1. Trang chủ
  2. » Giáo án - Bài giảng

Trang 91 92 gv t2 07 phạm văn bình tập 1

3 2 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 194,44 KB

Nội dung

Trang 91-92 - GV: Phạm Văn Bình Điều kiện để hai véc tơ phương Điều kiện để ba điểm thẳng hàng      Cho hai véc tơ a b khác cho a kb với k số thực khác Nêu   nhận xét phương hai véc tơ a b     b 0 Điều kiện cầ đủ để hai véc tơ a b phương có số thực k để   a kb Cho ba điểm phân biệt A, B, C   A , B , C a) Nếu ba điểm thẳng hàng hai véc tơ AB; AC có phương hay không?  b) Ngược lại , hai véc tơ AB; AC phương ba điểm A, B, C có thẳng   hàng hay khơng? Điều kiện cầ đủ để ba điểm phân biệt A, B, C thẳng hàng có số thực k để   AB k AC AM  AB Ví dụ 5: Cho tam giác OAB Điểm M thuộc cạnh AB cho Kẻ MH / /OB, MK / / OA (Hình 60) Hình 60     Giả sử OA a, OB b     a OK theo b a) Biểu thị OH theo    OM a b b) Biểu thị theo Giải a) Ta có: MH / /OB, MK / / OA suy OK AM OH BM   ,   OB AB OA AB  1  1   OH  OA OH  OA  a 3 Vì OH OA hướng nên   2 2   OK  OB OK  OB  b 3 Vì OK OB hướng nên b) Vì tứ giác OHMK  hình bình hành nên     OM OH  OK  a  b 3 LUYỆN TẬP - VẬN DỤNG  OB Ở hình 61, tìm trường hợp sau:   a) AC k AD b) BD k DC   Nhận xét: Trong mặt phẳng, cho hai véc tơ a b không phương     x; y   c c Với véc tơ có cặp số thỏa mãn  xa  yb BÀI TẬP Cho hình thang MNPQ, MN / / PQ, MN 2 PQ Phát biểu sau đúng?       MN  PQ MQ  NP MN  PQ A B C D   MQ  NP Cho đoạn thẳng AB 6cm  1 AC  AB a) Xác định điểm C thỏa mãn  1 AD  AB b) Xác định điểm D thỏa mãn Cho tam giác ABC có M , N , P trung điểm BC , CA, AB Chứng minh  1  AP  BC  AN a)    b) BC  MP BA Cho tam giác ABC Các điểm D, E thuộc BC thỏa mãn BD DE EC ( Hình 62)       AB  a , AC  b BC , BD , AD , AE a Giả sử Biểu thị véc tơ theo , b Cho tứ giác ABCD có M , N trung điểm AB CD Gọi G trung MN , G trọng tâm tam giác BCD Chứng minh điểm  củađoạn  thẳng   EB  EC  ED 4 EG a) EA   b) EA 4 EG  4 AG  AE b) Điểm G thuộc đoạn thẳng AE     AB a, AD b Gọi G trọng tâm tam giác Cho hình bình hành ABCD Đặt ABC    AG , CG a Biểu thị véc tơ theo , b Cho tam giác ABC Các điểm D, E , H thỏa mãn:   1    DB  BC , AE  AC , AH  AB 3      AD , DHB , HE a) Biểu thị véc tơ theo hai véc tơ AB, AC b) Chứng minh D, E , H thẳng hàng

Ngày đăng: 12/10/2023, 22:48

w