1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu bài toán lập hàm bằng phương pháp bình phương bé nhất và ápdụng đại số tuyến tính giải bài toán trên với sự hỗ trợ phần mềm LibreOffice Cale

18 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Nghiên Cứu Bài Toán Lập Hàm Bằng Phương Pháp Bình Phương Bé Nhất Và Áp Dụng Đại Số Tuyến Tính Giải Bài Toán Trên Với Sự Hỗ Trợ Phần Mềm LibreOffice Cale
Tác giả Phan Văn Thịnh
Người hướng dẫn Lê Đình Lương
Trường học Trường Đại Học Lâm Nghiệp
Chuyên ngành Khoa Học Cơ Bản
Thể loại Đề Tài Nghiên Cứu Khoa Học Sinh Viên
Năm xuất bản 2023
Thành phố Đồng Nai
Định dạng
Số trang 18
Dung lượng 1,74 MB

Nội dung

PHÂN HIỆU TRƯỜNG ĐẠI HỌC LÂM NGHIỆP TẠI TỈNH ĐỒNG NAIKHOA/TRUNG TÂM: KHOA HỌC CƠ BẢN ===&&&=== ĐỀ TÀI NGHIÊN CỨU KHOA HỌC SINH VIÊN NĂM HỌC 2022 - 2023 Tên đề tài: Nghiên cứu bài toá

Trang 1

PHÂN HIỆU TRƯỜNG ĐẠI HỌC LÂM NGHIỆP TẠI TỈNH ĐỒNG NAI

KHOA/TRUNG TÂM: KHOA HỌC CƠ BẢN

===&&&===

ĐỀ TÀI NGHIÊN CỨU KHOA HỌC SINH VIÊN

NĂM HỌC 2022 - 2023

Tên đề tài:

Nghiên cứu bài toán lập hàm bằng phương pháp bình phương bé nhất và áp dụng đại số tuyến tính giải bài toán trên với sự hỗ trợ phần mềm LibreOffice Cale Ứng dụng tìm mức chi phí x ( triệu đồng ) và lợi nhuận y ( triệu đồng ) thu được

như sau:

Sinh viên thực hiện: Phan Văn Thịnh MSV: 227850103031

Lớp: K67 QLDD

Báo cáo viên: Lê Đình Lương

Đồng Nai, tháng 06, 2023

1

Trang 2

I Tìm hiểu bài toán bình phương bé nhất

Bài toán bình phương bé nhất (least squares problem) là một bài toán trong thống kê và toán học được sử dụng để tìm một mô hình hoặc hàm số tốt nhất phù hợp với tập dữ liệu

mà chúng ta có Mục tiêu của bài toán này là tìm ra một đường cong (trong trường hợp đơn giản) hoặc một hàm số (trong trường hợp phức tạp hơn) sao cho khoảng cách giữa các điểm dữ liệu và đường cong/hàm số đó là nhỏ nhất.

Bài toán bình phương bé nhất thường được sử dụng trong các bài toán hồi quy (regression) để xác định mối quan hệ giữa các biến đầu vào và biến đầu ra Một mô hình hồi quy thường có dạng y = f(x) + ε, trong đó y là biến đầu ra, x là biến đầu vào, f(x) là hàm số biểu diễn mối quan hệ giữa x và y, và ε là sai số ngẫu nhiên.

Bài toán bình phương bé nhất cố gắng tìm hàm số f(x) sao cho tổng bình phương sai số (sum of squared errors) giữa giá trị dự đoán f(x) và giá trị thực tế y của các điểm dữ liệu

là nhỏ nhất Cách tính tổng bình phương sai số là bình phương và tổng các sai số tuyệt đối thường được sử dụng trong bài toán này.

Phương pháp giải bài toán bình phương bé nhất thường liên quan đến việc tính toán đạo hàm và giải hệ phương trình tuyến tính để tìm các hệ số tối ưu cho hàm số f(x).

Bài toán bình phương bé nhất có ứng dụng rộng rãi trong nhiều lĩnh vực như thống kê, kỹ thuật, khoa học dữ liệu và machine learning để xây dựng các mô hình dự đoán, dự báo và phân tích dữ liệu.

Ví dụ:

Để minh họa bài toán bình phương bé nhất, hãy xem xét ví dụ sau:

Giả sử chúng ta có một tập dữ liệu về số lượng giờ học và điểm số của một nhóm học sinh như sau:

2

Trang 3

Số giờ học(x) Điểm số(y)

Chúng ta muốn tìm một mô hình tuyến tính để dự đoán điểm số dựa trên số giờ học Để làm điều này, chúng ta sẽ sử dụng phương pháp bình phương bé nhất để tìm hàm số tốt nhất phù hợp với dữ liệu này.

Bước 1: Xác định mô hình tuyến tính

Chúng ta sẽ sử dụng mô hình tuyến tính đơn giản y = ax + b, trong đó y là điểm số, x là

số giờ học, và a và b là các hệ số mà chúng ta cần tìm.

Bước 2: Tính toán tổng bình phương sai số

Chúng ta cần tính tổng bình phương sai số (sum of squared errors) để đánh giá sự phù hợp của mô hình Bình phương sai số của mỗi điểm dữ liệu được tính bằng hiệu giữa giá trị dự đoán f(x) và giá trị thực tế y, rồi bình phương kết quả và tính tổng.

Bước 3: Tìm hệ số tối ưu

Chúng ta cần tìm các hệ số a và b để giảm thiểu tổng bình phương sai số Để làm điều này, chúng ta sẽ tính đạo hàm của tổng bình phương sai số theo a và b, và giải hệ phương trình tuyến tính để tìm giá trị tối ưu của a và b.

Bước 4: Xây dựng mô hình tuyến tính

Sau khi tìm được giá trị tối ưu của a và b, chúng ta có thể xây dựng mô hình tuyến tính y

= ax + b Mô hình này sẽ được sử dụng để dự đoán điểm số dựa trên số giờ học.

3

Trang 4

Trong ví dụ này, nếu chúng ta áp dụng phương pháp bình phương bé nhất, kết quả tối ưu

có thể là a = 2.95 và b = 68.2 Do đó, mô hình tuyến tính tìm được là y = 2.95x + 68.2.

Với mô hình này, chúng ta có thể dự đoán điểm số của một học sinh dựa trên số giờ học

Ví dụ, nếu một học sinh học 7 giờ, chúng ta có thể tính điểm dự đoán là y = 2.95 * 7 + 68.2 = 88.45.

Lưu ý rằng trong thực tế, chúng ta có thể sử dụng các công cụ phần mềm như LibreOffice hoặc các thư viện tính toán trong ngôn ngữ lập trình để thực hiện các tính toán này một cách tự động.

1 Đa thức nội suy Lagrange

Giả sử f(x) nhau giá trị 3, tại các điểm tương ủng X (t=0,n), khi đó đã thực 1 suy Lagrange của f(x) là đa thức bậc n và được xác định theo công thức sau:

4

Trang 5

Ví dụ:

mãn:

nội suy của f(x), tính f(5):

Giải:

Cách 1: W(x)-x(x-1)(x-2)(x-4)

W’(0) = (-1)(-2)(-4) = -8

W’(1) = 1(-1)(-3) = 3

W’(2) = -2(1)(2) = -4

W’(4) = -4(3)(2) = -24

L (x) – x(x – 1)(x – 2)(x – 1)(3

(-(x-1)(x-2)(x- 4) + 4x(x - 2)(x - 4)+x(x - 1)(x - 4))

(x-4)(-(x-1)(x-2)+4x(x-2)+x(x-1))

(x-4) (4x -6x-2) 2

Cách 2:

L3(x) = 2 + -

= – 6x -2)2

2 Đa thức nội suy Lagrange với các mối cách đều:

Giả sử hàm f(x) nhận giá y, tại các điểm tương ứng x cách đều một khoảng hi

5

Trang 6

Ví dụ: Tìm hàm nội suy f(x) thõa mãn:

Giải:

Cách 1:

6

Trang 7

Cách 2:

3 Bảng nội suy Ayken

Khi tính giá trị của hàm tại một điểm xúc nào đó bất kỳ mà không cẩn phải xác định biểu thức của f(x) Khi đó ta có thể áp dụng bảng nội suy Ayken nhur sau

7

Trang 8

4 Bảng nội Ayten (dạng 2)

8

Trang 9

5 Công thức nội suy Newton

Giả sử hàm f(x) nhận giá trị y tại các mốc x cách đều một khoảng h Khi đó hàm nộii i suy Newton là một đa thức bậc n được xác định như sau:

9

Trang 10

Ví dụ: Xây dựng hàm nội suy Newton thỏa mãn:

10

Trang 11

II Phương pháp giải dưới sự trợ giúp của phần mềm Libreoffice.

Để giải phương trình bậc nhất (hay còn gọi là bình phương bé nhất) bằng phần mềm LibreOffice, bạn có thể sử dụng tính năng trình toán của LibreOffice Calc Dưới đây

là hướng dẫn cơ bản để giải một phương trình bậc nhất:

Bước 1: Mở LibreOffice Calc và tạo một bảng tính mới.

Bước 2: Đặt các giá trị của phương trình vào các ô trong bảng tính Giả sử bạn có phương trình bậc nhất có dạng ax + b = 0, với a và b là các hệ số.

- Đặt giá trị của a vào một ô trong bảng tính, ví dụ: ô A1.

- Đặt giá trị của b vào một ô khác trong bảng tính, ví dụ: ô B1.

Bước 3: Sử dụng một ô trống trong bảng tính để tính toán kết quả Ví dụ, đặt kết quả vào ô C1.

Bước 4: Sử dụng công thức để tính toán kết quả Trong ô C1, nhập công thức "= -B1/A1" để tính toán giá trị của x trong phương trình.

Bước 5: Nhấn Enter để hoàn thành việc tính toán Kết quả sẽ hiển thị trong ô C1 Sau khi hoàn thành các bước trên, bạn sẽ có kết quả của phương trình bậc nhất trong ô C1 Nếu bạn thay đổi giá trị của a hoặc b, kết quả sẽ được cập nhật tự động Lưu ý rằng LibreOffice Calc cung cấp nhiều tính năng khác nhau và có thể được sử dụng để giải các phương trình và hệ phương trình phức tạp hơn Hướng dẫn trên chỉ tập trung vào giải phương trình bậc nhất.

Ví dụ: Để giải bài toán về bình phương bé nhất (linear regression) bằng LibreOffice Calc, chúng ta có thể sử dụng tính năng "Hồi quy tuyến tính" trong phần mềm này Dưới đây là một ví dụ minh họa:

Giả sử chúng ta có một tập dữ liệu gồm các cặp điểm (x, y) như sau:

11

Trang 12

Chúng ta muốn tìm phương trình bình phương bé nhất có dạng y = mx + c, trong đó m

là hệ số góc và c là hệ số chặn.

Bước 1: Mở LibreOffice Calc và tạo một bảng tính mới.

Bước 2: Đặt các giá trị của x vào cột A và các giá trị của y vào cột B.

Bước 3: Tạo một ô trống để tính toán kết quả Ví dụ, chúng ta sẽ đặt kết quả vào ô D1 Bước 4: Sử dụng tính năng "Hồi quy tuyến tính" trong LibreOffice Calc để tìm phương trình bình phương bé nhất Chọn một ô trống, ví dụ ô D1, và sau đó thực hiện các bước sau:

- Nhấp chuột phải vào ô D1 và chọn "Hồi quy tuyến tính" trong menu xuất hiện.

- Trong cửa sổ Hồi quy tuyến tính, chọn dải dữ liệu cho các giá trị x và y Trong trường hợp này, chọn A1:A5 cho x và B1:B5 cho y.

- Đảm bảo chọn tùy chọn "Hiển thị phương trình trên biểu đồ" nếu bạn muốn hiển thị phương trình bình phương bé nhất trên biểu đồ.

- Nhấp vào nút "OK" để thực hiện hồi quy tuyến tính và tính toán kết quả.

Bước 5: Kết quả sẽ hiển thị trong ô D1 Phương trình bình phương bé nhất sẽ được biểu diễn dưới dạng y = mx + c Trong ví dụ này, phương trình bình phương bé nhất là

y = 2x + 1.

III Thu thập và xử lí số liệu để tìm mối quan hệ giữa hai nhân tố x và y, từ đó lập hàm y=f(x) bằng phương pháp bình phương bé nhất

Để tìm mối quan hệ giữa hai nhân tố x và y và lập hàm y = f(x) bằng phương pháp bình phương bé nhất, bạn có thể làm theo các bước sau:

Bước 1: Thu thập dữ liệu

- Thu thập một tập dữ liệu gồm các cặp điểm (x, y) tương ứng Số lượng điểm dữ liệu nên đủ lớn và đủ phân bố để đảm bảo tính chất đại diện.

Bước 2: Xử lí số liệu

- Tạo một bảng tính trong phần mềm LibreOffice Calc hoặc một công cụ tương tự.

- Đặt các giá trị của x vào một cột, ví dụ cột A, và các giá trị của y vào một cột khác,

ví dụ cột B.

- Sắp xếp các điểm dữ liệu theo thứ tự tăng dần của x, nếu cần thiết.

Bước 3: Tính toán hệ số hồi quy tuyến tính

- Thêm một cột mới, ví dụ cột C, để tính toán giá trị x^2.

12

Trang 13

- Trong ô C2, nhập công thức "=A2^2" và kéo xuống cho tất cả các ô dưới để tính toán các giá trị x^2 tương ứng.

- Thêm một cột khác, ví dụ cột D, để tính toán giá trị xy.

- Trong ô D2, nhập công thức "=A2*B2" và kéo xuống cho tất cả các ô dưới để tính toán các giá trị xy tương ứng.

- Thêm một cột cuối cùng, ví dụ cột E, để tính toán giá trị x^2y.

- Trong ô E2, nhập công thức "=A2^2*B2" và kéo xuống cho tất cả các ô dưới để tính toán các giá trị x^2y tương ứng.

- Tính tổng các cột A, B, C, D và E bằng cách sử dụng công thức "=SUM()" ở dòng cuối cùng của mỗi cột.

Bước 4: Tính toán hệ số hồi quy tuyến tính

- Sử dụng các giá trị tổng tính được ở bước trước để tính toán hệ số hồi quy tuyến tính

a và b.

- Tính tổng số điểm dữ liệu n (số lượng cặp điểm).

- Tính tổng x, y, x^2, xy và x^2y.

- Sử dụng các công thức sau:

- Hệ số góc a = (n*xy - x*y) / (n*x^2 - x^2)

- Hệ số chặn b = (

y - a*x) / n

Bước 5: Lập phương trình hồi quy

- Dựa vào các hệ số a và b tính được, lập phương trình hồi quy tuyến tính y = f(x) =

ax + b.

Với các bước trên, bạn đã thực hiện xử lí số liệu và lập hàm y = f(x) bằng phương pháp bình phương bé nhất.

Ví dụ:

Để minh họa phương pháp bình phương bé nhất, chúng ta sẽ sử dụng một ví dụ về mối quan hệ giữa hai nhân tố x và y Giả sử chúng ta có tập dữ liệu sau:

Bước 1: Thu thập dữ liệu và tạo bảng tính trong LibreOffice Calc.

13

Trang 14

Bước 2: Đặt các giá trị của x vào cột A và các giá trị của y vào cột B.

Bước 3: Tính toán các cột phụ trợ Thêm các cột C, D và E để tính toán các giá trị x^2, xy và x^2y tương ứng.

Bước 4: Tính toán tổng các cột.

- Tổng x = 1 + 2 + 3 + 4 + 5 = 15

- Tổng y = 3 + 5 + 7 + 9 + 11 = 35

- Tổng x^2 = 1 + 4 + 9 + 16 + 25 = 55

- Tổng xy = 3 + 10 + 21 + 36 + 55 = 125

- Tổng x^2y = 3 + 20 + 63 + 144 + 275 = 505

Bước 5: Tính toán hệ số hồi quy tuyến tính a và b.

- Hệ số góc a = (n * xy - x * y) / (n * x^2 - x^2)

= (5 * 125 - 15 * 35) / (5 * 55 - 15 * 15)

= (625 - 525) / (275 - 225)

= 100 / 50

= 2

- Hệ số chặn b = (y - a * x) / n

= (35 - 2 * 15) / 5

= (35 - 30) / 5

= 5 / 5

= 1

Bước 6: Lập phương trình hồi quy tuyến tính.

Với hệ số góc a = 2 và hệ số chặn b = 1, phương trình hồi quy tuyến tính sẽ là:

y = f(x) = 2x + 1

14

Trang 15

Đây là phương trình của hàm tuyến tính y = f(x) mà chúng ta đã lập được bằng phương pháp bình phương bé nhất dựa trên tập dữ liệu ban đầu.

IV Lập mô hình bằng hàm Johnson-Schumarcher theo phương pháp bình phương bé nhất, dự đoán kế quả của y tương ứng với x từ 31 đến 45

Chọ n từ ô A3 đến ô A32 chọn insert chọn chart

15

Trang 16

Chọn biểu đồ hiển thị XY chọn fnish ta được biểu đồ như sau

16

Trang 17

gõ hàm Forecast để biểu diễn X theo hàm jonson

17

Trang 18

Kéo công thức từ ô C1 đến C15 tương ứng theo X31 đến X45 để dự đoán kết quả

18

Ngày đăng: 04/04/2024, 15:45

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w