SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỒNG THÁP KỲ THI CHỌN HỌC SINH GIỎI LỚP 12 THPT CẤP TỈNH NĂM HỌC 2009 - 2010 - HƯỚNG DẪN CHẤM ĐỀ THI CHÍNH THỨC MƠN TỐN (Hướng dẫn chấm biểu điểm gồm có 08 trang) I Hướng dẫn chung 1) Nếu học sinh làm không theo cách nêu đáp án cho đủ số điểm phần hướng dẫn quy định 2) Việc chi tiết hóa (nếu có) thang điểm hướng dẫn chấm phải bảo đảm không làm sai lệch hướng dẩn chấm phải thống thực tổ chấm II Đáp án thang điểm Câu Câu Đáp án 9y (3x 1) 125 Giải hệ phương trình: 2 45x y 75x 6y Cách 1: 3 9 y (3 x 1) 125 27 x y 125 9 y (1) 2 2 45 x y 75 x 6 y 45 x y 75 x 6 y Từ phương trình (1) y 0 125 27 x 9 y Hệ 45 x 75 x 6 y y 5 (3x) 9 y 3x 3x 6 y y u 3x u v 9 Đặt v Khi hệ uv(u v) 6 y u 2 u 1 Giải hệ ta v 1 hay v 2 x x Vậy hệ có nghiệm y 5 y Cách 2: 27x3 y3 125 9y3 Hệ 2 (1) 45x y 75x 6y Từ phương trình (1) y 0 27x3 y3 125 9y3 (1) 2 45x y 75xy 6y Khử y từ hệ ta 54x3 y 135x y 225xy 250 0 Đặt t xy , ta phương trình Điểm 3đ 0.25 0.25 0.5 0.5 1.0 0.5 0.25 0.25 0.25 0.5 10 5 54t 135t 225t 250 0 t t t 1.0 Trang 10 xy Suy : xy xy x ; y 5 x 1 ; y y (L) 0.5 x 3 x Vậy hệ có nghiệm y 5 y Câu Cho đường trịn tâm O bán kính R, AB đường kính cố định đường trịn M điểm di động nửa đường tròn.Gọi N điểm cung MB Xác định vị trí M cho tứ giác AMNB có diện tích lớn tính giá trị lớn Cách Đặt BAN MAN 90 Ta có diện tích tứ giác AMNB : 1 AN AB sin AN AM sin 2 AN sin ( AB AM ) R cos sin ( R R cos 2 ) 4 R cos sin S S lớn cos sin lớn cos sin lớn (1 sin ) sin lớn Theo bất đẳng thức Cô-si , ta có 0.25 3đ 0.25 0.25 0.25 0.25 0.25 0.25 (1 sin ) (1 sin ) (1 sin ) sin 44 3(1 sin ) sin 81 256.3cos6 sin 27 cos6 sin 256 3 cos3 sin 16 3 2 cos sin đạt giá trị lớn 16 sin 3sin sin sin 30 (do 0 900 ) 3 Vậy diện tích tứ giác AMNB đạt giá trị lớn R MAB 60 Cách khác Học sinh tìm GTLN sau 0; y cos sin Đặt với 2 2 Do y 0 nên ta xét y cos .sin , lại đặt x sin với x 0;1 Trang 0.5 0.5 0.25 0.25 0.5 Xét hàm số f(x) x x , ta có f '(x) x 4x , f '(x) 0 x 1 3 0;1 , từ suy max f(x) f Lập BBT f x 0;1 4 4 3 Suy GTLN y 16 Vậy diện tích tứ giác AMNB đạt giá trị lớn 3 R MAB 60 Cách (Phương pháp tọa độ) 0.5 0.5 0.5 Chọn hệ trục hình vẽ, B (R ; 0) đường trịn có phương trình (C ) : x y R Gọi M ( x ; y ) (C ) x y R , dựng MH Ox 0.25 Ta có ON MB (vì N điểm cung MB) Ta có SAMNB SAMO SOMNB 0.25 1 OA.MH ON MB 2 1 R y R ( x R) y 2 1 R R x R x Rx R y 2 R R x R Rx Đặt y R x R Rx với R x R x R y/ 2 R x R Rx 0.25 0.25 y / 0 0.25 R(2 x R )( x R ) R x R Rx 0.25 0.25 0 0.25 0.25 Vậy diện tích tứ giác AMNB đạt giá trí lớn AM R Trang R 3R x hay 0.25 Câu Tìm tất nghiệm nguyên phương trình: ( x 1)( x 2)( x 8)( x 9) y (1) Đặt t x ( x 1)( x 2)( x 8)( x 9) y (t 9)(t 16) y (2) Đặt u t 25 ( 2u Z ) (2) (2u 2y)(2u 2y) 49 0.5 2đ 0.25 0.25 Trường hợp 2u y 49 2u y 1 2u 25 2u 25 2u y 49 y 12 2u y 1 y 12 2u 25 t 5 x 0 hay x 10 Từ ( x, y ) (0 ; 12) , ( 10 ; 12) Trường hợp 2u y 49 2u y 2u 25 2u 25 2u y 49 y 12 2u y y 12 0.25 0.25 0.25 2u 25 t 0 x Từ ( x, y ) ( ; 12) Trường hợp 2u y 7 2u y 2u 7 2u y 0 2u y 7 2u y y 0 2u 7 t 4 x hay x 2u t 3 x hay x Từ ( x, y ) ( ; 0) , ( ; 0) , ( ; 0) , ( ; 0) Tóm lại phương trình có nghiệm ngun ( 1; 0) , ( ; 0) , ( ; 0) , ( ; 0) , (0 ; 12) , (0 ; 12) , ( ; 12) , ( ; 12) , ( 10 ; 12) , ( 10 ; 12) Câu u1 Cho dãy số (un) xác định u u u n 1 n 1 n n Chứng minh dãy số (un) có giới hạn hữu hạn tìm giới hạn dãy số 3 Xét hàm số f ( x ) x x với x 0;1 , ta có 2 f '(x) 3x x 0 x 0;1 f(x) tăng 0;1 f(x) 1 x 0;1 Chứng minh: u n 0;1 , n 1 Thật vậy: u1 0;1 Giả sử u k 0;1 , k uk 1 u2k u3k u 1 u 0;1 k 1 k 1 2 0 u k 1 Vậy u n 0;1 , n 1 Do f tăng nên f u n f un dấu với u n un Suy ra: u n 1 un dấu với u n u n Lập luận tiếp tục ta đến u n 1 u n dấu với u2 u1 Trang 0.25 0.25 0.25 3đ 0.25 0.25 0.5 0.25 0.25 0.25 un 1 un un 1 un n 1 Vì u2 u1 16 16 Suy ra: u n dãy giảm 0.25 1 nên suy u n 0; 2 Lại u1 Dãy un giảm bị chặn nên hội tụ đến L nghiệm phương trình f(x) x Do L 0.25 3 x x x x x 3x 0 2 u n 0 nên L 0 Vậy nlim x 0 x 1 x 2 0.25 0.5 Chú ý: Học sinh lập luận sau u n L Dãy un giảm bị chặn nên tồn giới hạn hữu hạn nlim 0.25 3 Từ un 1 un un lấy giới hạn hai vế n , ta có 2 L 0 3 L L L L 1 2 L 2 u n 0 Do L nên L 0 Vậy nlim Câu 0.25 0.5 2n Tìm hệ số số hạng chứa x8 khai triển nhị thức Niutơn x , x n n n n biết Cn 2Cn 3Cn nC n 6144 (*) 3đ k (n nguyên dương, x , Cn số tổ hợp chập k n phần tử) n 0.5 Ta có: x C0n 3n C1n 3n x C2n 3n x C3n 3n x C nn x n (1) Lấy đạo hàm hai vế (1) ta n n x C1n 3n 2C2n 3n x 3C3n 3n x nC nn x n (2) Thay x 1 vào (*) ta có C1n 3n 2C2n 3n 3C3n 3n nCnn n4 n n Khi đó: * n.4 6144 0.25 0.25 (3) Với n 1,2,3,4,5 (3) khơng thỏa Với n 6 (3) thỏa Với n N n 7 n.4 n 7.46 6144 nên (3) không thỏa Suy n 6 nghiệm (*) Ta có: x5 x 2n 12 12 k 12 k x5 C12 x5 3 x x k 0 11k 72 8 k 8 Chọn k k Z, k 0,1, ,12 thỏa Vậy hệ số x8 C12 495 k 12 k C12 x 11k 72 k 0 Câu Cho số dương x, y z thỏa mãn x y z 1 Tìm giá trị nhỏ biểu thức x y z P 2 2 y z z x x y2 Cách 1: Từ giả thiết x y2 z2 1 suy x,y,z Áp dụng bất đẳng thức Cô-si cho ba số dương 2x ,1 x ,1 x ta Trang 0.5 0.5 0.5 0.5 3đ 0.5 2x x x 2x x 2 2x x 2 x x 0.5 3 x 3 x x2 x 3 2 x (1) y z Tương tự ta có y 3 y z x z 3 z 2 x y Cộng vế (1), (2), (3) ta (2) x y z 3 3 x y2 z2 2 y z z x x y 2 Vậy P 0.5 (3) Dấu (*) xảy x y z 0.5 (*) 0.5 3 0.25 3 0.25 Cách 2: Trước hết ta chứng minh bất đẳng thức x y z 3 (*) 2 2 y z z x x y Từ giả thiết x y2 z2 1 suy x,y,z (*) 0.25 0.5 0.25 x y z 3 2 1 x 1 y 1 z Ta có: Xét hàm số f(t) t t với t 0;1 , ta có f '(t) 1 3t , f ' t) 0 t 3 0.5 BBT: t f'(t) f(t) + 3 t 3 Từ BBT ta suy t t t (1) 1 t Từ (1) ta suy x y z 3 3 x2 y2 z2 2 1 x 1 y 1 z 2 x y z 3 P 2 2 (*) y z x z x y2 Trang 0.5 0.25 Dấu (*) xảy x y z 3 3 Vậy P 0.25 0.25 0.25 Câu Trên mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng d1 : x y 0 d : x y 17 0 Đường thẳng d qua giao điểm d d cắt hai tia Ox, AB Oy A B Viết phương trình đường thẳng d cho nhỏ S OAB Gọi I giao điểm hai đường thẳng d d I (3 ; 1) Giả sử A(a ; 0) B (0 ; b) với a, b đường thẳng d có x y 1 a b Vì I d 1 a b phương trình 2 0.5 0.25 0.5 AB OA OB 4. 4 2 2 S OAB OA OB OB b OA a Áp dụng bất đẳng thức Bunhiacôpski ta có 1 1 1 2 (3 ) 1 10 a b b a b a 10 3 AB 2 1 a Min a b S OAB 3a b b 10 Khi đường thẳng d có phương trình 3x y 10 0 3đ Ta có 0.5 0.5 0.5 0.25 Hết - Trang