Nghiên cứu phức chất của plumbagin với ti(iv) trong dung dịch và ứng dụng

138 31 0
Nghiên cứu phức chất của plumbagin với ti(iv) trong dung dịch và ứng dụng

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Bộ CƠNG THƯƠNG ĐẠI HỌC CƠNG NGHIỆP THÀNH PHĨ HƠ CHÍ MINH BÁO CÁO TỔNG KẾT ĐÈ TÀI KHOA HỌC KẾT QUẢ THựC HIỆN ĐÈ TÀI NGHIÊN CỨU KHOẤ HỌC CẤP TRƯỜNG Tên đề tài: Nghiên cứu phức chất Plumbagin vói Ti (IV) dung dịch ứng dụng Mã số đề tài: 22/2 HHSV01 Chủ nhiệm đề tài: Nguyễn Văn Thịi Đơn vị thực hiện: Khoa Cơng nghệ Hóa học Tp Hồ Chí Minh, 2023 LỜI CÁM ƠN Chúng xin chân thành cảm ơn Quỹ nghiên cứu khoa học Trường Đại học Công nghiệp Tp HCM, lãnh đạo khoa Cơng nghệ Hóa học, Phịng thí nghiệm Khoa Cơng nghệ Hóa học, thành viên đề tài giúp tơi hồn thành đề tài nghiên cứu khoa học Cảm ơn Thầy GS.TS Lê Văn Tán; PGS.TS.Trần Nguyễn Minh Ân hướng dẫn chuyên môn, động viên giúp đỡ chủ nhiệm đề tài để hoàn thành cơng trình nghiên cứu i PHẦN I THƠNG TIN CHUNG I Thơng tín tống qt 1.1 Tên đề tài: Nghiên cứu phức chất Plumbagin vói Ti(IV) dung dịch ứng dụng 1.2 Mã số: 22/2HHSV01 1.3 Danh sách chủ trì, thành viên tham gia thực đề tài TT Họ tên (học hàm, học vị) ThS Nguyễn Văn Thời PGS.TS Trần Nguyễn Minh Ân Đơn vị công tác Trường Đại học Công nghiệp TP Hồ Chí Minh Trường Đại học Cơng nghiệp TP Hồ Chí Minh Vai trị thực đề tài Chủ nhiệm đề tài Thành viên tham gia 1.4 Đon vị chủ trì: 1.5 Thịi gian thực hiện: 1.5.1 Theo hợp đồng: từ tháng 03 năm 2023 đến tháng năm 2024 1.5.2 Gia hạn (nếu có): 1.5.3 Thực thực tế: từ tháng 03 năm 2023 đến tháng 10 năm 2023 1.6 Nhũng thay đổi so vói thuyết minh ban đầu (nếu có): KHƠNG (về mục tiêu, nội dung, phương pháp, kết nghiên cứu tẻ chức thực hiện; Nguyên nhân; Ý kiến Cơ quan quản ỉỷ) 1.7 Tổng kinh phí phê duyệt đề tài: 50 triệu đồng II Két nghiên cứu Đặt vấn đề Cùng với phát triển ngày nhanh ngành khoa học kỹ thuật nói chung hóa học nói riêng, việc tổng hợp nghiên cứu phức chất hướng phát triển co hóa học đại Đặc biệt phức chất có khả phát huỳnh quang ngày thu hút quan tâm nhà khoa học nước việc tổng hợp, nghiên cứu cấu tạo, tính chất khả ứng dụng Trong nghiên cứu chế tạo vật liệu, phức chất có tiềm ứng dụng lớn để tạo vật liệu, đầu dị phát quang phân tích sinh học, đánh dấu huỳnh quang sinh y, vật liệu quang điện, khoa học môi trường, công nghệ sinh học tế bào nhiều lĩnh vực khác đời sống Có thể nói Hóa học phức chất phát triển nơi hội tụ thành tựu hố lý, hố phân tích, hóa hữu cơ, hóa sinh, hóa mơi trường, hóa dược Trong đó, phối tử hữu đóng vai trị quan trọng, ngồi việc tạo phức có nhiều ứng dụng, cịn sử dụng để tách, chiết làm giàu tăng độ nhạy phân tích ion kim loại mẫu thực Vì thế, nhà khoa học nỗ lực tổng hợp ii loại thuốc thử hữu nhằm phục vụ cho mục đích Trong xu hướng ấy, Plumbagin (5-hydroxy-2-metyl-l,4-napthoquinone) dù xem chất khó tổng hợp, chủ yếu phân lập từ rễ Bạch hoa xà (Plumbago zeylanica L.), với tính chất đặc biệt kháng viêm, kháng ung thư, kháng đái tháo đường, kháng oxy hóa, kháng khuẩn, kháng nấm, kháng xơ vữa động mạch giảm đau, cộng với khả tương tác chọn lọc với ion kim loại mà PLB nhà khoa học quan tâm Từ cơng trình cơng bố nhà khoa học, nhận thấy việc tìm kiếm tín hiệu tương tác PLB với ion kim loại nhằm nghiên cứu tìm ứng dụng có giá trị đời sống cần thiết Vì vậy, chúng tơi lựa chọn đề tài “ Nghiên cứu phức chất Plumbagin vói Ti(IV) dung dịch ứng dụng”, với hy vọng tìm phức ứng dụng hữu ích mà chúng mang lại Mục tiêu a) Mục tiêu tổng quát Nghiên cứu phức Plumbagin với Ti(IV) ứng dụng lĩnh vực phân tích định lượng b) Mục tiêu cụ thể • Khảo sát tín hiệu tạo phức: Tìm bước sóng kích thích bước sóng phát xạ cực đại phức chất; • Khảo sát điều kiện tối ưu phức dung dịch với dung môi Ethanol- nước: pH, thời gian, nồng độ, nhiệt độ ảnh hưởng ion lạ; • Xác định cấu trúc chế huỳnh quang phương pháp, FT-IR, ÌH-NMR, 13C-NMR; HR-MS; ECP/DFT; • Khảo sát ion cản q trình tạo phức Ti; • ứng dụng phức phân tích định lượng phương pháp huỳnh quang; • Xác định Ti mẫu giả định; • Xác định Ti mẫu thật đo đối chứng với phương pháp khác; Phưong pháp nghiên cứu - Tổng quan tài liệu; - Xây dựng kế hoạch thực nghiệm; Nội dung 1: Khảo sát tín hiệu tạo phức: Tìm bước sóng kích thích bước sóng phát xạ cực đại phức chất; iii - Cách tiếp cận: Khảo sát tín hiệu tương tác thuốc thử PLB với ion kim loại Ti(IV) cách khảo sát phổ hấp thụ hệ máy đo UV-VIS khoảng bước sóng từ 2504-700 nm Từ phổ hấp thụ, xác định cực đại hấp thụ thuốc thử phức Từ bước sóng hấp thụ cực đại ta tiến hành khảo sát huỳnh quang hệ - Phương pháp nghiên cứu, kỹ thuật sử dụng: Phương pháp phổ huỳnh quang - Kết quả: Xác định bước sóng kích thích bước sóng phát xạ cực đại Nội dung 2: Khảo sát điều kiện tốt tạo phức dung dịch - Cách tiếp cận: Sau tìm tín hiệu phức, khảo sát điều kiện tối ưu phức khoảng pH, độ bền phức theo thời gian, khoảng nồng độ tuân theo định luật Beer - Phương pháp nghiên cứu, kỹ thuật sử dụng: Phổ huỳnh quang - Kết quả: số liệu điều kiện tốt cho tạo phức 3 Nội dung 3: Xác định cấu trúc phức - Cách tiếp cận: Thực nghiệm đo phổ FT-IR, ÌH-NMR, 13C-NMR HR-MS - Phương pháp nghiên cứu, kỹ thuật sử dụng: Phương pháp, FT-IR, ÌH-NMR, 13CNMR HR-MS - Kết quả: Dự liệu phổ nghiệm Nội dung 4: Khảo sát ion cản trình tạo phức Ti - Cách tiêp cận: Ảnh hưởng số ion kim loại đến khả tạo phức PLB với ion Ti(IV) khảo sát sau: Chuẩn bị dung dịch nghiên cứu PLB-Ti(IV) điều kiện tối ưu trên, nồng độ ion khác tăng dần Để ổn định đo phổ hufnh quang của hệ - Kết quả: Các ion cản trình tạo phức Nội dung 5: Xác định Ti mẫu giả phương pháp huỳnh quang - Cách tiếp cận: Chuẩn bị mẫu giả định có nồng độ Ti(IV) biét có thành phần tương tự thành phần số dung dịch sau phá mẫu thực - Phương pháp nghiên cứu, kỹ thuật sử dụng: Phổ huỳnh quang thiết bị HITACHI F-2700, đo bước sóng phát xạ khoảng bước sóng từ 300-600 nm - Kết quả: Kết phân tích lượng Ti mẫu giả Nội dung 6: Xác định Ti mẫu thật đo đối chứng với phương pháp khác - Cách tiêp cận: Mau cát thu thập Bình Thuận Mau nghiền mịn cối xay chuyên dụng, sau cho mẫu vào túi PE Sau tiến hành phá mẫu phân tích định lượng Ti(IV) phương pháp huỳnh quang iv Phương pháp nghiên cứu, kỹ thuật sử dụng: Phương pháp phổ huỳnh quang - - Ket quả: Kết phân tích lượng Ti mẫu thật với phương pháp khác Nội dung 7: Viết đăng tạp chí ISI Scopus - Cách tiếp cận: Đọc tài liệu, viết báo - Phương pháp nghiên cứu, kỹ thuật sử dụng: Viết tổng quan tài liệu, TN, kết thảo luận kết luận - Viết báo cáo tổng kết Tổng kết kết nghiên cứu - Khảo sát hình thành phức dung dịch PLB Ti(IV) phương pháp huỳnh quang - Xã định điều kiện tối ưu trình hình thành phức - Tổng hợp phức rắn Plumbagin với Ti(IV) đặc tính phổ phức - ứng dụng phân tích định lượng Ti(IV) mẫu cát Bình Thuận phương pháp huỳnh quang cho kết phù hợp với phương pháp ICP-OES Đánh giá kết đạt kết luận - Công bố 01 quốc tế tạp chí thuộc danh mục ISI; - Hoàn thành báo cáo nghiệm thu đề tài Tóm tắt két 6.1 Tóm tắt tiếng việt Phức chất Plumbagin với Ti(IV) lần tổng hợp nghiên cứu phương pháp huỳnh quang Sự phát huỳnh quang phức đặc trưng bước sóng kích thích phát xạ 605 nm 500 nm Cường độ huỳnh quang ổn định sau phút, tỷ lệ mol ổn định Ti(IV) PLB 1:2, khoảng pH từ 4-6, số liên két K= 3.98xl04 chọn lọc Ti(IV) Phức tồn ổn định ethanol Kết quang phổ huỳnh quang, ƯV-vis, FT-IR, ^-NMR, 13C-NMR, HSQC, HMBC, HR-MS, tia X, XPS, TGA, SEM-EDX TEM cho biết cấu tạo phức Ti(PLB)2 Nghiên cứu áp dụng phức chất vào phương pháp phân tích mẫu cát Bình Thuận cho kết tương thích với kết phương pháp ICP-OES Nghiên cứu sử phép tính DFT để giải thích chế phát huỳnh quang phức Ti(PLB)2 Quang phổ huỳnh quang coi phương pháp để phân tích Ti dựa phức Ti(PLB)2 EtOH: H2O = 7:3 chứng tỏ ưu điểm tính đơn giản, tính chọn lọc, độ nhạy cao, V dung mơi thích hợp Các giá trị LOD LOQ Ti (IV) pH 5,0 2xl0'7 M 7xlO’7M Độ xác trung gian (độ lệch chuẩn tương đối (RSD), %) 4.09% Phương pháp đề xuất có ưu điểm có tính chọn lọc cao, độ nhạy cao, phức huỳnh quang hình thành tức thời, thiết bị phân tích đơn giản cho kết có độ xác 6.2 Tóm tắt tiếng Anh A novel Ti-PLB compound, a complex of titanium (Ti) and plumbagin (PLB) in acidic medium, has been synthesized for the first time and investigated via fluorescence spectroscopy This complex's fluorescence demonstrated that it emits and excites light at wavelengths of 605 nm and 500 nm, respectively It has a stable fluorescence intensity after minutes, a stable mol ratio of Ti to PLB of 1:2, a pH range of 4-6, binding constants of K= 3.98xl04and is extremely selective for Ti It has also been properly stabilized in ethanol Fluorescence spectroscopy, UV-vis, FT-IR, ^-NMR, 13C-NMR, HSQC, HMBC, HR-MS, X-rays, XPS, TGA, SEM-EDX, and TEM have all pointed to a complex structure, Ti (PLB)2 This article invented it to determine the optimal conditions, and the sand sample analysis has also been applied in this project, with conclusions that are compatible with the results of the ICP-OES methodology and the DFT calculation explains the fluorescence mechanism of Ti(PLB)2 complex Fluorescence spectroscopy has been established as a novel method to analyze Ti that is based on the complex of Ti (PLB)2 in EtOH: H2O = V:V=7:3 and it has demonstrated advantages such as simplicity, selectivity, high sensitivity, and appropriate solvent The values of the LOD and LOQ of Ti (IV) at pH of 5.0 are 2x10’ M and 7xlO’7M The intermediate precision (relative standard deviation (RSD), %) was 4,09% The proposed method has the advantages of being very selective, high sensitivity, fluorescence complexes forming instantaneously, and simpler analytical equipment and the results give the same accuracy vi III Sản phẩm đề tài, công bố kết đào tạo Két nghiên cứu ( sản phẩm dạng 1,2,3) TT Yêu cầu khoa học hoặc/và tiêu kinh tế - kỹ thuật Tên sản phẩm Đạt Đăng ký Bài báo quốc 01 báo I SI tế tạp chí Scopus/ISI 01 báoISI (Q1,IF: 5,3) Tên báo: The spectroscopic properties and capability of a new and selective complex of Ti-Plumbagin for analyzing titanium in sand samples (Microchemical Journal 194 (2023) 109227), https://doi org/10.1016/j microc.2023.109221 IV Tình hình sử dụng kinh phí TT Nội dung chi Chi phí trực tiep Công lao động Nguyen vật liệu, thiết bị, máy móc - Plumbagin - Titan chloride - Cromochloride - Dung mơi cộng hưởng từ Acetone,dó In ấn, Văn phịng phẩm Kỉnh phí duyệt (đồng) 50,000,000 34,404,000 14,500,000 10,000,000 1,000,000 1,000,000 Kỉnh phí thực (đồng) 50,000,000 34,404,000 14,500,000 10,000,000 1,000,000 1,000,000 2,500,000 2,500,000 1,095,900 1,095,900 Ghi Tổng số : 50,000,000 V Kiến nghị (về phát triển kết nghiên cứu đề tài) Kết đạt thành cơng chúng tơi trình nghiên cứu lần phức chất plumbagin với ion kim loại Titanium tổng hợp nghiên cứu phưong pháp quang phổ huỳnh quang, nghiên cứu xác định điều kiện tối ưu ứng dụng phân tích mẫu cát vói kết luận tưong thích với kết phưong pháp ICP-OES cần tiến hành khảo sát nghiên cứu tách chiết, làm giàu chất phân tích plumbagin nhằm tăng độ nhạy cho q trình phân tích Ti(IV) mẫu thực vii VI Phụ lục sản phẩm (liệt kê minh chứng sản phẩm nêu Phần III) The spectroscopic properties and capability of a new and selective complex of TiPlumbagin for analyzing titanium in sand samples (Microchemical Journal \94 (2023) 109227), https://doi.Org/10.1016/j.microc.2023.109221 Tp HCM, ngày 16 tháng 10 năm 2023 Chủ nhiệm đề tài Phòng QLKH&HTQT Nguyễn Văn Thòi (ĐƠN VỊ) Trưởng (đon vị) PGS.TS Nguyễn Văn Cường viii PHẦN II BÁO CÁO CHI TIẾT ĐÈ TÀI NGHIÊN cứu KHOA HỌC MỤC LỤC CHƯONG 1: TÔNG QUAN 14 1.1 Tổng quan Plumbagin 14 1.1.1 sơ lược nguồn gốc Plumbagin 14 1.1.2 ứng dụng Plumbagin 15 1.2.Sơ lượt kim loại Titanium khả tào phức 23 1.2.1 Titanium hợp chất 23 1.2.2 Khả tạo phức titanium 23 1.2.3 Một số phương pháp xác định Ti 25 1.3 Nghiên cứu phức chất phương pháp huỳnh quang phân tử 25 1.3.1 Định nghĩa phương pháp huỳnh quang 25 1.3.2 Phổ kích thích (excitation) huỳnh quang 25 1.3.3 Phổ phát xạ (emission) huỳnh quang 26 1.3.4 Phân tích định tính phương pháphuỳnh quang .26 1.3.5 Phân tích định lượng phổ huỳnhquang phân tử 26 CHƯONG THựC NGHIỆM 27 2.1 Hóa chất, thiết bị, dụng cụ 27 2.2 Quy trình tiến hành 27 2.2.1 Khảo sát tạo phức dung dịch phương pháp huỳnh quang 27 2.2.2 Tính tốn số cân phức 28 2.2.3 Xác định LOD, LOQ 28 2.2.4 Phân tích lượng Titan mẫu cát Bình Thuận 28 2.2.5 Quy trình tổng hợp chất rắn phức Ti PLB 28 CHƯONG KẾT QUẢ VÀ THẢO LUẬN 30 3.1 Khảo sát tín hiệu tạo phức 30 3.1.1 Phổ hấp thụ ƯV-vis 30 3.1.2 Phổ huỳnh quang 30 3.1.3 Quang phổ FT-IR, HR-MS, 1H-NMR phức PLB Ti dung dịch 31 3.2 Tính tốn lượng tử phức Ti(PLB)2 35 3.3 Giải thích chế phát huỳnh quang phức Ti (PLB)2 .38 ix NCKII/ll y Bộ CÔNG THƯƠNG TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP THÀNH PHĨ HỊ CHÍ MINH PHIẾU PHẢN BIỆN ĐỀ TÀI NGHIÊN CỨU KHOA HỌC CẤP TRƯỜNG (dành cho chức danh phản hiện) Tên đề tài: Nghiên cứu phức chất Plumbagin với Ti(IV) dung dịch ứng dụng (Mã số: 22/2 HHSVOI) Chủ nhiệm đề tài: NCS ThS Nguyễn Văn Thời Họ tên thành viên phản biện (kèm học vị) PGS.TS Trần Ngọc Quyển Đơn vị công tác: Viện Khoa học Vật liệu ứng dụng Thời gian nhận hồ sơ phản biện: Jứ / A4 J.2£2ứ Thời gian hoàn thành phản biện: ,z/KÍ./.ZÍ / I/ ĐÁNH GIÁ TỐNG QUÁT Sự trùng lắp tên đề tài Đề tài nghiên cứu tạo phức chất titanium plumbagin nên trùng lắp với nghiên cứu Mức độ đáp ứng mục tiêu, phương pháp tiếp cận, phương pháp nghiên cứu nội dung thực (so với đăng ký Thuyết minh đề tài) Phương pháp nội dung nghiên cứu phù hợp nội dung đề Già trị khoa học (tỉnh mới, lính sảng tạo, phát triển, ) CNĐT tồng hợp thành công Phức chất Plumbagin với Ti(lV) phát huỳnh quang đặc trưng bước sóng kích thích phát xạ 605 nm 500 nm Cường độ huỳnh quang ổn định sau phút, tỳ lệ mol ổn định Ti(IV) PLB 1:2, khoảng pH từ 4-6, số liên kết K= 3,98x104 chọn lọc Ti(IV) Nhóm nghiên cứu áp dụng phức chất vào phương pháp phân tích mẫu cát Bình Thuận cho kết tương thích với kết phương pháp ICP-OES Giả trị ứng dụng (phát triền khoa học-công nghệ; tạo sàn phẩm mới; đào tạo nhân lực; phạm vi mức dộ ứng dụng, v.v ) Sản phẩm cùa nghiên cứu có giá trị ứng dụng để xác định hàm lượng titan nhiều loại mẫu phân tích Sản phẩm nghiên cứu, thơng tin khoa học (sổ lượng chất lượng sàn phấm dạng 1, dạng 2, dạng 3, bảo; giảng, giảo trình, sách chuyên khảo; ) Sản phẩm đề tài công bố có chất lượng Bài báo đăng tạp chí (Microchemical Journal 194 (2023) 109221), IF5.3, QI, Scanned with CamScanner NCKH/i Hiệu nghiên cứu (kinh tế - xã hội; khoa học - công nghệ; thông tin; đào tạo bồi dưỡng nhân lực; nâng cao lực khoa học - công nghệ, v.v ) Bổ sung sản phẩm đào tạo có Chẫt lượng bảo cảo khoa học tổng kết Báo cáo trình bày Tốt nhiên cần lưu ý số điểm sau: Cần phân bie65t5 rõ pp tổng hợp bàng huỳnh quang hay đánh giá hình thành phức huỳnh quang - SEM-EDX TEM, HSQC, HMBC có cần thiết ko - Các điều kiên khảo sát mở rộng - Vi ACN DMSO khơng phát huỳnh quang - Biện luận lại phổ FTIR 2771 (dao động giàn liên kết đôi C=O), 1823 (dao động giãn liên kết đôi C=O), 1646, 1610 (dao động giãn liên kết đôi C=O), - Phân tích biện luận thêm TGA Chất lượng báo cảo tóm tắt dề tài Tốt Tài liệu tham khảo, trích dẫn, mức dơ xác thực trích dẫn: Cần tăng cường trích dẫn cho biện luận đề tăng sở khoa học II/ ĐÁNH GIÁ SẢN PHẤM a) số lượng sản phẩm, khối lượng sản phẩm (đánh dấu X vào thích hợp) số lượng, khối lưọiìg sân phẩm Đánh giá Theo Theo Tên sản Nhận xét TT thuyết thực Không phẩm Đạt minh tế Đạt í -í 7^ b) chất Iưọ’ng sản phẩm (đảnh dấu X vào thích hợp) Số lượng, khối lượng sản phẩm Tên sản TT Đánh giá Theo Theo phẩm Nhận xét Scanned with CamScanner V -• w□ 3* / / NCKII/II thuyết AổUù minh thực tế ■7 -7 Không Đạt Đạt / III Ý KIẾN VÈ NHŨNG TỒN TẠI VÀ HƯỚNG GIẢI QUYẾT (BẮT BUỘC): Cân nhắc hồn thiện theo góp ý IV.KETLUAN: Đề nghị nghiệm thu sau hoàn thiện góp ý THÀNH VIÊN HỘI ĐỊNG (kỷ ghi rõ họ tên) Scanned with CamScanner TRƯỜNG ĐH CÔNG NGHIỆP TP HCM Khoa Cơng nghệ Hóa học BẢN GIẢI TRÌNH Chỉnh sửa Nội dung đề tài Nghiên cứu Khoa học năm 2022 Tên đề tài: Nghiên cửu phức chất Pliiinbagin với Ti(IV) dung dịch ứng dụng Chủ nhiệm đề tài: Nguyễn Văn Thời Đon vị chủ trì: Khoa Cơng nghệ Hóa học Căn cử biên họp Hội đồng nghiệm thu ngày 18 tháng 11 năm 2023, tơi đă thực chình sửa nội dung đề tài theo yêu cầu thành viên Hội đồng nghiệm thu sau: TT Vị trí Ý kiến thành viên Nội dung chỉnh sửa chỉnh sửa HĐ PGS.TS Trần Hồng Phuong - Bổ sung thơng tin tài liệu -Tài liệu 38,40 Tài liệu tham khảo nên tham khảo: tác giả, tạp chí, nãm trích dẫn thống xuất - Bố cục phần II báo cáo chi -Đã phân chia lại bố cục danh pháp, tả, hình tiết nên phân chia theo cách nội chương phần II dung đăng ký ảnh - Cần thống thuật ngữ -Đã chỉnh sửa thống từ “kháng” ưang iii “kháng” “chống” Lỗi trình bày: thuật ngữ, - Kiểm tra lại ký hiệu, dấu -Đà chỉnh sừa trang iii câu - Các tiêu đề mục 4.1, 4.2 -Sửa thành 3.1, 3.2 trang iii - Cách tiếp cận không nên -Đã bồ sung cách tiếp cận ghi thực nghiệm mà cần mô tả thực nghiệm trang iv cụ thể nội dung cách tiếp cận thực nghiêm - Cách đánh số thứ tự Bảng, -Đă chỉnh sửa cách đánh bảng hình theo chương ví Hình nên theo chương s dụ: Hình 1.1, 1.2, - Giữa số đơn vị nên -Đà chỉnh lại trang 12, 15 khơng có khoảng cách -Đẫ bồ sung tài liệu tham Scanned with CamScanner TT Nội dung chỉnh sủa Vị trí chỉnh sửa - Bổ sung tài liệu tham khảo khảo trang 14 hình õ, Ý kiến thành viên HĐ 7, 8, 9, 10, 11, 12, 13, 14 - Chinh lại danh pháp cho - Đã chình trang 14 - Một số lỗi như: tên Plumbagin không nên viết hoa nanoparticles câu, nên - Đã chinh sử bảng báo cáo polymeric dịch sang tiếng việt, ký hiệu danh pháp - Hình 34 cần vẽ lại H Đã bo sung H aryl vinyl hình 34 aryl Thống dấu thập phân Thống dấu thập phân chấm PGS.TS Quyển Trần Ngọc dấu chấm; - Làm rõ phương pháp tông Nghiên cứu tạo hợp huỳnh quang hay ứng phức dung dịch dụng huỳnh quang phương pháp phổ huỳnh quang ứng dụng phân tích Ti - Các kết q phân tích khơng cần q nhiều đề tài - Khảo sát mờ rộng để xác định dược vùng tối ưu Giải thích rõ số nội dung liên quan như: dung môi Tác giả rút kinh nghiệm xem xét cần đưa vào luận vãn đề tài; Tác già khảo sát điệu kiện đơn lẽ tốt cho tạo phức; không phát quang, ảnh hưởng, Một sổ dung môi dao dộng giãn phổ FTIR, không phát quang mơi TGA, trường acid: DMSO, AcCN, pH acid có proton hố ngun tử (DMSO) N (AcCN) PGS.TS Võ Thế Kỳ - Nên phân tích thêm mơi trường có ion càn (ion +4) Nếu lần tới Scanned with CamScanner TT Ý kicn thành viên HĐ Vị trí chỉnh sửa Nội dung chỉnh sửa khảo sát ion cỏ thể xem xét ion cản Th4+ - Phức chất có -OH thay đổi tích chất phức Phức chất có H nhóm hydroxyl phức mang điện tích, phức chất có momen lường cực khác khơng tan dung mơi phân cực; TS.Nguyền Hữu Trung Đẫ chỉnh sửa báo - Bổ sung đầy đủ báo minh chứng báo vào thuyết minh - Thuyết minh nên cấu trúc cáo theo yêu cầu HĐ lại hợp lý theo hợp đồng để nghiệm thu PGS.TS Nguyền Văn Cưòng - Đã điều chỉnh thống - Điều chình thống danh pháp, đơn vị sử dụng báo theo danh pháp tiếng cáo Anh, danh pháp IƯPAC; - Nên đưa vào phương pháp - Nếu kết tinh đơn tính tốn khoảng cách tinh thể tiến nguyên tố hành xác định cấu trúc phức; Sắp xếp lại cấu trúc báo - Đà chỉnh sửa bố cục; cáo Kính đề nghị Chủ tịch hội đồng xem xét cho ý kiến đánh giá nội dung báo cáo chỉnh sửa PHẢN BIỆN ( ký ghi rõ ho tên) (kỷ ghi rõ họ tên) PHẢN BIỆN (ký ghì rõ họ tên) HỘI ĐÒNG NGHIỆM THU (ký ghi rõ họ tên) Scanned with CamScanner Microchemical Journal 194 (2023) 109221 • ■ Contents lists available at ScienceDirect 5S Microchemical JOURNAL IdfeJiL ELSEVIER Microchemical Journal journal homepage: www.elsevier.com/locate/microc The spectroscopic properties and capability of a new and selective complex of Ti-Phimbagin for analyzing titanium in sand samples Nguyen Van Thoi \ Tran Nguyen Minh An a’ , Nguyen Quoc Hung1* Pham Van Tat ' , Le Van Tan ’ a Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam b Center of Analytical Services and Experimentation HCMc, Nguyen Van Thu, Đakao, District Ỉ, Ho Chi Minh City 700000, Vietnam c Institute of Pharmaceutical Education and Research, Binh Duong University, Thu Dau Mot City, 820000 Birth Duong Vietnam ARTICLE INFO ABSTRACT Keywords: Plumbagin Ti-Plumbagin complex Determination of titanium Selectivity fluorescence ICP-OES DFT A novel Ti-PLB compound, a complex of titanium (Ti) and plumbagin (PLB) in acidic medium, has been syn­ thesized for the first time and investigated via fluorescence spectroscopy This complex’s fluorescence demon­ strated that it emits and excites light at wavelengths of 605 nm and 500 nm, respectively It has a stable fluorescence intensity after min, a stable mol ratio of Ti to PLB of 1:2, a pH range of 4-6, binding constants of K 3.98 X 10+4 and is extremely selective for Ti It has also been properly stabilized in ethanol Fluorescence spectroscopy, UV-vis, FT-IR, XH NMR, 13c NMR, HSQC, HMBC, HR-MS, X-rays, XPS, TGA, SEM-EDX, and TEM have all pointed to a complex structure, Ti (PLB)2 This article invented it to determine the optimal conditions, and the sand sample analysis has also been applied in this project, with conclusions that are compatible with the results of the ICP-OES methodology and the DFT calculation explains the fluorescence mechanism of Ti(PLB)2 complex Fluorescence spectroscopy has been established as a novel method to analyze Ti that is based on the complex of Ti (PLB)2 in EtOH: H2O V:V 7:3 and it has demonstrated advantages such as simplicity, selec­ tivity, high sensitivity, and appropriate solvent The values of the LOD and LOQ of Ti (IV) at pH of 5.0 are X IO-7 M and X 10~7M The intermediate precision (relative standard deviation (RSD), %) was 4.09% The proposed method has the advantages of being very selective, high sensitivity, fluorescence complexes forming instantaneously, and simpler analytical equipment and the results give the same accuracy Introduction Due to its widespread distribution in the Earth’s crust, titanium is frequently recognized as a static metal [1], Titanium exists as insoluble oxides, moreover, it is non-toxic and safe for human’s consumption, even in large doses [2,3] There are detectable levels of this element in the human body, but it is excreted rather than absorbed [4], Addition­ ally, Titanium may not function in biology on its own, however some titanium complexes are unmistakably bioactive [5,6], together they provide promising cancer therapies characteristics [7] Ti is easily hy­ drolyzed in aerobic aqueous solutions with pH values that are close to neutral, hence it is not highly soluble in water Complex of titanium have been identified as potential anticancer treatments [5,8], with the conclusion provided: poor hydrolytic stability of these Ti compounds in living organisms prevented any successful therapeutic investigations As potential practical uses of fluorescence chemistry, titanium(IV) salen complexes, cis-bis(acetylacetonate) and other bis(-diketonate) com­ plexes, and mononuclear, non-oxo, mixed-ligand complexes of Ti have all been investigated [9-11] Nevertheless, there was no published research suggesting the complex relationship that exists between PLB and Ti, also, no decision was made considering the plumbagin fluores­ cence spectroscopy with Ti or any other d or f elements Within recent few years, Ti-PLB complexes have gained attention as a novel method for detecting Ti in industrial samples, biological samples, and inorganic chemistry domains The rhizomes of the plant Plumbago zeylanica L are used to produce the naphthoquinone, as known as PLB PLB has captured the interest of scientists for a variety of reasons, including its antimicrobial [12,13] and antifungal [14,15] activities, anti­ inflammatory, anti-malarial activity [16], anti-cancer [17], anti-tumor [18], anti-diabetes [19], antioxidant [20], anti-atherosclerotic, anal­ gesic [19,21] and other biological properties for instance car­ dioprotective [22], anti-HIV activity [23], and enhances phagocytosis in * Corresponding authors E-maã addresses: trannguyenminhan@iuh.edu.vn (T.N.M An), levantan@iuh.eđu.vn (L Van Tan) https://doi.Org/10.1016/j.microc.2023.109221 Received July 2023; Received in revised form 18 August 2023; Accepted 18 August 2023 Available online 25 August 2023 0026-265X/© 2023 Elsevier B.v All rights reserved Microchemical Journal Ĩ94 (2023) Ĩ0922Ĩ N Van Thoi et al human WBCs [24] Research on PLB complexes with transition metals or rare earths is still restricted, even bearing not only an application in medicinal chemistry but also a promising role in investigation utilizing uv spectroscopy that have shown significant promise The K constants of the complexes of Cu (II), Ni (II), Co (II), Mn (II), Zn (II), Cd (II), and PLB are investigated and calculated using UV-vis analysis [25] Appli­ cations of PLB reagent include pH indicator and -a metallochromic in­ dicator in titration in analytical chemistry [26], in addition, it also plays a remarkable role in preparing and characterizing complexes of PLB and Cu (II), Ni (II) ions A set of complexes - Co (II), Mn (II), Zn (II), and Hg (II) with PLB had been performed and investigated for thefr stability constants in solution via the potentiometric titration method The ach­ ieved results are the basis for providing a model for the uptake, trans­ portation and storage of nutrient metal ions by plants [27] Several studies were reported on the color reaction of plumbagin with iron, nickel and copper ions [28], and, a systematic study of the metal com­ plex of plumbagin was performed with the first step of experimenting with compounds of transition metal ions followed by including lantha­ nide ions to the structure Most transition metal complexes exhibit a 1:2 stoichiometry ratio (except iron ions, which have a ratio of 1:3) and have a distorted octahedral shape with varying degrees of solubility Some previous articles had indicated the synthesis of PLB reagent complexes with Ru(II) [29], Y (III), La (III), Sm (III), Gd (III), Dy (III) [30], Ag(I) [31], and Cu(II) [32], respectively PLB is capable of cyclization with many transition metal ions, however, studies on the complexation of PLB was considered to be rare, even no articles were published on the TiPLB complex, especially its fluorescence complex Titanium is present in many industrial objects, so the analysis also focuses on these objects The different methods such asUV vis [33,34], AAS [35,36], ICP-MS [37,38] have been used to analyze Titanium Recently, there have been a number of studies applying the cloud extraction method to determine Titanium and nano TiO2 with very positive results [39] The eutectic solvent extraction method has also made positive progress in the anal­ ysis of plant and motor oil samples [40] The solid phase extraction has been used to determine Titanium in pesticides [41] Therefore, to solve the lack of information on the mentioned problems, in this research, we conducted the complex of Ti and PLB by fluorescent spectroscopy, the characteristics of the complex, and its application in the field of analysis solution is added to the volumetric flask of 25 mL as follows: 2.0 mL of 1.0 X 10 mol L PLB solution The mixture is diluted to 10 mL with water and allowed to stand for at 25 °C before performing fluo­ rescence measurements The intensity of the fluorescence was measured at 605 nm in a cm quartz cuvette, with slit widths for the excitation and emission at 10 and ran, respectively 2.3 Calculation of the binding constants The Benesi-Hildebrand method was used to calculate the association constant and stoichiometry for complex formation [42,43] Ti-PLB complex was calculated according to the following equation, Log(f-&) = logK + zrLog[Ti] Fo is the corrected emission intensity of the initial complex, F is at the time interval, and Fm is in the final state when the complex is completely formed upon the addition of a metal ion 2.4 Determination of LCD, LOQ To determine the LOD, LOQ of Ti(IV) analytical method, the fluo­ rescence intensity was measured on a real sample twenty times, and then, the theoretical concentration of Ti (IV), (x0) was calculated using a linear equation The mean of theoretical concentration (x 0), and the standard deviation (SDo) were calculated The values of LOD and LOQ were calculated by the formular: SD0, and 10 SD0, respectively To evaluate the value of LOD, the R was calculated by formular rf/LOD If < R < 10, the concentration of the tested solution is appropriate This mean that the calculated value of LOD is reliable bellow [44] and RSD(%) = 5-100 SD = y n- v ' X In which: SD: standard deviation; X,: 1th experimental value; x: The mean value of the experiments; n: number of repetitions 2.5 Procedure for analysis titanium in sand sample Sand samples were collected from gathered in Chi Cong ward, Tuy Phong district, Binh Thuan province Sand samples were grounded into a fine powder in a specialized millstone and were stored in PE bags to determine Ti(IV) To determine the concentrations of Ti (IV), a wet digestion method was used to digest 0.13 g of the powdered sample in a platinum crucible using 10 mL of concenưateđ hydrofluoric acid (HF, Merck, Germany) and mL of concentrated perchloric acid (HCIO4, Merck, Germany) The platinum crucible was then heated in sand baths (Combiplac-Sand Code.6000708, Spain) until the white smoke was disappeared The solution was cooled to temperature room and then was added mL of concentrated hydrochloric acid (HC1, Merck, Germany) The solution was gently heat until completely dissolved The obtained clear liquid was adjusted to pH using concentrated NH3 The solution was diluted to 50 mL using deionized water The final solution was determined the concentrations of Ti (IV) by measured the fluorescence intensity of PLB and Ti complex and the results were compared to standard method, which was using Inductively Coupled Plasma - Opti­ cal Emission Spectrometry (Optima 2100 DV, Perkin Elmer) Material and methods 2.1 Chemical and apparatus The fluorescence spectra and UV-VIS absorption spectra were recorded on the HITACHI UH5300 (Japan) and HITACHI F-2700 (Japan) models, respectively The FT-IR spectra were obtained by the FT-IR Tensor 27 (Bruker, Germany) The high-resolution mass spec­ trometry (HR-MS) was recorded using an Agilent 6500 series Q-TOF (USA), and the pH meter Hanna HI 2210 was used to measure the pH value of solutions XH NMR spectrum was performed on a Bruker Advance Neo (Switzerland) 500 MHz spectrometer using acetone D6 as solvent The tthermal Analyzers TGA 55 was obtained from TA Instru­ ment Plumbagin was purchased from Sigma-Aldrich Company (Singapore), while other chemicals such as ethanol, butanol, methanol, DMSO, acetonitrile, Ti (NH4)2Fô, HNƠ3, NaOH, and all metal salts introduced as nitrate salts in this study were purchased from Merck These solutions were diluted with deionized water to form the desired solutions used in this study, with storage for The PLB solution was in a dark glass bottle and kept cool The dilution of HC1 or NaOH solutions is selected to adjust the pH of the solutions All measurements were ob­ tained at 25 °C 2.6 Procedure of synthesis complex solid ofTi and PLB Weighing 37.6 mg (0.2 mol) of pure PLB dissolved in 30 mL of ethanol, followed by adding mL of Ti standard solution of 1000 ppm (0.1 mol) and 30 mL of distilled water, HC1 was used as the adjustment of the solution to acquire a pH value of 5, the mixture was stirred with one magnetic stirrer at 25 °C Immediately, precipitates began to form, continue to stir for h to ensure that the reaction was completed The solid is then filtered, washed with methanol, and dried under vacuum condition to dry solid The orange complex crystals (CnHsO3)2Ti were obtained 2.2 Procedure of fluorescence determination The analytical solution was adjusted to a pH of by adding NaOH solution, followed by transferring it to a 10 mL volumetric flask The Microchemical Journal Ĩ94 (2023) Ĩ0922Ĩ N Van Thoi et al 400 500 Wavelength (nm) 600 Fig (A) The UV/vis spectra of PLB at concentration of 1.6 X 10'5 M in Eton media at pH of and pH of 9; (B) The UV/vis spectra for PLB and Ti-PLB complex in Eton media at pH of 5, (C) The UV/vis spectra of Ti-PLB complex in Eton media at pH of with the addition of Ti from 0.3 to 0.8 X 10-5 M Fig (A) Fluorescence emission spectra of PLB, Ti and Ti-PLB 1,6 X 10-5 M in Eton, pH of 5; (B) The fluorescence emission spectra of Ti-PLB solution various media in at pH of 5; (C) The fluorescence emission spectra of Ti-PLB solution in EtOH media at pH of with the addition ofTi in concentrations of from 0.4 to 0.8 X 10 s M at the excitation wavelength of 500 nm highest intensity, and this intensity was changed in different solvents such as butanol (BuOH), methanol (MeOH), dimethyl sulfoxide (DMSO), and acetonitrile (AcCN) As indicated in Fig 2C, the fluorescence emission spectra of Ti-PLB solution in EtOH media at pH of with the addition of Ti (IV) in various concentrations from 0.4 to 0.8 X 10 M at the excitation wavelength of 500 nm, it demonstrated that the higher concentration of Ti (IV) added to PLB solution, the greater the fluores­ cent intensity Results and discussion 3.1 Fluorescence and UV-vis properties in solution 3.1.1 Uv-vis spectroscopy In the acidic medium PLB acquires the maximum absorption spec­ trum (UV-vis) at 268 nm and 418 nm, respectively which are conve­ niently described in terms of the quinonoid electronic transitions (QET) and n -» ft* transition, while in the basic medium plumbagin has the maximum absorption spectrum at 278 nm and 530 nm which are conveniently described in terms of quinonoid electtonic transitions (QET) and n—> 1C* transition [45] as shown in Fig 1A There were no significant changes when Ti was added to the PLB solution in the alka­ line medium Conversely, the intensity at peak 418 decreased and shifts to nearly 500 nm in acidic medium, as seen in Fig IB At 500 nm, the absorption spectrum of PLB that added to Ti solution results in the in­ crease of intensity due to concentration increase of Ti, as illustrated in Fig IC It proved that the transformation of conjugate system n —> K* was made The occurrence of red shifts for Ti-PLB chelates indicated the adjustment in the corresponding energy gaps in the electronic energy levels of the plumbagin was the result of chelation 3.2 FT-IR, HR-MS, 1H NMR spectroscopy of PLB and Ti complex forming in media 3.2.1 FT-IRofPLB As shown in Fig A.l and Fig A.1.1, the IR of Plumbagin (PLB) is indicated infrared absorption maximum in the unit of vmax (cm x) as strong vibrations such as 3442 (stretching vibration of O-H, phenol), 3046 (stretching vibration of C-H, methyl), 2771 (stretching vibration of aromatic C-H), 1823 (stretching vibration of c=o double bond), 1646, 1610 (stretching vibration of c=o double bond), 1455, 1419 (stretch­ ing vibration of C—c double bond of aromaric ring), 1365, 1337, 1260,1234 (stretching vibration of C-0 single bond), and 903, 833, 755 (aromatic ring bearing substition groups as OH, and methyl groups) 3.1.2 Fluorescence spectroscopy The fluorescence characteristics of PLB, Ti-PLB and Ti in EtOH media at pH of were shown in Fig 2A, within the same illustration, the Ti-PLB complex (red line) appeared the fluorescence spectrum at 605 nm in acidic medium and neither fluorescence spectroscopy of PLB (blue line) nor Ti (green line) was investigated When the Ti-PLB effect took place, these signals corresponded to the UV-vis signals As seen in Fig 2B, the fluorescence intensity of Ti-PLB solution in various media indicated the 3.2.2 FT-IR of PLB-Ti (IV) complex As shown in Fig A.l to Fig, A.1.2, the IR of PLB-Ti(rv) complex is indicated infrared absorption maximum in the unit of Vtnax (cm x) as strong vibrations such as 3460 (stretching vibration of O-H, phenol in forming complex of PLB-Ti(rv)), 3115, 3022 (stretching vibration of CH, methyl in forming complex of PLB-Ti(rv)), 2781 (stretching vibration of aromatic C-H in forming complex of PLB-Ti(IV)), 1802 (stretching Microchemical Journal Ĩ94 (2023) Ĩ0922Ĩ N Van Thoi et al LUMO HOMO HOMO-1 -J HOMO-2 HOMO-3 Ti(PLB)-, Fig Energy diagram of boundary MOs for complex Ti(PLB)2 solid state; electton transfer from HOMO, HOMO-1, HOMO-2, and HOMO-3 to LUMO and LUMO + proton or phenolic proton at a chemical shift of 11.97 ppm as one singlet peak, and the chemical shift of it in the PLB-Ti (IV) complex showed it at 11.80 ppm The intervals of chemical shifts of the H-5 proton between PLB and the PLB-Ti(IV) complex is 0.17 ppm (85 Hz) The signal reso­ nances of the proton in 1H NMR spectroscopy of the complex between PLB and Ti shifted into the up field and proved to have complex for­ mation between PLB and Ti For instance, in 1H NMR of complex, the interval of chemical shift of the H-7 proton was in the range of 0.09 ppm (45 Hz) Those intervals of chemical shifts and resonance frequencies of protons between PLB and PLB-Ti (IV) complex such as H-6, H-8, H-3, and methyl protons were determined to be 0.12 ppm (60 Hz), 0.09 ppm (45 Hz), 0.11 ppm (55 Hz), and 0.01 ppm (5 Hz) The resonance signal of methyl protons has a minor change because of the hyperconjugation effect (H) on PLB structure in complex that leads to deshield weak in nuclear protons of the methyl group The resonance peaks of protons in PLB-Ti (rv) complex were shifted in range from Hz to 85 Hz to compare to PLB vibration of c=o double bond in forming complex of PLB-Ti(IV)), 1645, 1610 (stretching vibration of c=o double bond in forming complex of PLB-Ti(IV)), 1455, 1404 (stretching vibration of c=c double bond of aromaric ring in forming complex of PLB-Ti(IV)), 1364, 1337, 1260,1233 (stretching vibration of C-0 single bond in forming complex of PLB-Ti(IV)), 985, 896, 828, 755 (aromatic ring bearing substition group as OH, and methyl groups in forming complex of PLB-Ti(IV)), and 577.0(strong absorption band of stretching vibration in forming com­ plex of PLB-Ti(IV),Ti-O) The IR spectroscopy of PLB and Ti-PLB showed peaks in the perdition ranges as seen in Fig A.l, Fig A 1.1, and Fig A 1.2 One strong ab­ sorption band of stretching vibration in the Ti-0 bond is indicated at 577 cm proved the forming complex between Ti and oxygen atom on structure ofPLB as shown in Fig A.l and Fig A.l As seen in Fig A.1.2, most of stretching vibrations of bonds in complex between PLB and Ti (IV) are shifted to large wavelengths comparing between PLB and complex PLB-Ti(rv) that proved the forming complex 3.2.3 HR-MS As seen in Fig A.2, the HR-MS (+ESI) showed the experiment value: [M]+ = 424.3634 and the theory value: [M]+ = 424.0426 This value confirmed that molecule weight of PLB and Ti (IV) is exactly 3.3 The quantum calculation ofTi(PLB)2 complex The complex Ti(PLB)2 has a stable geometric structure, as deter­ mined by calculating the creation of a complex between Ti(IV) and PLB ions in a 1:2 M ratio at the theoretical level of TPSSH/LanL2DZ(Ti)// đef2-SVPD (C, o, H) The geometrical properties of Ti(PLB)2 are pre­ sented in Fig (XYZ coordinates of atoms in Ti(PLB)2) The reaction between PLB and Ti(IV) ions to generate Ti(PLB)2 is thermodynamically favorable, with the enthalpy (AH29s) and Gibbs free energy (AG29g) computed in the gas phase being -37489.4340 kcal/mol and -69314.2550 kcal/mol, respectively The fluorescence characteristic of the Ti(PLB)2 complex depicts in Fig during the electron transfer process Turbomol software has been used to perform quantum com­ putations in this calculation This one can perform energy calculations at various theoretical levels The DFT ECP computations are carried out in the same manner as the Hartree-Fock calculation To optimize the ge­ ometry and symmetry of the identified molecular point group, the Ti (PLB)2 complex was constructed, and the internal coordinates were determined The internal coordinates of the updated Ti(PLB)2 complex are completely calculated in the first stage At the force field level, we were also able to undertake complicated configuration optimization, Cartesian analysis, and Hessian calculations The structural 3.2.4 1H- NMR 3.2.4.1 NMR of PLB As indicated in Figs A.3.1-A.3.6, 1H-NMR (500 MHz, Acetone, [đô], TMS): s (ppm): 11.97 (s, 1H, H-5, OH phenol), 7.73 (t, J = 8.0 Hz, 1H, Aromatic proton, H-7), 7.59 (dd, J = 7.5 Hz, J = 1.1 Hz, 1H, aromatic proton, H-6), 7.29 (dd, J = 8.5 Hz, J = 1.1 Hz, 1H, aromatic proton, H-8), 6.93 (q, J = 1.6 Hz, 1H, vinyl proton, H-3), 2.17 (d, J = 1.6 Hz, 3H, methyl protons, CH3) 3.2.4.2 NMR of PLB-Ti (IV) complex As indicated in Figs A.4.1-A.4.6, 1H-NMR (500 MHz, Acetone, [d6], TMS): s (ppm): 11.80 (s, 2H, OH phenol, H-5 and H-5'), 7.64 (t, J = 8.2 Hz, 2H, aromatic protons, H-7 and H-7'), 7.47 (dd, J = 7.5 Hz, J = 1.0 Hz, 2H, aromatic protons, H-6 and H-6'), 7.20 (dd, J = 8.5 Hz, J = 1.0 Hz, 2H, aromatic protons, H-8 and H-8'), 6.82 (q, J = 1.6 Hz, 2H, vinyl proton, H-3 and H3'), 2.18 (d, J = 2.0 Hz, 6H, methyl protons, CH3 and CH3') 1H NMR spectrum of PLB indicated the signal resonance of the H-5 Microchemical Journal Ĩ94 (2023) Ĩ0922Ĩ N Van Thoi et al Table Excitation energy and MOs involved in excitation forTi (PLB)2 complex at theoretical level TPSSH/LANDL2DZ(Ti)//def2-SVPD (C, o, H) MOs 108 ->■ 107 106 105 108 107 -> 109 109 109 109 110 110 Electron transition MO Ehomo, eV Elumo, eV AEgap, eV Wavelength, Ấ(nm) Energy, Kcal, mol HOMO -+ LƯMO HOMO-1 ->■ LƯMO HOMO-2 -+ LƯMO HOMO-3 -+ LƯMO HOMO LUMO + HOMO-1 LƯMO + -6.1960 -6.4627 —6.8545 -7.0750 -6.1960 -6.4627 -4.2776 -4.2776 -4.2776 -4.2776 -4.0708 -4.0708 1.9184 2.1851 2.5769 2.7974 2.1252 2.3919 646.2885 567.4065 481.1362 443.2273 583.4055 518.3494 44.2394 50.3896 59.4247 64.5073 49.0078 55.1585 characteristics of the Ti(PLB)2 complex are thoroughly determined and characterized as a result of these computations Every complex atom’s basis set and effective core potential (ECP) are assigned to its complex structure in this calculation We have specified the SVPD base and ECP as default values for the elements carbon, oxygen, and hydrogen For atoms with a split valence (SVPD and ECP), the def2-SVPD basis set can be employed [46,47] The basic functions utilized in the def2-SVPD set for carbon, oxygen, and hydrogen are 4s2p2d/8s4p2d, 4s3p2d/8s5p2d, and 2s2p/4s2p, respectively The LANL2DZ-ECP functional basis set represents the titanium element 3s3p2d/8s5p5d with ncore = 10 and Imax = We discovered that the basis set def2-SVPD gives precision and constant periodic table conformity [48,49] The LANL2DZ-ECP functional basis set represents the titanium element 3s3p2d/8s5p5d with ncore = 10 and Irnax = We discovered that the basis set def2SVPD [46,49] gives precision and constant periodic table conformity As shown in Table 1, the excitation energy and boundary MOs of Ti (PLB)2 calculated using the TD-DFT method at the theoretical level of TPSSH/LanL2DZ An energy diagram of Ti(PLB)2 boundary Mos is indicated in Fig As shown in Fig 3, the binding capacity of LPD in Ti (PLB)2 was explored utilizing calculation results based on the principle of electron occupancy in HOMO and LUMO orbitals (highest occupied molecular orbital and the lowest unoccupied molecular orbital) The excitation energy and boundary MOs of Ti(PLB)2 have been calculated using the TD-DFT method at the theoretical level of TPSSH/LanL2DZ, as seen in Table and Fig An energy diagram of the border MOs of Ti (PLB)2 is expose in Fig and demonstrates that the PLB ligand and the region surrounding the O-Ti bonds have the highest electron density in MOs from MO-108 to MO-109 The density functional hybridization (TPSSH) approach has been combined with the basis sets of def2-SVPD and LANL2DZ to complete the calculations The energy diagram of the HOMO and LUMO orbital levels of the Ti(PLB)2 complex is indicated in Fig and one of the two paired electtons occupying on the HOMO has the highest energy of E = -6.1960 eV than the Ti(PLB)2 complex, and other orbital levels of the Ti(PLB)2 complex can move to the LUMO orbit, the energy level of E = -4.2776 eV and the level of LUMO + In addition, the electron is transferred from the HOMO-1 orbital at E = -6.4627 eV level to the LUMO and LUMO -I- orbitals The electron transfer rule governs the excited state and optical characteristics of the sensors If there is no overlap between the first and last MOs in the transition state, this the transition state is disallowed Electron transi­ tions from MO-108 to MO-109 orbital levels absorb at 646.2885 nm, while electron transitions from MO-107 to MO-109 orbitals absorb at 567.4065 nm As a result, electron transitioning from the MO-107 and MO-108 orbitals to the MO-109 orbital level can absorb energy in the range of Egap = 44.2394 kcal/mol to EgaP = 50.3896 kcal/mol excited states from MO-107 to MO-109 and MO-108 to MO-110, with the major contributions from the HOMO-1 to LUMO and HOMO to LUMO + transitions As a result, the fluorescence emission wavelength shifts for the complex to the long wavelength area is greater than 646.2885 nm, 3.5 HR-MS, ÍỊỈNMR, 13c NMR, TGA, HR-TEM, and XPS spectroscopy of die solid complex 3.5.1 1H, 13c NMR, HSQG, HMBS, and HR-MS 1H, 13c NMR, HSQC, HMBS, and HR-MS were provided for PLB and Ti complex formation in the ML2 complex, as seen in Supporting infor­ mation, Fig 1.1 to Fig 1.11 As seen in Figs LI and 1.2, 1H-NMR (500 MHz, DMSO, [d6], TMS): s (ppm): 11.86 (2H, s, phenolic proton, 2H, H5 and H-5'), 7.74 (t, J = 6.5 Hz, 2H, aromatic protons, H-7 and H-7'), 7.54 (d, J = 6.0 Hz, 2H, aromatic protons, H-6 and H-6'), 7.33 (d, J = 6.0 Hz, 2H, aromatic protons, H-8 and H-8'), 6.99 (s, 2H, vinyl protons, H-3 and H-3'), 2.11 (s, 6H, methyl protons, H-ll and H-ll') As indicated in Fig 1.3 to Fig 1.5, the 13c NMR showed peaks as 13c NMR (125 MHz, DMSO, [d6], TMS): s (ppm): 190.1 (quaternary carbon, C-l, C-l'), 184.4 (quaternary carbon, C-4, C-4'), 160.1 (quaternary carbon, C-9, C-9'), 149.4 (quaternary carbon, C-2, C-2'), 136.5 (CH, C-7, C-7'), 135.2 (CH, C-3, C-3'), 132.0 (quaternary carbon, C-10, C-10'), 123.7 (CH, C-8, C-8'), 118.7 (CH, C-6, C-6'), 114.9 (quaternary carbon, C-5, C-5'), 15.9 (methyl carbon, C-ll, C-ll') The HSQC spectroscopy indicated in Fig 1.6 to Fig 1.7 provided carbon bonding to hydrogen at the sample bond (C-H) As seen in Fig 1.8 to Fig 1.10, the 2D HMBC spectrum indicated the H and c correlations as H-3/H-3' with C-4/C-4'and C-5/C-5';H-6/H-6'with C-5/C-5', C-7/C-7', and C-8)/C-8'; H-7/H-Zwith C-4/C-4', C-5/C-5', C-6/ C-6', C-8/C-8, C-9/C-9', and C-10/C-10'; H-8/H-8' with C-5/C-5', C-6/C6', and C-9/C-9' As shown in Fig, 1.11, the high-resolution mass spec­ troscopy (HR-MS) showed a peak experiment value of [M -I- H]+ = 425.0523, and a calculation value of [M + H]+ = 425.0504 confirming that Ti-PLB complex is Ti (PLB)2 3.5.2 TGA As shown in Fig B.l, the thermal decomposition of the Ti-PLB complex was investigated by calorimetry (TGA) The heat plot of TiPLB gave a clue that there was no significant weight decrease due to water loss, yet the hydrophobicity of the Ti-PLB complex might be the reason instead 3.5.3 X-rays As seen in Fig c.l, at the angle of disturbance, the PLB characteristic peaks are 11.32, 13.18, 18.59, 21.94, 25.98, 26.38, 26.48, and 26.82° The PLB-Ti has prominent peaks at 11.41, 13.24, 18.61, and 22.94° The level of interference caused changes in crystallinity between the PLB and PLB-Ti samples Furthermore, the effect of manufacturing circumstances is observed at the 2-theta position: the PLB pattern translates at a lesser angle than the PLB-Ti When the presence of two Ti peaks at positions 25.98 and 26.38 vanishes, it is suggested that Ti could form linkages that decrease PLB crystallization 3,4 The explanation offluorescence mechanism of Ti (PLB)2 complex The calculation results as seen in Table and Fig showed that the electron transfer step can occur in the excited state from MO-108 to MO110, then from MO-107 to MO-109, and finally from MO-108 to MO109 The creation of the Ti(PLB)2 complex shifted the electron density from the PLB ligands to the core Ti (IV) metal ion, narrowing the energy gap between HOMO and LUMO As a result, there was the energy excitation in the range of 567.4065 and 583.4055 nm in the primary Microchemical Journal Ĩ94 (2023) Ĩ0922Ĩ N Van Thoi et al Fig Fluorescence emission spectra of: (A) The effect the ratio of ethanol: water; (B) The effect of pH on the formation of complex; (C) The effect of reaction time 3.5.4 SEM-EDX and TEM of ethanol to water was 7:3 (v/v), as depicted in Fig 4A; conversely, the fluorescence intensity dropped as the volume of water altered from three to one, one to three, and three to seven For the purposes of the subse­ quent research, the volumetric ratio of ethanol to water was 7:3 at 605 nm were performed Since the intensity of the fluorescence emitted by the complex was driven by factors such as pH, solvent, temperature, buffer solution, and foreign ions Hence, it is essential to investigate the circumstances that optimized the results 3.5.4.1 SEM-EDX image Analysis reveals, as seen in Fig D.l and Fig D.2 (A-E), the Ti-PLB complex possesses a homogenous structure of a rigid tube-shaped, an average particle size in the range of 10 pm, as seen in Fig D.3 and an average diameter of 5-6 pm, indicated in Fig D.4 Additionally, the Ti-PLB complex showed tube-shaped rigidity Fig D.2 (A) is an image from a SEM, and it reveals that this complex has a mass percentage composition of 63.39 percent carbon, 25.56 percent oxygen, and 11.05 percent titanium The PLB complex can be seen in Fig D.2 A-E’s map, with the elements Ti (orange), c (red), and o (dark red color) TEM image Crystalline particles comprising the Ti-PLB solid com­ plex were demonstrated to possess homogeneous morphologies and to exhibit an average size of 25 nm, illustrated in Fig E.l 3.6.1 The effects of pH The luminous characteristics of the Ti-PLB complex are influenced by the pH of the solution As demonstrated in Fig 4(B), the pH range where the Ti-PLB combination stabilizes fluorescence intensity spanned from 4.0 to 6.5 In further investigations, a pH of was used for the study, and no buffer solution was employed because of the wide range of pH 3.6.2 The effects of temperature and reaction times Another crucial issue that needs to be researched is temperature Results of the experiment revealed that Ti-PLB complex fluorescence intensity varied with temperature from 20 °C to 40 °C, given the result that temperature had a minor impact on the relative fluorescence in­ tensity Therefore, a temperature control device was required when conducting this method After min, the complicated construction was completed, and it should be steadily maintained for 20 As a result, measurements were made between and 10 after mixing PLB and Ti (IV), as illustrated in Fig 4(C) 3.5.5 XPS spectra The XPS spectrum is analyzed to ascertain the electrical character­ istics of the elements on the complex surface, in addition to the chemical state of those elements The Ti-PLB complex is made up of atoms with a composition that is identical to the nominal formula, which consists of the elements carbon, titanium, and oxygen The illustrations of the collected high resolution XPS spectra are indicated in Fig F.l (A-D) and Table A.l As can be seen in Fig F.l.(A), the investigation of the XPS spectrum revealed the presence of three elements: carbon, titanium, and oxygen As seen in Fig F.2B, the XPS spectra of atomic carbon s (Cis) of the Ti-PLB complex revealed peaks of the binding energies at the set of values: 283.9, 285.39, and 287.9 eV, respectively, to C-C or c=c, C-OH, and c=o bondings [15] The XPS spectrum of atomic oxygen s (Ols) showed two different types of oxygen at values of 531.08 eV that corresponded to Ti-0 bonding while 532.43 eV is the oxygen vacancies, and chemisorbed oxygen species on the surface of complex [50] This information is presented in Fig F2.(C) The values of the binding en­ ergies of Ti 2p3/2 and 2pl/2 in Ti-PLB were determined to be 458.98 eV and 464.31 eV, respectively, as shown in Fig F2.(D) These values match the normal specific energies for Ti4+ ions in complex [51,52] The postulated complex reaction is confirmed as follows, based on spectrum analysis data such as the 1H, 13c, HSQC, HMBC, HR-MS spectra, XPS, and TGA diagrams: Ti + 2PLB = Ti(PLB)2, and the complicated structure is depicted in Fig G.l The major distinction from previous articles was that the Ti (PLB)2 complex is formed in an acidic media without the loss of phenolic hydroxy in Plumbagin 3.6.3 The effects of foreign ions As shown in Fig H.l A, the absorption fluorescence also have formed with Ti (IV) and other metal ions have not shown the absorption fluorescence As demonstrated in Fig H.l.B, there are none of the cat­ ions interfered with the fluorescence intensity of Ti-PLB complex even at a 25-100 fold excess In addition, the cation K+ did not interfere with the fluorescence intensity of Ti(IV)-PLB complex even at a 100 fold excess Gd3+, Er3+, Mo3+, Sm3+, Bi3+, Co2+, Pb2+, Pd2+, Cu2+, Fe3+, Zn2+, and Ba2+ affected Ti(IV) determination at a 25-40 fold excess 3.6.4 Effect of PLB concentration As seen in Fig 2C, the amount of PLB affecting the fluorescence in­ tensity of the complex was also a criterion for investigation When the amount of plumbagin exceeded times the concentration of Ti (IV), the fluorescence intensity increased Thus, subsequent studies are recom­ mended to use a sufficient excess of reagent relative to the complexation ratio At high LPB concentrations, the fluorescence intensity) was recorded to have a negligible increase This is completely appropriate since no fluorescence from the reagent was detected at the wavelength of 605 ran 3.6 Analysis of complex PLB and Ti (IV) Absorption spectra: The PLB is selectively chelated with Ti (IV) in ethanol and it is anticipated that within pH 5, the formed complex would be stabilized As a consequence of the experiment, it was discovered that the intensity of the fluorescence remained the same when the proportion Microchemical Journal Ĩ94 (2023) Ĩ0922Ĩ N Van Thoi et al Fig (A) Job’s plot forTi-PLB complex; (B) Determination of the binding constant, (C) The calibration curve of Ti-PLB complex UV-vis absorption spectra have been performed The results concluded that the fluorescence of Ti-PLB is most intense at 605 nm, while that of plumbagin, metal ions, and the mixture of them is relatively non­ existent The synthesis of complex 1:2 (Ti: PLB) is discovered and the association constants, K is calculated using the Benesi-Hildebrand strategy The formation and optimal conditions were investigated and this method is proposed to analyse Ti (IV) in a sand sample The Ti(PLB )2 complex is very selective and rapid fluorescence development The procedure is considerably uncomplicated: in-solution analysis uses appropriate solvents, and the precision satisfies analytical criteria Table Analytical results of Ti content in sand samples Samples BT1 BT2 BT3 BT4 BT5 The concentration of Ti in sample (|1M) The proposed method ICP-OES method 3.13 3.00 3.25 3.32 3.08 3.05 ± 3.11 ± 3.17 ± 3.35 ± 3.12 ± ± ± ± ± ± 0.02 0.07 0.04 0.06 0.03 0.04 0.06 0.02 0.06 0.06 CRediT authorship contribution statement 3.6.5 Calibration curves Using Job’s plot - an approach for calculation of the stoichiometric ratio of PLB to Ti (IV) As stated in Fig 5A, the establishment of a complex 1:2 was verified by determining the intensity of fluorescence emission as a function of adjusting the molar part of Ti (IV) The stan­ dard fluorescence curves were plotted to calculate the binding constant (K) of the Ti-PLB (IV) complex, as illustrated in Fig 5B, with the slope value identified to be 1.981 and it indicated the reaction between Ti (IV) and PLB reached the equilibrium at a ratio of 1:2, respectively The conditions for conducting the test samples are ideal As illustrated in Fig 5C, the linear standard line of the Ti-PLB (IV) complex was in the range of 0.1 X 10 45*M to 0.8 X 10 M Nguyen Van Thoi: Conceptualization, Validation, Methodology, Investigation Tran Nguyen Minh An: Conceptualization, Validation, Methodology, Investigation Nguyen Quoc Hung: Data curation, Writing - original draft, Writing - review & editing Pham Van Tat: Writing - review & editing, Methodology, Software Le Van Tan: Data curation, Writing - original draft, Writing - review & editing Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper 3.6.6 LOD, LOQ of method LOD, LOQ, and reproducibility of the method were calculated The standard deviation (SD) and RSD are 0.0105 X 10 M and 4.09%, respectively, with an average concentration value of 0.2569 X 10 M On the other hand, to determine the LOD, LOQ of the method, twenty experiments on the same samples were conducted with a concentration of 0.1 X 10 M Ti (IV) The spectrum and the obtained fluorescence signal were also recorded, and values of LOD and LOQ were determined to be 0.02 X 10 and 0.0669 X 10 M, respectively, with R = 6.2 This combination is very selective, used to analyze Ti (IV) under the ideal circumstances demonstrated by the fluorescence, and combined with LOD and LOQ evaluations Data availability The data that has been used is confidential Acknowledgements This research is funded by Industrial University of Ho Chi Minh City, Ho Chi Minh City Vietnam under grant number 22/2 HHSV01 (Contact number: 54/HĐ-ĐHCN) Authors would like to thank Faculty of Chemical Engineering (FCE) supported for this project 3.6.7 Application of the proposed method The method developed herein was used to quantify sand samples The results of those analyses were compared with the ICP-OES method (n = 4), as shown in Table As shown in Table 2, the results obtained using Ti (IV) in solution by the spectrofluorimettic method were the same as those obtained by the ICP-MS method The proposed method has the advantages of being very selective, high sensitivity, fluorescence complexes forming instantaneously, and simpler analytical equipment and the results obtained the same accuracy Appendix A Supplementary data Supplementary data to this article can be found online at https://doi org/10.1016/j.microc 2023.109221 References M Moustakas, The role of metal ions in biology, biochemistry and medicine, Mater 14(2021)549, https://doi.org/10.3390/mal4030549 [2] A.T Sidambe, Biocompatibility of advanced manufactured titanium implants-A review, Mater (2014) 8168-8188, https://doi.org/10.3390/ma7128168 [3] J Sanchez-Bodon, J.A Dd Olmo, J.M Alonso, I Moreno-Benitez, J.L Viias-Vilela, L Perez-Alvarez, Bioactive Coatings on Titanium: A Review on Hydroxylation, Sei fAssembled Monolayers (SAMs) and Surface Modification Strategies, Polymers 14 (2022) 165, https://doi.org/10.3390/polyml4010165 [1] Conclusions To investigate a novel Ti (PLB)2 complex in acidic media, FT-IR, 1H NMR, 13c NMR, HSQC, HMBC, HR-MS, X-rays, SEM-EDX, TEM, XPS, and Microchemical Journal Ĩ94 (2023) Ĩ0922Ĩ N Van Thoi et al [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] KW Frisken, G.w Dandle, s Lugowski, G Jordan, A study of titanium release into body organs following the insertion of single threaded screw implants into the mandibles of sheep, Aust Dent J 47 (2002) 214-217, https://doi.org/10.1111/ j,1834-7819.2002.tb00331.x I Rodriguez, L Fernandez-Vega, A.N Maser-Figueroa, B Sang, p Gonzalez-Pagan, A.D Tinoco, Exploring Titanium (IV) Complexes as Potential Antimicrobial Compounds, Antibiotics 11 (2022) 158, https://doi.org/10.3390/ anti bi oti csl 1020158 M Cini, T.D Bradshaw, s Woodward, Using titanium complexes to defeat cancer: the view from the shoulders of titans, Chern Soc Rev 46 (2017) 1040-1051, https://doi.org/10.1039/C6CS00860G M Miller, E.Y Tshuva, Synthesis of Pure Enantiomers of Titanium (IV) Complexes with Chiral Diaminobis (phenol ato) Ligands and Their Biological Reactivity, Sci Rep (2018) 1-9, https://doi.org/10.1038/s41598-018-27735-0 E.Y Tshuva, Ivl Miller, Coordination Complexes of Titanium(IV) for Anticancer Therapy, Met Ions LifeSci 18 (2018) 219-250, https://doi.org/10.1515/ 9783110470734-014 A Tzubery, N Melamed-Book, E.Y Tshuva, Fluorescent antitumor titanium (IV) salen complexes for ceil imaging, Dalton Trans 47 (2018) 3669-3673, https://doi org/10.1039/c7dt04828a Enrique Melendez, Titanium complexes in cancer treatment Enrique, Crit Rev Oned 42 (2002) 309-315, https://doi.org/10.1016/sl040-8428(01)00224-4 B.p Baranwal, A.K Singh, A Varma, Spectroscopic studies on some fluorescent mixed-ligand titanium(lV) complexes, Spectrochim, Acta, Part A: Mol Biomol Spectrosc 84 (2011) 125-129, https://doi.Org/10.1016/j.saa.2011.09.017 H R Badwaik, L Kumari, K Nakhate, V s Verma, K Sakure, Chapter 13 Phytoconstituent plumbagin: Chemical, biotechnd ogical and pharmaceutical aspects, in A.u Rahman (Eds.), Bioactive Natural Products, Elsevier B.V.2019, pp.415-460 D.M.I.H Dissanayake, D.D.B.D Perera, L.R Keerthirathna, s Heendeniy, R J Anderson, D.E Williams, L.D.C Peiris, Antimicrobial activity of Plumbago indica and ligand screening of plumbagin against methicillin-resistant Staphylococcus aureus, J BiomoL struct Dyn 40 (2022)3273-3284, https://doi.org/10.1080/ 07391102.2020.1846622 D Alves, H Lopes, I Machado, M.o Pereira, Cdistin conditioning surfaces combined with antimicrobial treatment to prevent ventilator-associated infections, Biofouling 38 (2022) 547-557, https://doi.org/10.1080/ 08927014.2022.2088284 s Liyanaarachchi, c Padumadasa, G Priyadarshana, F.C.R Hernandez, A Dilhari, o Sahin, s Lakshika, G Wijesinghe, M Weerasekera, V Karunaratne, z Wang, A Meiyazhagan, N Kottegođa, P.M Ajayan, Magnetite-Functionalized Plumbagin for Therapeutic Applications, ACS Sustain Chem Eng (3) (2021) 1361-1372 X.J Chen, J.G Zhang, L Wu, Plumbagin inhibits neuronal apoptosis, intimal hyperplasia and also suppresses TNF-a/NF-riB pathway induced inflammation and matrix metalloprotei- nase-2/9 expression in rat cerebral ischemia, Saudi, J Biol Sci 25 (2018) 1033-1039, https://doi.Org/10.1016/j.sjbs.2017.03.006 N Bao, J Ou, N Li, p Zou, J Sun, L Chen, Novel anticancer hybrids from diazenl-ium-l,2-diolate nitric oxide donor and ROS inducer pl umbagin: Design, synthesis and biological evaluations, Eur J Med Chern 154 (2018) 1-8, https://doi.org/ 10.1016/j\ejmech.2018.04.047 I Sakpakdeejaroen, s Somani, p Laskar, c Irving, M Mullin, c Dufes, Anti­ Tumor Activity of Intravenously Administered Plumbagin Entrapped in Targeted Nanoparticles, J Biomed Nanotechnol 16 (2020) 85-100, https://doi.org/' 10.1166/jbn.2020.2874 Y Shao, M Dang, Y Lin, F Xue, Evaluation of wound healing activity of plumbagin in diabetic rats, LifeSci 231 (2019), 116422, https://doi.org/10.1016/ J.lfs.2019.04.048 J.c Tilak, s Adhikari, T.P.A Devasagayam, Antioxidant properties of Plumbago zeylanica, an Indian medicinal plant and its active ingredient, plumbagin, Redox Rep (2004) (2004) 219-227, https://doi.Org/10.1179/135100004225005976 T Wang, F Wu, z Jin, z Zhai, Y Wang, B Tu, w Yan, T Tang, Plumbagin inhibits LPS-induced inflammation through the inactivation of the nuclear factor­ kappa B and mitogen activated protein kinase signaling pathways in RAW 264.7 celts Food Chern Toxicol 64 (2014) 177-183, https://doi.Org/10.1016/j fct.2013.11.027 s.x Wang, J Wang, J.B Shao, W.N Tang, J.Q Zhong, Plumbagin Mediates Cardioprotection Against Myocardial Ischemta/Reperfusion Injury Through Ntf-2 Signaling, Med Sci Monit 22 (2016) 1250-1257, 10.12659%2FMSM.897618 B.s Min, H Miyashiro, M Hattori, Inhibitory effects of quinones on RNase H activity associated with HIV-1 reverse transcriptase, Phytother Res 16 (2002) (2002) 57-62, https://doi.org/10.1002/ptr.808 C.A Chen, H.H Chang, C.Y Kao, T.H Tsai, Y.J Chen, Plumbagin, isolated from plumbago zeylanica, induces cell death through apoptosis in human pancreatic cancer cells, Pancreatology (2009) 797-809, https://doi.org/10.1159/ 000210028 M.LN.R Rao, B Venkatappa, Damoder Reddy, stability Constants of Complexes of Cu (II), Nt (II), Co (II), Mn (II), Zn (II) & Cd (II) with 5-Hydroxy-2-methyl-l, 4naphthoquinone, Indian J Chem 20A (1981) 209-210 E B A Adusei, R K Adosraku, J Oppong-kyekyeku, and c D K Amengor, Investigation of Acid-Base Indicator Property of Plumbagin from Plumbago zeylanica Linn, 2019 (2019) 1-13 https://doi.org/10.1155/2019/4061927 s.s Gawali, E Pereira, U.A Dar, s Bhand, Metal complexes of hydroxynaphthoquinones: Lawsone, bis-lawsone, lapachol, plumbagin and juglone, J Mol Struct 1148 (2017) 435-458, https://doi.Org/10.1016/j moistruc.2017.06.130 [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] M Liang X Ge, H Xua, K Ma, w Zhang Y Zan, T Efferth, z Xue, X Hua, Phytochemicals with activity against methicillin-resistant Staphylococcus aureus, Phytomedicine 100 (2022), 154073, https://dot.Org/10.1016/j phymed.2022.154073 c.s Guettier, K Mahal, R Schobert, B Biersack, Ferrocene and (arene) ruthenium (II) complexes of the natural anticancer naphthoquinone plumbagin with enhanced efficacy against resistant cancer ceils and a genuine mode of action, J Inorg Biochem 138 (2014) 64-72, https://doi.Org/10.1016/j.jinorgbio.2014.04.020 Z.F Chen, M.x Tan, Y.c Liu, Y Peng H.H Wang H.G Liu, H Liang Synthesis, characterization and preliminary cytotoxicity evaluation of five Lanthanide(III)Plumbagin complexes, J Inorg Biochem 105 (2011) 426-434, https://doi.org/ 10.1016/j.jinorgbio.2010.12.003 p Appadurai, K Rathinasamy, Plumbagtn-silver nanoparticle formulations enhance the cellular uptake of plumbagin and its antiproliferative activities, IET Nanobiotechnol (2015) 264-272, https://doi.org/10.1049/iet-nbt.2015.0008 M Tan, Y liu, X Luo, z Chen, H Hang Antioxidant activities of plumbagin and its Cu (II) complex, Bioinorg Chem Appl 2011 (2011) 1-5 M Masrournia, A Vaziry, Preconcentration of Ti(lV) in ore and water by cloud point extraction and determination by UV-Vts spectrophotometry, J Anal Chern 73 (2018) 128-132, https://doi.org/10.1134/S1061934818020077 N Pourreza, T Naghdi, Combined cloud point-solid phase extraction by dispersion ofTiOs nanoparticles in micellar media followed by semi-microvolume UV-vis spectrophotometric detection of zinc Taianta 128 (2014) 164-169, https://doi otg/10.1016/j.tal anta.2014.04.073 R Liu, p Liang Determination of trace lead in water sampl es by graphite furnace atomic absorption spectrometry after preconcentration with nanometer titanium dioxide immobilized on silica gel, J Hazard Mater 152 (2008) 166-171, https:// doi org/10.1016/j.jhazmat.2007.06.081 A Platt, c.c Liu, A Gubler, N Naenni, D Thoma, P.R Schmidlin, In vitro evaluation of different protective techniques to reduce titanium particle contamination during implantoplasty, Qin Oral Invest 27 (2023) 4205-4213, https://doi.org/10.1007/s00784-023-05037-8 R David Holbrook, D Motabar, o Quinones, B Stanford, B Vanderford, D Moss, Titanium distribution in swimming pool water is dominated by dissolved species, Environ Pollut 181 (2013) 68-74, https://doi.Org/10.1016/j envpo(.2013.05.044 V Geertsen, M Tabarant, o Spalla, Behavior and determination of titanium dioxide nanoparticles in nitric acid and river water by ICP spectrometry, Anal Chern 86 (2014) 3453-3460, https://doi.org/10.1021/ac403926r J Lopez-Mayan, M.c Barciela-Alonso, M.R Dominguez-Gonzalez, E PenaVazquez, p Bermejo-Barrera, Qoud point extraction and ICP-MS for titanium speciation in water samples, Microchem J 152 (2020), 104264, https://doi.org/ 10.1016/j.mictoc.2019.104264 [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] A Shishov, s Savinov, N Volodina, I Gurev, A Bulatov, Deep eutectic solvent­ based extraction of metals from oil samples for elemental analysis by ICP-OES, Microchem J 179 (2022), 107456, https://doi.org/10.1016/(j microc.2022.107456 M Shirani, A Aslant, F Ansari, E Parandt, H.R Nodeh, E Jahanmard, Zirconium oxide/titanium oxide nanorod decorated nickel foam as an efficient sorbent in syringe filter based solid-phase extraction of pesticides in some vegetables, Mtcrochem J 189 (2023), 108507, https://doi.Org/10.1016/j microc.2023.108507 D.M Nguyen, A Frazer, L Rodriguez, KD Belfield, Selective fluorescence sensing of zinc and mercury ions with hydrophilic 1,2,3-triazolyl fluorene probes, Chern Mater 22 (2010) 3472-3481, https://doi.org/10.1021/cml00599g R Wang z Yu, Validity and Reliability of Benesi-Hildebrand Method, Acta Phys -Chim Sin 23 (9) (2007) 1353-1359 LA Currie, Detection and quantification limits: origins and historical overview, Anal Chim Acta 391 (1999) 127-134, https://doi.org/10.1016/s0003-2670(99) 00105-1 I Singh, R.T Ogata, R.E Moore, C.W.J Chang P.J Scheuer, Electronic spectra of substituted naphthoquinones, Tetrahedron 24 (1968) 6053-6073, https://dot.org/ 10.1016/S0040-4020(01)90989-5 F Weigend, R Ahlrtchs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracyElectronic supplementary information, peep (2005) 3297-3305, https://doi.org/10.1039/B508541A R Ahlrichs, M Bar, M Hăser, H Horn, c Kồlmel, Electronic structure calculations on workstation computers: The program system turbomol e, Chern Phys Lett 162 (1989) 165-169, https://doi.org/10.1016/0009-2614(89)85118-8 S.G Balasubramani, G.p Chen, s Coriani, M Diedenhofen, M.S Frank, Y J Franzke, F Furche, R Grotjahn, M.E Harding, c Hattig A Hellweg B HelmichParis, c Holzer, Ư Huntar, M Kaupp, A Marefat Khah, s Karbalaet Khani, T Muller, F Mack, B.D Nguyen, S.M Parker, E Perlt, D Rappoport, K Reiter, s Roy, M Ruckert, G Schmitz, M Sierka, E Tapavtcza, D.p Tew, c vanWiillen, V.K Voora, F Weigend, A Wodynskt, J.M Yu, TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations, J Chern Phys 152 (18) (2020), 184107, https://doi.Org/10.1063/5.0004635 B.p Pritchard, D Altarawy, B Didier, T.D Gibson, T.L Windus, New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community, J Chem Inf Model 59 (2019) 4814-4820, https://doi.org/10.1021/acs jcim.9b00725 Microchemical Journal Ĩ94 (2023) Ĩ0922Ĩ N Van Thoi et al v.v Atuchin, V.G Kesler, N.v Pervukhina, z Zhang, Ti 2pand o Is core levels and chemical bonding in titanium-bearing oxides, J Electron Spectrosc Relat Phenom 152 (2006) 18-24, https://doi.Org/10.1016/j.elspec.2006.02.004 [51] Y Gong, X Ma, R Dang, J Liu, J Cao, Synthesis of highly dispersed and versatile anatase - nanocrystal s on graphene sheets with enhanced photocatalytic performance for dye degradation, J Mater Sci.: Mater Sectron 28(2017) 18883-18890 https://doi org/10.1007/si 0854-017-7841-2 [52] M.c Biesinger, LW.M Lau, A.R Gerson, R st, c Smart, Applied Surface Science Resolving surface chemical states in xps analysis of first row transition metals, oxides and hydroxides : Sc, Ti, V, Cu and Zn, Appl Surf Sci 257 (2010) 887-898, https://doi.Org/10.1016/j.apsusc.2010.07.086 [50]

Ngày đăng: 15/12/2023, 17:22

Tài liệu cùng người dùng

Tài liệu liên quan