) Ta vit A(n) = 2n(2n + 2) = 2n 2(n +1) = 4n(n + 1) 8 = 4 2 Vỡ 4 4 v n(n +1) 2 nờn A(n) 8 Vớ d 2 : Chng minh rng n5 - n chia ht cho 10, vi mi s nguyờn dng n (Trớch thi HSG lp 9 cp tnh nm hc 2005 - 2006) 5 4 2 2 Giải: A(n)... nguyên bất kỳ là a1, a2, , a17 Chia các số cho 5 ta đợc 17 số d ắt phải có 5 số d thuộc tập hợp{0; 1; 2; 3; 4} Nếu trong 17 số trên có 5 số khi chia cho 5 có cùng số d thì tổng của chúng sẽ chiahết cho 5 Nếu trong 17 số trên không có số nào có cùng số d khi chia cho 5 tồn tại 5 số có số d khác nhau tổng các số d là: 0 + 1 + 2 + 3 + 4 = 10 10 Vậy tổng của 5 số này chiahết cho 5 Bài 4: Xét dãy số... ca 3 s t nhiờn liờn tip nờn chia ht cho 6 ; 12n 6 Do ú A(n) 6 Vớ d 2: Chng minh n2 + 4n + 5 khụng chia ht cho 8 , vi mi s n l Giải: Vi n = 2k +1 ta cú: A(n) = n2 + 4n + 5 = (2k + 1)2 + 4(2k + 1) + 5 = 4k2 + 4k + 1 + 8k + 4 + 5 = 4k(k + 1) + 8(k + 1) + 2 A(n) bng tng ca ba hng t, trong ú hai hng t u u chia ht cho 8 , duy ch cú hng t 2 khụng chia ht cho 8 Vy A(n) khụng chia ht cho 8 Cỏch 4: Phõn tớch... aj - aj = n(q1 - q2) n Vậy trong n +1 số nguyên bất kỳ có 2 số có hiệu chiahết cho n Nếu không có 1 tổng nào trong các tổng trên chiahết cho n nh vậy số d khi chia mỗi tổng trên cho n ta đợc n số d là 1; 2; ; n - 1 Vậy theo nguyên lý Đirichlet sẽ tồn tại ít nhất 2 tổng mà chi cho n có cùng số d (theo VD1) hiệu cùadr tổng này chiahết cho n (ĐPCM) Bài tập tơng tự Bài 1: CMR: Tồn tại n N sao cho . a là số bị chia, b là số chia, q là thơng, r là số d. Khi a chia cho b có thể xẩy ra | b| số d r {0; 1; 2; ; | b|} Đặc biệt: r = 0 thì a = bq, khi đó ta nói a chia hết cho b hay b chia hết a. Ký. b 14. Nếu a b và c d ac bd 15. Tích n số nguyên liên tiếp chia hết cho n! III. Một số dấu hiệu chia hết Gọi N = n n 1 1 0 a a a a 1. Dấu hiệu chia hết cho 2: Một số chia hết cho 2 chữ số tận. không chia hết cho 3 a 2 , b 2 và c 2 chia hết cho 3 đều d 1 a 2 b 2 + c 2 . Do đó có ít nhất 1 số chia hết cho 3. Vậy M 3 Nếu a, b, c đều không chia hết cho 5 a 2 , b 2 và c 2 chia