Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 73 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
73
Dung lượng
5,66 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH CƠNG TRÌNH NGHIÊN CỨU KHOA HỌC CỦA SINH VIÊN TỔNG HỢP THAN HOẠT TÍNH TỪ BÃ ĐẬU NÀNH CĨ KHẢ NĂNG XỬ LÝ KHÁNG SINH TRONG NƯỚC MÃ SỐ: SV2022-112 CHỦ NHIỆM ĐỀ TÀI: LỮ THỊ NGỌC TRÂM SKC 0 Tp Hồ Chí Minh, tháng 11/2022 BỘ GIÁO DỤC SVÀ ĐÀO TẠO TRƯỜNG ĐH SƯ PHẠM KỸ THUẬT TPHCM BÁO CÁO TỔNG KẾT ĐỀ TÀI NGHIÊN CỨU KHOA HỌC CỦA SINH VIÊN TỔNG HỢP THAN HOẠT TÍNH TỪ BÃ ĐẬU NÀNH CÓ KHẢ NĂNG XỬ LÝ KHÁNG SINH TRONG NƯỚC SV2022-112 Thuộc nhóm ngành khoa học: Mơi trường SV thực hiện: Lữ Thị Ngọc Trâm Dân tộc: Kinh Lớp, khoa: 19150CL0B, Khoa ĐT.CLC Ngành học: Công nghệ Kỹ thuật Môi trường Nam, Nữ: Nữ Năm thứ: /Số năm đào tạo: Người hướng dẫn: TS Nguyễn Duy Đạt TP Hồ Chí Minh, tháng 11/2022 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐH SƯ PHẠM KỸ THUẬT TPHCM THÔNG TIN KẾT QUẢ NGHIÊN CỨU CỦA ĐỀ TÀI Thông tin chung: - Tên đề tài: Tổng hợp than hoạt tính từ bã đậu nành có khả xử lý kháng sinh nước - Chủ nhiệm đề tài: Lữ Thị Ngọc Trâm Mã số SV: 19150002 - Lớp: 19150CL0B Khoa: Đào tạo Chất lượng cao - Thành viên đề tài: STT Họ tên MSSV Lớp Khoa Nguyễn Thị Trúc Quyên 19150030 19150CL0B ĐT.CLC Huỳnh Thanh Hải 19150012 19150CL0B ĐT.CLC - Người hướng dẫn: TS Nguyễn Duy Đạt Mục tiêu đề tài: - Xác định điều kiện tối ưu (KOH: tỷ lệ than sinh học nhiệt độ nhiệt phân) để tổng hợp chất hấp phụ từ sữa đông đậu nành để loại bỏ TCH dung dịch nước - Khảo sát điều kiện tối ưu cho trình hấp phụ, bao gồm pH dung dịch, thời gian tiếp xúc, nồng độ nhiệt độ ban đầu chất hấp phụ Tính sáng tạo: - Than hoạt tính (AC) sử dụng rộng rãi chất hấp phụ hiệu xử lý tính đặc biệt bao gồm cấu trúc xốp bên tuyệt vời, độ ổn định hóa học tương đối diện tích bề mặt riêng cao Mặc dù AC vi xốp dường vật liệu tốt để loại bỏ chất vi ô nhiễm, lỗ rỗng nhỏ có kích thước nm chúng dễ dàng bị chặn lại, AC có phần trăm thể tích lớn kích thước lỗ nm hoạt động tốt dẫn đến hiệu loại bỏ cao chất gây nhiễm thích hợp tiếp cận vị trí hấp phụ mà khơng bị phần tử lớn khác chặn lại Theo Fikriyyah, AC tạo từ bã đậu nành có diện tích bề mặt 151.5 m2/g vật liệu cho thấy số điểm tương đồng tính chất với AC thương mại thể tích lỗ, đường kính lỗ trung bình khả hấp phụ Nó cho phép vật liệu không hấp thụ chất gây ô nhiễm mà cịn tối ưu hóa việc tiếp xúc với chất xúc tác để bắt đầu phản ứng ơxy hóa, giúp q trình phân hủy hồn tồn chất gây ô nhiễm Kết nghiên cứu: - Vật liệu than hoạt tính có nguồn gốc từ bã đậu nành có khả xử lý kháng sinh (Tetracycline) nước Đóng góp mặt giáo dục đào tạo, kinh tế - xã hội, an ninh, quốc phòng khả áp dụng đề tài: - Đề tài áp dụng thực tế giúp xử lý nước thải bệnh viện, nhà máy dược, chăn ni… có chứa dư lượng TCH nước thải Công bố khoa học SV từ kết nghiên cứu đề tài (ghi rõ tên tạp chí có) nhận xét, đánh giá sở áp dụng kết nghiên cứu (nếu có): Ngày tháng 11 năm 2022 SV chịu trách nhiệm thực đề tài Nhận xét người hướng dẫn đóng góp khoa học SV thực đề tài (phần người hướng dẫn ghi): Ngày tháng 11 năm 2022 Người hướng dẫn (kí, họ tên) MỤC LỤC TÓM TẮT CHƯƠNG 1: GIỚI THIỆU 1.1 Bối cảnh động lực 1.2 Mục tiêu nghiên cứu CHƯƠNG 2: ĐÁNH GIÁ TÌNH HÌNH 2.1 Chất gây ô nhiễm (EC) - dư lượng dược phẩm 2.1.1 Tổng quan thuốc kháng sinh 2.1.2 Các tác động có hại dư lượng dược phẩm 2.1.3 Tổng quan tetracyclin 2.2 Than hoạt tính có nguồn gốc từ bã đậu nành 10 2.2.1 Cơ chế hấp phụ 10 2.2.2 Tổng quan than hoạt tính 12 2.2.3 Khả hấp phụ than hoạt tính gốc đậu nành 15 CHƯƠNG PHƯƠNG PHÁP 16 3.1 Nguyên liệu 16 3.2 Tổng hợp vật liệu 16 3.3 Đặc tính vật liệu 17 3.4 Thiết lập thí nghiệm hấp phụ giải hấp phụ 18 3.4.1 Nghiên cứu hấp phụ theo mẻ 18 3.4.2 Giải hấp tái sử dụng SAC 20 3.4.3 Đẳng nhiệt mơ hình hấp phụ 21 3.5 Hàm sai số 22 4.1 Tính chất vật liệu 23 4.1.1 Ảnh hưởng tỷ lệ KOH:SB nhiệt độ nung đến SAC cuối 23 4.1.2 Các đặc tính kết cấu hình thái 24 4.1.3 Phân tích phổ hồng ngoại – FTIR 28 4.2 Hiệu suất trình hấp phụ 30 4.2.1 Ảnh hưởng pH dung dịch cường độ ion 30 4.2.2 Đường đẳng nhiệt hấp phụ 34 4.2.3 Nhiệt động lực học hấp phụ 38 4.2.4 Thí nghiệm môi trường nước khác 40 4.2.5 Giải hấp tái sử dụng SAC 41 4.2.6 Cơ chế hấp phụ 42 TÀI LIỆU THAM KHẢO 48 DANH MỤC CÁC TỪ VIẾT TẮT AC Activated Carbon AOPs Advanced Oxidation Processes ARB Antibiotic-Resistance Bacteria ARG Antibiotic Resistance Gene BET Brunauer-Emmett-Teller BIC Bayesian Information Criterion BJH Barrett, Joyner, And Halenda DI water Deionized Water ECs Emerging Contaminants EC50 Half-Maximal Effective Concentration EDS Energy Dispersive FDA U.S Food and Drug Administration FTIR Fourier-Transform Infrared Spectroscopy IUPAC International Union of Pure and Applied Chemistry MPSD Marquardt’s Percent Standard Deviation SAC Soybean curd Activated Carbon SB S oybean curd Biochar SC Dried Soybean Curd SD Standard Deviation SEM Scanning Electron Microscope SNC Soybean curd Non-activated Carbon or Pyrochar TCH Tetracycline TOC Total Organic DANH MỤC BẢNG Bảng 2.1 Tóm tắt kích thước phân loại lỗ rỗng IUPAC từ [50] 12 Bảng 2.2 Thơng số SBET, thể tích chiều rộng lỗ rỗng AC tổng hợp mặt vật lý 14 Bảng 3.1 Tham số thí nghiệm hấp phụ 19 Bảng 4.1 Thông số kết cấu SAC SNC 24 Bảng 4.2 So sánh SBET loại than hoạt tính từ q trình hoạt tính KOH 26 Bảng 4.3 Thông số đẳng nhiệt 25oC việc hấp phụ TCH SAC 35 Bảng 4.4 So sánh hấp phụ tối đa TCH chất hấp phụ 37 Bảng 4.5 Các thông số nhiệt động lực học trình hấp phụ TCH 39 Bảng 4.6 Hiệu suất giải hấp TCH từ SAC đầy cách sử dụng dung dịch khử hấp phụ khác 41 DANH MỤC HÌNH ẢNH Hình 2.1 Dữ liệu phân phối thuốc kháng vi khuẩn Hoa Kỳ năm 2009-2018 điều chỉnh từ [34] Hình 2.2 Doanh số bán chất kháng khuẩn tính theo tỷ lệ phần trăm loài sản xuất thực phẩm 31 quốc gia châu Âu năm 2018 theo [43] Hình 2.3 Mười loại thuốc kê đơn thường xuyên nhất, theo tỷ lệ phần trăm điều chỉnh từ [44] 10 Hình 2.4 Cấu trúc hóa học TCH 10 Hình 2.5 Các chế trình hấp phụ metylen xanh lên than sinh học [47, 49] 11 Hình 3.1 Quy trình tổng hợp vật liệu 16 Hình 4.1 Ảnh hưởng (a) tỷ lệ KOH:SB (b) nhiệt độ nung đến SAC cuối 23 Hình 4.2 Hình ảnh SEM EDS (a) SAC, (b) SNC (c) SAC đầy TCH 28 Hình 4.3 Phổ FTIR SAC, SNC, SAC đầy TCH SAC đầy PRC 30 Hình 4.4 (a) pHpzc SAC; (b) Thông số bề mặt phụ thuộc TCH [56, 83] (c) Cân acid – bazo TCH [83] 33 Hình 4.5 Ảnh hưởng (a) pH dung dịch (b) cường độ ion đến hấp phụ TCH 34 Hình 4.6 Ảnh hưởng thời gian tiếp xúc mô hình hấp phụ với nồng độ ban đầu khác 36 Hình 4.7 Các đường đẳng nhiệt trình hấp phụ TCH lên SAC điều kiện cho 39 Hình 4.8 Khả hấp phụ TCH nhiệt độ khác 43 Hình 4.9 So sánh hiệu hấp phụ SAC mẫu nước khác 45 Hình 4.10 Chu trình hấp phụ tái sinh có xử lý nhiệt SAC chứa đầy TCH 41 Hình 4.11 Cơ chế hấp phụ TCH 44 Hình 4.12 Cấu trúc phân tử TCH 45 TÀI LIỆU THAM KHẢO [1] E D Kantor, C D Rehm, J S Haas, A T Chan and E L Giovannucci, "Trends in prescription drug use among adults in the United States from 1999-2012," JAMA, p 1818– 1831, 2015 [2] S A O d García, G P Pinto, P A García-Encina and R Irusta-Mata, "Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants," Ecotoxicology, vol 23, pp 1517-1533, 2014 [3] S A Kools, J F Moltmann and T Knacker, "Estimating the use of veterinary medicines in the European union," Regulatory Toxicology and Pharmacology, vol 50, pp 59-65, 2008 [4] P Gao, M Munir and I Xagoraraki, "Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant," Science of the Total Environment, pp 173-183, 2012 [5] L H Santos, A Araújo, A Fachini, A Pena, C Delerue-Matos and M Montenegro, "Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment," Journal of Hazardous Materials, vol 175, pp 45-95, 2010 [6] J Akhtar, N A S Amin and K Shahza, "A review on removal of pharmaceuticals from water by adsorption," Desalination and Water Treatment, pp 12842-12860, 2015 [7] A C Sophia, E C Lima, N Allaudeen and S Rajan, "Application of graphenebased materials for adsorption of pharmaceutical traces from water and wastewater- a review," Desalination and Water Treatment, pp 27573-27586, 2016 48 [8] M T Sekulic, N Boskovic, A Slavkovic, J Garunovic, S Kolakovic and S Pap, "Surface functionalised adsorbent for emerging pharmaceutical removal: Adsorption performance and mechanisms," Protection, pp 50-63, 2019 [9] A K Fikriyyah, E R Chaldun and A Hardiansyah, "Utilization of soybean curd residue for carbon-based adsorbent material and its characterization," IOP Conference Series: Earth and Environmental Science, no 160, 2018 [10] S Lee, T Lee and D Kim, "Adsorption of hydrogen sulfide from gas streams using amorphous composite of α-FeOOH and activated carbon powder," Industrial & Engineering Chemistry Research, vol 56, pp 3116-3122, 2017 [11] M Kamel and Y Syam, "Structure and physicochemical properties in relation to drug action," Egypt Pharmaceut, pp 95-108, 2013 [12] World Health Organization, Quality assurance of pharmaceuticals: A compendium of guidelines and related materials-Volume 2, 2nd updated edition, World Health Organization, 2007 [13] D Matecka, "Quality Issues for Clinical Trial Materials: The Chemistry, Manufacturing and Controls (CMC) Review," 2012 [Online] Available: https://www.fda.gov/media/87444/download [14] B Tiwari, B Sellamuthu, Y Ouarda, P Drogui, R D Tyagi and G Buelna, "Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach," Bioresource Technology, pp 1-12, 2017 [15] B Ferrari, N Paxeus, R L Giudice, A Pollio and J Garric, "Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac," Ecotoxicology and Environmental Safety, vol 55, pp 359-370, 2003 [16] M Bilal, S S Ashraf, D Barceló and H M Iqbal, "Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and 49 antibiotics in the aquatic environment," Science of The Total Environment, vol 691, pp 1190-1211, 2019 [17] X Peng, C Tang, Y Yu, J Tan, Q Huang, J Wu, S Chen and B Mai, "Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the Pearl River Delta, South China," Environment international, vol 35, no 2, pp 303-309, 2009 [18] L T Q Lien, P T Lan, N T K Chuc, N Q Hoa, P H Nhung, N T M Thoa, V Diwan, A J Tamhankar and C S Lundborg, "Antibiotic resistance and antibiotic resistance genes in Escherichia coli isolates from hospital wastewater in Vietnam," International Journal of Environmental Research and Public Health, pp 699-710, 2017 [19] V N Binh, N Dang, N T K Anh, L X Ky and P K Thai, "Antibiotics in the aquatic environment of Vietnam: Sources, concentrations, risk and control strategy," Chemosphere, vol 197, pp 438-450, 2018 [20] U.S Food & Drug Administration, "Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals," 2019 [21] S S Yan and J M Gilbert, "Antimicrobial drug delivery in food animals and microbial food safety concerns: an overview of in vitro and in vivo factors potentially affecting the animal gut microflora," Advanced drug delivery reviews, p 1497–1521, 2004 [22] F Cañada-Cañada, A M d l Peña and A Espinosa-Mansilla, "Analysis of antibiotics in fish samples," Analytical and Bioanalytical Chemistry, Vols 987-1008, p 395, 2009 [23] W W.-P Lai, Y.-C Lin, Y.-H Wang, Y L Guo and A Y.-C Lin, "Occurrence of Emerging Contaminants in Aquaculture Waters: Cross-Contamination between Aquaculture Systems and Surrounding Waters," Water, Air, & Soil Pollution, pp 229-249, 2018 50 [24] H N Tran, H Lan, D L Nghiem, N N M Ha, H H Ngo, W Guo, Q T Trinh, H N Mai, H Chen, D D Nguyen, T T Ta and K Y.-H Gin, "Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi, Vietnam," Science of the Total Environment, pp 157-174, 2019 [25] A Shimizu, H Takada, T Koike, A Takeshita, M Saha, Rinawati, N Nakada, A Murata, T Suzuki, S Suzuki, N H Chiem, B C Tuyen, P H Viet, M A Siringan and C Kwan, "Ubiquitous occurrence of sulfonamides in tropical Asian waters," Science of the Total Environment, pp 108-115, 2013 [26] O A H Jones, N Voulvoulis and J N Lester, "Aquatic environmental assessment of the top 25 English prescription pharmaceuticals," Water Research, pp 5013-5022, 2002 [27] Q.-Q Zhang, G.-G Ying, C.-G Pan, Y.-S Liu and J.-L Zhao, "A comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modelling, and linkage to bacterial resistance," Environmetal Science & Technology, pp 6772-6782, 2015 [28] Z Wu, "Antibiotic Use and Antibiotic Resistance in Food Producing Animals in China," OECD Food, Agriculture and Fisheries Papers, 2019 [29] European Medicines Agency, "Sales of veterinary antimicrobial agents in 31 European countries in 2018," 2020 [30] B M El-Haj, S B M Ahmed, M A Garawi and H S Ali, "Linking aromatic hydroxy metabolic functionalization of drug molecules to structure and pharmacologic activity," Molecules, pp 2119-2149, 2018 [31] A K Ghose, V N Viswanadhan and J J Wendoloski, "A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery A qualitative and quantitative characterization of known drug databases," Journal of combinatorial chemistry, vol 1, no 1, pp 55-68, 1998 51 [32] World Health Organization, "The World Medicines Situation," 2004 [33] H N Tran, S.-J You and H.-P Chao, "Fast and efficient adsorption of methylene green on activated carbon prepared from new chemical activation method," Journal of environmental management, vol 188, pp 322-336, 2017 [34] H Liu, W Ning, P Cheng, J Zhang, Y Wang and C Zhang, "Evaluation of animal hairs-based activated carbon for sorption of norfloxacin and acetaminophen by comparing with cattail fiber-based activated carbon," Journal of Analytical and Applied Pyrolysis, vol 101, pp 256-165, 2013 [35] H N Tran, Y.-F Wang, S.-J You and H.-P Chao, "Insights into the mechanism of cationic dye adsorption on activated charcoal: The importance of π–π interactions," Process Safety and Environmental Protection, vol 107, pp 168-180, 2017 [36] Douglas H Everett, "Manual of Symbol and Terminology for Physico -chemical Quantities and Units, Appendix, Definitions, Terminology and Symbols in Colloid and Surface Chemistry, Part I," Pure and Applied Chemistry, p 579, 1972 [37] K Ebie, F Li, Y Azuma, A Yuasa and T Hagishita, "Pore in distribution effect of activated carbon in adsorbing organic micropollutants form natural water," Water Research, pp 167-179, 2001 [38] H Hirai, K Wada and M Komiyama, "Active carbon-supported copper(I) chloride as solid adsorbent for carbon monoxide," Bulletin of the Chemical Society of Japan, p 2217– 2223, 1986 [39] C Xue, W Hao, W Cheng, J Ma and R Li, "Effects of pore size distribution of activated carbon (AC) on CuCl dispersion and CO adsorption for CuCl/AC adsorbent," Chemical Engineering Journal, 2019 [40] P N Y Yek, R KeeyLiew, M S Osman, C L Lee, J H Chuah, Y.-K Park and S S Lam, "Microwave steam activation, an innovative pyrolysis approach to convert waste 52 palm shell into highly microporous activated carbon," Journal of Environmental Management, pp 245-253, 2019 [41] S S Lam, M H Su, W L Nam, D S Thoo, C M Ng, R K Liew, P N Y Yek, N L Ma and D V N Vo, "Microwave Pyrolysis with Steam Activation in Producing Activated Carbon for Removal of Herbicides in Agricultural Surface Water," Industrial & Engineering Chemistry Research, pp 695-703, 2019 [42] A C Lua, F Y Lau and J Guo, "Influence of pyrolysis conditions on pore development of oil-palm-shell activated carbons," Journal of Analytical and Applied Pyrolysis, pp 96-102, 2006 [43] S.-H Jung and J.-S Kim, "Production of biochars by intermediate pyrolysis and activated carbons from oak by three activation methods using CO2," Journal of Analytical and Applied Pyrolysis, pp 116-122, 2014 [44] Y Zhao, D Feng, B Li, S Sun and S Zhang, "Combustion characteristics of char from pyrolysis of Zhundong sub-bituminous coal under O2/steam atmosphere: Effects of mineral matter," International Journal of Greenhouse Gas Control, pp 54-60, 2019 [45] R K Liew, M Y Chong, O U Osazuwa, W L Nam, X Y Phang, M H Su, C K Cheng, C T Chong and S S Lam, "Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation," Research on Chemical Intermediates volume, p 3849–3865, 2018 [46] T Tsubota, M Morita, S Kamimura and T Ohno, "New approach for synthesis of activated carbon from bamboo," Journal of Porous Materials, pp 349-355, 2016 [47] R Fang, C Lu, Y Zhong, Z Xiao, C Liang, H Huang, Y Gan, J Zhang, G Pan, X Xia, Y Xia and W Zhang, "Puffed Rice Carbon with Coupled Sulfur and Metal Iron for High-Efficiency Mercury Removal in Aqueous Solution," Environmental Science & Technology, 2020 53 [48] A M Abioye and F N Ani, "Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review," Renewable and Sustainable Energy Reviews, no 52, pp 1282-1293, 2015 [49] R Farma, M Deraman, A Awitdrus, I Talib, E Taer, N Basri, J Manjunatha, M Ishak, B Dollah and S Hashmi, "Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors," Bioresource Technology, no 132, pp 254-261, 2013254-261 [50] C Peng, X.-b Yan, R.-t Wang, J.-w Lang, Y.-j Ou and Q.-j Xue, "Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes," Electrochim Acta, vol 87, pp 401-408, 2018 [51] S H Yoo, D Jang, H.-I Joh and S Lee, "Iron oxide/porous carbon as a heterogeneous Fenton catalyst for fast decomposition of hydrogen peroxide and efficient removal of methylene blue," Journal of Materials Chemistry A, vol 5, no 2, pp 748-755, 2017 [52] P R Shukla, S Wang, H Sun, H M Ang and M Tadé, "Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution," Applied Catalysis B: Environmental, pp 529-534, 2010 [53] A Pandolfo and A Hollenkamp, "Carbon properties and their role in supercapacitors," Journal of Power Sources, vol 157, no 1, pp 11-27, 2006 [54] Y Zhang, C Zhu, F Liu, Y Yuan, H Wu and A Li, "Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review," Science of The Total Environment, vol 646, pp 265-279, 2019 [55] A S Franca, L S Oliveira, A A Nunes and C C Alves, "Microwave assisted thermal treatment of defective coffee beans press cake for the production of adsorbents," Bioresource Technology, vol 101, no 3, pp 1068-1074, 2010 54 [56] H N Tran, F Tomul, N T H Ha, D T Nguyen, E C Lima, G T Le, C.-T Chang, V Masindi and S H Woo, "Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism," Journal of Hazardous Materials, vol 394, p 122255, 2020 [57] I Tiffour, A Dehbi, A.-H I Mourad and A Belfedal, "Synthesis and characterization of a new organic semiconductor material," Materials Chemistry and Physics, vol 178, pp 49-56, 2016 [58] S Lagergren, "About the theory of so-called adsorption of soluble substances," Kungliga Svenska Vetenskapsakademiens, vol 24, no 4, pp 1-39, 1898 [59] I McLintock, "The Elovich Equation in Chemisorption Kinetics," Nature, vol 216, p 12041205, 1967 [60] F Tomul, Y Arslan, B Kabak, D Trak, E Kendüzler, E C.Lima and H NguyenTran, "Peanut shells-derived biochars prepared from different carbonization processes: Comparison of characterization and mechanism of naproxen adsorption in water," Science of The Total Environment, vol 726, 2020 [61] D R Lima, A Hosseini-Bandegharaei, P S Thue, E C Lima, Y R d Albuquerque, G S d Reis, C S Umpierres, S L Dias and H N Tran, "Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells," Colloids and Surfaces A, vol 583, 2019 [62] G G Hammes, Thermodynamics and Kinetics for the Biological Sciences, New York: Wiley-Interscience, 2000 [63] G Schwarz, "Estimating the Dimension of a Model.," The annals of statistics, vol 6, no 2, pp 461-464, 1978 55 [64] D W Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear Parameters," Journal of the Society for Industrial and Applied Mathematics, vol 11, no 2, pp 431-441, 1963 [65] H N Tran, S.-J You, A Hosseini-Bandegharaei and H.-P Chao, "Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review," Water Research, vol 120, pp 86-116, 2017 [66] A Zabaniotou, G Stavropoulos and V Skoulou, "Activated carbon from olive kernels in a two-stage process: Industrial improvement," Bioresource Technology, vol 99, pp 320326, 2008 [67] S.-H Yoon, S Lim, Y Song, Y Ota, W Qiao and A T I Mochida, "KOH activation of carbon nanofibers," Carbon, vol 42, pp 1723-1729, 2004 [68] G Stavropoulos and A Zabaniotou, "Production and characterization of activated carbons from olive-seed waste residue," Microporous and Mesoporous Materials, vol 82, pp 79-85, 2005 [69] S Li, K Han, J Li, M Li and C Lu, "Preparation and characterization of super activated carbon produced from gulfweed by KOH activation," Microporous and Mesoporous Materials, vol 243, pp 291-300, 2017 [70] D Lozano-Castello, M Lillo-Rodenas, D Cazorla-Amoros and A Linares-Solano, "Preparation of activated carbons from Spanish anthracite I Activation by KOH," Carbon, vol 39, pp 741-749, 2001 [71] M Olivares-Marín, J Fernández, M Lázaro, C Fernández-González, A MacíasGarcía, V Gómez-Serrano, F Stoeckli and T Centeno, "Cherry stones as precursor of activated carbons for supercapacitors," Materials Chemistry and Physics, vol 114, no 1, pp 323-327, 2009 56 [72] A Elmouwahidi, Z Zapata-Benabithe, F Carrasco-Marín and C Moreno-Castilla, "Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes," Bioresource Technology, vol 111, pp 185-190, 2012 [73] X Li, W Xing, S Zhuo, J Zhou, F Li, S.-Z Qiao and G.-Q Lu, "Preparation of capacitor’s electrode from sunflower seed shell," Bioresource Technology, vol 102, no 2, pp 1118-1123, 2011 [74] F.-C Wu, R.-L Tseng, C.-C Hu and C.-C Wang, "The capacitive characteristics of activated carbons—comparisons of the activation methods on the pore structure and effects of the pore structure and electrolyte on the capacitive performance," Journal of Power Sources, vol 159, no 2, pp 1532-1542, 2006 [75] J Romanos, M Beckner, T Rash, L Firlej, B Kuchta, P Yu, G Suppes, C Wexler and P Pfeifer, "Nanospace engineering of KOH activated carbon," Nanotechnology, vol 23, 2012 [76] L D Prola, E Acayanka, E C Lima, C S.Umpierres, J C Vaghetti, W O Santos, S Laminsi and P T Djifon, "Comparison of Jatropha curcas shells in natural form and treated by non-thermal plasma as biosorbents for removal of Reactive Red 120 textile dye from aqueous solution," Industrial Crops and Products, vol 46, pp 328-340, 2013 [77] Z Wang, G Liu, H Zheng, F Li, H H Ngo, W Guo, C Liu, L Chen and B Xing, "Investigating the mechanisms of biochar’s removal of lead from solution," Bioresource Technology, vol 177, pp 308-317, 2015 [78] B C Smith, Infrared spectral interpretation: a systematic approach, CRC press, 2018 [79] C S Umpierres, P S Thue, E C Lima, G S d Reis, I A d Brum, W S d Alencar, S L Dias and G L Dotto, "Microwave activated carbons from Tucumã (Astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions," Environmental Technology, 2017 57 [80] T Calvete, E C Lima, N F Cardoso, S L P Dias and E S Ribeiro, "Removal of Brilliant Green Dye from Aqueous Solutions Using Home Made Activated Carbons," CLEAN-Soil, Air, Water, vol 38, pp 521-532, 2010 [81] F.-C Huang, C.-K Lee, Y.-L Han, W.-C Chao and H.-P Chao, "Preparation of activated carbon using micro-nano carbon spheres through chemical activation," Engineer, vol 45, no 5, pp 2805-2812, 2014 [82] M Dogan, M Alkan, O Demirbas, Y Ozdemir and C Ozmetin, "Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions," Chemical Engineering Journal, vol 124, pp 89-101, 2006 [83] L Jin, X Amaya-Mazo, M E Apel, S S Sankisa, E Johnson, M A Zbyszynska and A Han, "Ca2+ and Mg2+ bind tetracycline with distinct stoichiometries and linked deprotonation," Biophysical Chemistry, vol 128, pp 185-196, 2007 [84] Y Zhao, J Geng, X Wang, X Gu and S Gao, "Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances," Journal of Colloid and Interface Science, vol 361, no 1, pp 247-251, 2011 [85] A Spaltro, M N Pila, D D Colasurdo, E N Grau, G Román, S Simonetti and D L Ruiz, "Removal of paracetamol from aqueous solution by activated carbon and silica Experimental and computational study," Journal of Contaminant Hydrology, 2020 [86] D T Nguyen, H N Tran, R.-S Juang, N D Dat, F Tomul, A Ivanets, S H Woo, A Hosseini-Bandegharaei, V P Nguyen and H.-P Chao, "Adsorption process and mechanism of acetaminophen onto commercial activated carbon," Journal of Environmental Chemical Engineering, vol 8, 2020 [87] C H Giles, T MacEwan, S Nakhwa and D Smith, "Studies in adsorption Part XI A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids," Journal of the Chemical Society, pp 3973-3993, 1960 58 [88] C Moreno-Castilla, "Adsorption of organic molecules from aqueous solutions on carbon materials," Catbon, vol 42, no 1, pp 83-94, 2004 [89] C H Giles, A P D'Silva and I A Easton, "A general treatment and classification of the solute adsorption isotherm part II Experimental interpretation," Journal of Colloid and Interface Science, vol 47, no 3, pp 766-778, 1974 [90] D Zhang, J Y J Zhao, H Zhu and C Wang, "Adsorption and removal of tetracycline from water by petroleum coke-derived highly porous activated carbon," Journal of Environmental Chemical Engineering, vol 3, pp 1504-1512, 2015 [91] L Huang, M Wang, C Shi and J H & B Zhang, "Adsorption of tetracycline and ciprofloxacin on activated carbon prepared from lignin with H3PO4 activation," Desalination and Water Treatment, vol 53, pp 2678-2687, 2013 [92] J Rivera-Utrilla, C V Gómez-Pacheco, M Sánchez-Polo, J J López-Palver and R Ocampo-Pérez, "Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents," Journal of Environmental Management, vol 131, pp 16-24, 2013 [93] Z Li, P.-H Chang, J.-S Jean, W.-T Jiang and C.-J Wang, "Interaction between tetracycline and smectite in aqueous solution," Journal of Colloid and Interface Science, vol 341, pp 311-319, 2010 [94] A C Martins, O Pezoti, A L Cazetta, K C Bedin, D A Yamazaki, G F Bandoch, T Asefa, J V Visentainer and V C Almeida, "Removal of tetracycline by NaOHactivated carbon produced from macadamia nut shells: Kinetic and equilibrium studies," Chemical Engineering Journal, vol 260, pp 291-299, 2015 [95] M H Marzbali, M Esmaieli, H Abolghasemi and M H Marzbali, "Tetracycline adsorption by H3PO4-activated carbon produced from apricot nut shells: A batch study," Process Safety and Environment Protection, 2016 59 [96] A Yazidi, M Atrous, F E Soetaredjo, L Sellaoui, S Ismadji, A Erto, A BonillaPetriciolet and G L Dotto, "Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis," Chemical Engineering Journal, vol 379, 2020 [97] M M Sobeih, M F El-Shahat, A Osman, M A Zaid and M Y Nassar, "Glauconite clay-functionalized chitosan nanocomposites for efficient adsorptive removal of fluoride ions from polluted aqueous solutions," RSC advances, vol 10, no 43, pp 25567-25585, 2020 [98] G D Gatta, "Direct determination of adsorption heats," Thermochimica Acts, vol 96, pp 349-363, 1985 [99] R S Blackburn, "Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment," Environmental science & technology, vol 38, no 18, pp 4905-4909, 2004 [100] J A Mattson, H B M Jr., M D Malbin, W J W Jr and J C Crittenden, "Surface chemistry of active carbon: Specific adsorption of phenols," Journal of Colloid and Interface Science, vol 31, no 1, pp 116-130, 1969 [101] O Paunovic, S Papa, S Maletic, M A Taggart, N Boskovic and M T Sekulic, "Ionisable emerging pharmaceutical adsorption onto microwave functionalised biochar derived from novel lignocellulosic waste biomass," Journal of Colloid and Interface Science, vol 547, pp 350-360, 2019 [102] X.-R Jing, Y.-Y Wang, W.-J Liu, Y.-K Wang and H Jian, "Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar," Chemical Engineering Journal, vol 248, pp 168-174, 2014 [103] R W Coughlin and F S Ezra, "Role of surface acidity in the adsorption of organic pollutants on the surface of carbon," Environmental Science & Technology, vol 2, no 4, pp 291-297, 1968 60 [104] R Voggu, C S Rout, A D Franklin, T S Fisher and C N R Rao, "Extraordinary Sensitivity of the Electronic Structure and Properties of Single-Walled Carbon Nanotubes to Molecular Charge-Transfer," Journal of Physical Chemistry C, vol 112, no 34, pp 13053-13056, 2008 [105] G Ramesha, A V Kumara, H Muralidhara and S Sampath, "Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes," Journal of Colloid and Interface Science, vol 361, no 1, pp 270-277, 2011 [106] T K Sen, Air, Gas, and Water Pollution Control Using Industrial and Agricultural Solid Wastes Adsorbents, CRC Press, 2017 [107] M Belhachemi and F Addoun, "Comparative adsorption isotherms and modeling of methylene blue onto activated carbons," Applied water science, vol 1, no 3, pp 111-117, 2011 [108] F S Nworie, F I Nwabue, W Oti, E Mbam and B U Nwali, "Removal of methylene blue from aqueous solution using activated rice husk biochar: adsorption isotherms, kinetics and error analysis," Journal of the Chilean chemical society, vol 64, no 1, pp 4365-4376, 2019 61