Microsoft Word Sáng Kiến Kinh nghiá»⁄m vỆ vec tÆ¡ nÄ m 2022 2023 SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN TRƯỜNG PTDTNT THPT NỘI TRÚ SỐ 2 SÁNG KIẾN KINH NGHIỆM RÈN LUYỆN KĨ NĂNG PHÂN TÍCH VEC TƠ CHO HỌC SI[.]
1 of 98 SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN TRƯỜNG PTDTNT THPT NỘI TRÚ SỐ SÁNG KIẾN KINH NGHIỆM RÈN LUYỆN KĨ NĂNG PHÂN TÍCH VEC TƠ CHO HỌC SINH TRUNG BÌNH TRƯỜNG TRUNG HỌC PHỔ THƠNG Nghệ An, tháng năm 2023 Tng hp án, khóa lun, tiu lun, chuyên lun tt nghip i hc v chuyên ngành: Kinh t, Tài Chính & Ngân Hàng, Công ngh thông tin document, khoa luan, tieu luan, 123doc, T of 98 SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN TRƯỜNG PTDTNT THPT NỘI TRÚ SỐ SÁNG KIẾN KINH NGHIỆM RÈN LUYỆN KĨ NĂNG PHÂN TÍCH VEC TƠ CHO HỌC SINH TRUNG BÌNH TRƯỜNG TRUNG HỌC PHỔ THÔNG Tác giả: Năm thực hiện: Số điện thoại: 1)Trần Thị Thanh Vĩnh 2) Phan Thị Hồng Hải 2022 – 2023 0966230017 Nghệ An, tháng năm 2023 Tng hp án, khóa lun, tiu lun, chuyên lun tt nghip i hc v chuyên ngành: Kinh t, Tài Chính & Ngân Hàng, Cơng ngh thông tin document, khoa luan, tieu luan, 123doc, T A MỞ ĐẦU of 98 Lý chọn đề tài Việc dạy học theo chương trình sách giáo khoa đổi vừa mở trang giáo dục phổ thông vừa đặt thử thách không nhỏ việc dạy học trường phổ thông Đặc biệt trường PT dân tộc nội trú mà đối tượng giảng dạy trực tiếp em đồng bào dân tộc thuộc vùng 135 có hồn cảnh đặc biệt khó khăn Các em tiếp cận chương trình sách giáo khoa lớp 10 lớp em học chương trình cũ cịn nhiều thiếu sót nên việc bắt nhịp tiếp cận vấn đề cịn khó khăn, mẻ Khái niệm vec tơ lên lớp 10 xem hoàn toàn với em, em bắt gặp số tốn vật lí trước Nhưng nhìn chung, khái niệm vec tơ lên lớp 10 em học cách đầy đủ Nếu xét điểm toán với mức đầu vào đại đa số em điểm tốn mức 4-5 điểm, với mức xuất phát thấp nên việc thiết kế dạy có chương trình rèn luyện kĩ cụ thể, khoa học hiệu em quan trọng đòi hỏi người giáo viên phải đầu tư, kiên trì linh hoạt Một mục đích dạy tốn trường phổ thơng là: Phát triển học sinh lực phẩm chất trí tuệ, giúp học sinh biến tri thức khoa học nhân loại tiếp thu thành kiến thức thân, thành công cụ để nhận thức hành động đắn lĩnh vực hoạt động học tập sau Trong đường lối đổi giáo dục khẳng định: “Phải đổi phương pháp giáo dục đào tạo, khắc phục lối truyền thụ chiều, rèn luyện thành nếp tư sáng tạo người học Từng bước áp dụng phương pháp tiên tiến phương tiện đại vào trình dạy học, đảm bảo điều kiện thời gian tự học, tự nghiên cứu cho học sinh” Như vậy, quan điểm chung đổi phương pháp dạy học khẳng định, cốt lõi việc đổi phương pháp dạy học mơn tốn trường THPT làm cho học sinh học tập tích cực, chủ động, chống lại thói quen học tập thụ động Làm cho học sinh nắm cách xác, vững có hệ thống kiến thức kỹ toán học phổ thông bản, đại, phù hợp với thực tiễn có lực vận dụng tri thức vào tình cụ thể, vào đời sống, vào lao động sản xuất, vào việc học tập mơn khoa học khác Việc giải tập tốn hình thức tốt để củng cố, hệ thống hóa kiến Tng hp án, khóa lun, tiu lun, chuyên lun tt nghip i hc v chuyên ngành: Kinh t, Tài Chính & Ngân Hàng, Công ngh thông tin document, khoa luan, tieu luan, 123doc, T of 98 thức rèn luyện kỹ năng, hình thức vận dụng kiến thức học vào vấn đề cụ thể, vào thực tế, vào vấn đề mới, hình thức tốt để giáo viên kiểm tra lực, mức độ tiếp thu khả vận dụng kiến thức học Việc giải tập tốn có tác dụng lớn việc gây hứng thú học tập cho học sinh nhằm phát triển trí tuệ góp phần giáo dục, rèn luyện người học sinh nhiều mặt Việc giải tốn cụ thể khơng nhằm dụng ý đơn mà thường bao hàm ý nghĩa nhiều mặt học sinh dùng phương pháp để giải vấn đề toán cao vấn đề ngồi thực tế mang tính lơgic tốn Trong phạm vi sáng kiến kinh nghiệm tơi xin trình bày số kinh nghiệm việc giảng dạy về: “RÈN LUYỆN KĨ NĂNG PHÂN TÍCH VEC TƠ CHO HỌC SINH TRUNG BÌNH TRƯỜNG TRUNG HỌC PHỔ THƠNG « Điểm đề tài - Nghiên cứu phương pháp giảng dạy giải tập tốn theo hướng hình thành rèn luyện kỹ giải toán cho học sinh Khơi gợi cho học sinh hứng thú giải tốn, kích thích trí tị mị học sinh giúp em hiểu tốn cách tổng qt Sau phân tích tốn: đâu giả thiết, đâu kết luận Tiếp theo giúp học sinh chuyển tốn sang ngơn ngữ véctơ - Hướng cho học sinh làm quen sử dụng thành thạo “Quy trình bốn bước giải tốn hình học PPVT” Bước 1: Chọn véctơ sở Bước 2: Dùng phương pháp phân tích véctơ phép tốn véctơ để biểu diễn, chuyển ngơn ngữ từ hình học thơng thường sang ngơn ngữ véctơ Bước 3: Giải toán véctơ Bước 4: Kết luận, đánh giá kết - Dựa theo chuẩn kiến thức kỹ hình học 10 Bộ GD-ĐT xuất phát từ thực tiễn giảng dạy nghiên cứu phương pháp dạy học tập hình học 10 qua phương pháp dùng véc tơ, nhằm rèn luyện kỹ giải toán cho học sinh Đối tượng nghiên cứu 3.1 Phương pháp giải tập hình học phẳng phương pháp phân tích véc tơ Tng hp án, khóa lun, tiu lun, chuyên lun tt nghip i hc v chuyên ngành: Kinh t, Tài Chính & Ngân Hàng, Công ngh thông tin document, khoa luan, tieu luan, 123doc, T of 98 3.2 Các tập hình học phẳng phương pháp phân tích véc tơ hình học lớp 10 Phạm vi nghiên cứu Bài tập hình học phẳng phương pháp véc tơ chương IV SGK Toán 10 – Kết nối tri thức Tng hp án, khóa lun, tiu lun, chuyên lun tt nghip i hc v chuyên ngành: Kinh t, Tài Chính & Ngân Hàng, Cơng ngh thơng tin document, khoa luan, tieu luan, 123doc, T B NỘI DUNG of 98 Cơ sở lý luận Theo phương pháp dạy học toán tập toán đặt thời điểm q trình dạy học chứa đựng cách tường minh hay ẩn tàng chức khác Các chức là: - Chức dạy học - Chức giáo dục - Chức phát triển - Chức kiểm tra Các chức hướng tới việc thực mục đích dạy học: - Chức dạy học: Bài tập tốn nhằm hình thành củng cố cho học sinh tri thức, kĩ năng, kĩ xảo giai đoạn khác trình dạy học - Chức giáo dục: Bài tập tốn nhằm hình thành cho học sinh giới quan vật biện chứng, hứng thú học tập, sáng tạo, có niềm tin phẩm chất đạo đức người lao động - Chức phát triển: Bài tập toán nhằm phát triển lực tư cho học sinh, đặc biệt rèn luyện thao tác trí tụê hình thành phẩm chất tư khoa học - Chức kiểm tra: Bài tập toán nhằm đánh giá mức độ kết dạy học, đánh giá khả độc lập học toán, khả tiếp thu, vận dụng kiến thức trình độ phát triển học sinh Hiệu việc dạy toán phần lớn phụ thuộc vào việc khai thác thực cách đầy đủ chức có tác giả viết sách giáo khoa có dụng ý đưa vào chương trình Người giáo viên phải có nhiệm vụ khám phá thực dụng ý tác giả lực sư phạm Trong tốn có nhiều tốn chưa có khơng có thuật giải khơng có thuật giải tổng qt để giải tất toán Chúng ta thơng qua việc dạy học giải số toán cụ thể mà truyền thụ cho học sinh cách thức, kinh nghiệm việc suy nghĩ, tìm tịi lời giải cho tốn Dạy học giải tập tốn khơng có nghĩa giáo viên cung cấp cho học sinh lời giải toán Biết lời giải tốn khơng quan trọng làm để giải toán Để Tng hp án, khóa lun, tiu lun, chuyên lun tt nghip i hc v chuyên ngành: Kinh t, Tài Chính & Ngân Hàng, Cơng ngh thơng tin document, khoa luan, tieu luan, 123doc, T of 98 làm tăng hứng thú học tập học sinh, phát triển tư duy, thầy giáo phải hình thành cho học sinh quy trình chung, phương pháp tìm lời giải cho tốn Theo Pơlya, phương pháp tìm lời giải cho toán thường tiến hành theo bước sau: Bước 1: Tìm hiểu nội dung toán Để giải toán, trước hết phải hiểu tốn có hứng thú với việc giải tốn Vì người giáo viên phải ý gợi động cơ, kích thích trí tị mò, hứng thú cho học sinh giúp em tìm hiểu tốn cách tổng qt Tiếp theo phải phân tích tốn cho: - Đâu ẩn số, đâu kiện -Vẽ hình, sử dụng kí hiệu thích hợp (nếu cần) -Phân biệt thành phần khác điều kiện, diễn đạt điều kiện dạng cơng thức tốn học khơng? Bước 2: Xây dựng chương trình giải Phải phân tích tốn cho thành nhiều toán đơn giản Phải huy động kiến thức học (định nghĩa, định lí, quy tắc ) có liên quan đến điều kiện, quan hệ đề tốn lựa chọn số kiến thức gần gũi với kiện tốn mị mẫm, dự đốn kết Xét vài khả xảy ra, kể trường hợp đặc biệt Sau đó, xét tốn tương tự khái qt hóa tốn cho Bước Thực chương trình giải Bước 4: Kiểm tra nghiên cứu lời giải - Kiểm tra lại kết quả, xem lại lập luận trình giải - Nhìn lại tồn bước giải, rút tri thức phương pháp để giải loại toán - Tìm thêm cách giải khác (nếu có thể) - Khai thác kết có toán - Đề xuất toán tương tự, tốn đặc biệt khái qt hóa tốn Cơng việc kiểm tra lời giải tốn có ý nghĩa quan trọng Trong nhiều trường hợp, kết thúc toán lại mở đầu cho tốn khác Vì "Cần phải luyện tập cho học sinh có thói Tng hp án, khóa lun, tiu lun, chuyên lun tt nghip i hc v chuyên ngành: Kinh t, Tài Chính & Ngân Hàng, Công ngh thông tin document, khoa luan, tieu luan, 123doc, T of 98 quen kiểm tra lại tốn, xét xem có sai lầm hay thiếu sót khơng, tốn có đặt điều kiện tốn địi hỏi phải biện luận Việc kiểm tra lại lời giải yêu cầu học sinh thực cách thường xuyên” Cơ sở khoa học Xuất phát từ yêu cầu học sinh kiến thức kỹ chương IV- SGK Toán 10 – Kết nối tri thức với sống là: - Về kiến thức bản: nắm khái niệm véctơ, hai véctơ nhau, hai véctơ đối nhau, véctơ không, quy tắc ba điểm, quy tắc hình bình hành, quy tắc trung điểm, định nghĩa tính chất phép cộng, phép trừ, phép nhân véctơ với số thực, tích vơ hướng hai véctơ - Về kĩ bản: biết dựng véctơ véctơ cho trước, biết lập luận hai véctơ nhau, vận dụng quy tắc hình bình hành, quy tắc ba điểm để dựng véctơ tổng giải số toán, biết xác định số thực k hai véc tơ phương a,b cho b ka , vận dụng tính chất tích vơ hướng, đặc biệt để xác định điều kiện cần đủ hai véctơ (khác véctơ-khơng) vng góc với nhau, vận dụng tổng hợp kiến thức véctơ để nghiên cứu số quan hệ hình học như: tính thẳng hàng ba điểm, trung điểm đoạn thẳng, trọng tâm tam giác, giao điểm hai đường chéo hình bình hành… Thực trạng Trong thực tế dạy học cho thấy, học sinh thường gặp khó khăn vận dụng kiến thức vào giải tập cụ thể do: học sinh không nắm vững kiến thức khái niệm, định lí, qui tắc, khơng trở thành sở kỹ Muốn hình thành kỹ năng, đặc biệt kỹ giải toán cho học sinh, người thầy giáo cần phải tổ chức cho học sinh học toán hoạt động hoạt động tự giác, tích cực, sáng tạo để học sinh nắm vững tri thức, có kỹ sẵn sàng vận dụng vào thực tiễn Góp phần thực nguyên lý nhà trường phổ thông là: “Học đôi với hành, giáo dục kết hợp với lao động sản xuất, nhà trường gắn liền với xã hội” Trong chương trình hình học lớp 10 học sinh học véctơ, phép tốn véctơ, tính chất tích vơ hướng ứng dụng chúng, đặc biệt hệ thức quan trọng tam giác: Định lý Côsin, định lý Sin, công thức trung tuyến, cơng thức tính diện tích tam giác học sinh phải biết tận dụng kiến thức nói để giải số tốn hình học tốn thực tế PPVT có nhiều tiện lợi Tng hp án, khóa lun, tiu lun, chuyên lun tt nghip i hc v chun ngành: Kinh t, Tài Chính & Ngân Hàng, Cơng ngh thông tin document, khoa luan, tieu luan, 123doc, T of 98 việc giải tập hình học Tuy vậy, sử dụng phương pháp học sinh gặp phải số khó khăn, khơng tránh khỏi sai lầm giải tốn hình học lớp 10 Khó khăn thứ mà học sinh gặp phải lần làm quen với đối tượng véctơ, phép toán véctơ Các phép tốn véctơ lại có số tính chất tương tự số mà học sinh học trước đó, học sinh chưa hiểu rõ chất khái niệm phép toán nên dễ ngộ nhận, mắc sai lầm sử dụng PPVT Khó khăn thứ hai sử dụng PPVT ly khỏi hình ảnh trực quan, hình vẽ nên khó tưởng tượng, hiểu tốn cách hình thức, khơng hiểu nghĩa hình học tốn Vì học sinh có thói quen giải tốn hình học phải vẽ hình nên sử dụng PPVT để giải số tập khơng sử dụng hình vẽ, học sinh gặp nhiều khó khăn Học sinh thường gặp khó khăn chuyển tốn từ ngơn ngữ hình học thơng thường sang “ngơn ngữ véctơ” ngược lại Vì cần rèn luyện cho học sinh kỹ chuyển tương đương quan hệ hình học từ cách nói thơng thường sang dạng véctơ để vận dụng cơng cụ véctơ giải toán Áp dụng thực tế dạy học Ở lớp 10 học sinh học véc tơ, phép toán véctơ (phép cộng, phép trừ, phép nhân véc tơ với số thực, tích vơ hướng hai véctơ), sau trục, hệ trục toạ độ, toạ độ điểm, toạ độ véc tơ vài ứng dụng đơn giản phương pháp toạ độ Tuy học sinh học hai phương pháp: Véctơ toạ độ, phương pháp chủ yếu phương pháp véctơ Bởi hệ thức lượng tam giác đường tròn xây dựng nhờ véctơ phép toán, đặc biệt tích vơ hướng hai véctơ định nghĩa theo đẳng thức véctơ Để giúp học sinh sử dụng thành thạo PPVT để giải toán, học sinh lớp 10 giảng dạy GV cần lưu ý vấn đề sau: 4.1 Áp dụng quy trình bước dạy giải tập tốn GV cần hình thành cho học sinh bước giải tốn hình học phương pháp véc tơ theo bước sau: Trước hết giáo viên cần rèn luyện cho học sinh nắm vững quy trình bốn bước giải tốn PPVT Tng hp án, khóa lun, tiu lun, chuyên lun tt nghip i hc v chuyên ngành: Kinh t, Tài Chính & Ngân Hàng, Công ngh thông tin document, khoa luan, tieu luan, 123doc, T 10 of 98 Quy trình bốn bước giải tốn hình học PPVT Bước 1: Chọn véctơ sở Bước 2: Dùng phương pháp phân tích véctơ phép tốn véctơ để biểu diễn, chuyển ngơn ngữ từ hình học thơng thường sang ngơn ngữ véctơ Bước 3: Giải toán véctơ Bước 4: Kết luận, đánh giá kết Giáo viên cần tận dụng hội để rèn luyện cho học sinh khả thực bốn bước giải tốn hình học PPVT thơng qua tập, minh hoạ quy trình bốn bước ví dụ sau: Bài tốn: Cho tam giác ABC có trung tuyến AM Gọi I trung điểm AM K điểm cạnh AC cho AK AC a) Tính BI theo BA, BC b) Tính BK theo BA, BC c) Chứng minh ba điểm B, I , K thẳng hàng Lời giải Chú ý: Cho hai vectơ a b không phương Với vectơ c tồn cặp số thực (m; n) cho c ma nb Bước 1: Chọn hai véc tơ BA, BC làm hai véc tơ sở Mọi véctơ tốn phân tích (hoặc biểu thị được) qua hai véc tơ Bước 2: Điều phải chứng minh ba điểm B, I , K thẳng hàng tương đương với việc chứng minh BI m BK , m số khác Bước 3: Giả thiết cho I trung điểm AM K điểm cạnh BI BA AI BA AM BA ( BM BA) BA BC (1) 2 BK BA AK BA AC BA ( BC BA) BA BC (2) 3 3 AC cho AK AC nên: Tng hp án, khóa lun, tiu lun, chuyên lun tt nghip i hc v chuyên ngành: Kinh t, Tài Chính & Ngân Hàng, Công ngh thông tin document, khoa luan, tieu luan, 123doc, T 20 of 98 Bài 4: Cho tam giác ABC điểm M tùy ý không thuộc đường thẳng AB, BC, CA Gọi A, B, C theo thứ tự điểm đối xứng M qua trung điểm I , K , J cạnh BC, CA, AB Chứng minh a) Ba đường thẳng AA, BB, CC đồng quy b) Đường thẳng MM qua điểm cố định M di động Bài 5: Cho tam giác ABC đều, tâm O M tam giác ABC có hình chiếu xuống cạnh BC, CA, AB tương ứng P, Q, R Gọi K trọng tâm tam giác PQR a) Chứng minh: M, O, K thẳng hàng b) Cho N điểm tùy ý BC Hạ NE, NF tương ứng vng góc với AC, AB Chứng minh N, J, O thẳng hàng, với J trung điểm EF Bài 6: Trên cạnh AB, BC , CA tam giác ABC lấy điểm tương ứng Trên cạnh A1 B1 ; B1C1; C1 A1 k tương ứng C2 ; A2 ; B2 cho C1 ; A1 ; B1 cho AC1 : C1 B BA1 : A1C CB1 : B1 A tam giác A1 B1C1 lấy điểm A1C2 : C2 B1 B1 A2 : A2C1 C1 B2 : B2 A1 k Chứng minh rằng: A2C2 // AC ; C2 B2 // CB; B2 A2 // BA Dạng 4: Chứng minh hai đường thẳng vng góc Vận dụng kiến thức PPVT để giải tốn quan hệ vng góc cho lời giải rõ ràng, ngắn gọn Thông thường với dạng tốn trên, ta quy tốn chứng minh hai đường thẳng vng góc, hay từ định nghĩa tích vơ hướng hai véc tơ ta suy ra: Nếu a, b hai véc tơ khác với a nằm đường thẳng a, b nằm đường thẳng b a b a.b Vậy tốn chứng minh hai đường thẳng vng góc quy tốn chứng minh tích vơ hướng hai véc tơ 60 Gọi M trung Ví dụ 1: Cho tam giác ABC có AB 2, AC 3, BAC điểm đoạn thẳng BC Điểm D thỏa mãn AD AC Chứng minh: AM BD 12 Hướng dẫn giải: Bước 1: Phân tích tốn Trước hết học sinh phải nhận dạng tốn chứng minh hai đường thẳng vng góc phương pháp chứng minh tích vơ hướng hai vec tơ phương hai đường thẳng Nếu chứng minh trực tiếp AM BD khơng thể chứng minh được, chắn phải sử dụng phân tích vec tơ Chọn vec tơ sở để phân tích vec tơ AB, AC Bước 2: Phân tích vec tơ hai vec tơ AM ; BD theo AB, AC 18 Tng hp án, khóa lun, tiu lun, chuyên lun tt nghip i hc v chuyên ngành: Kinh t, Tài Chính & Ngân Hàng, Công ngh thông tin document, khoa luan, tieu luan, 123doc, T