1. Trang chủ
  2. » Luận Văn - Báo Cáo

Giá trị lớn nhất, giá trị nhỏ nhất và một số ứng dụng

99 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT VÀ MỘT SỐ ỨNG DỤNG LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Lý thuyết điều khiển hệ mơ tả đóng vai trị quan trọng phát triển khoa học kỹ thuật Lĩnh vực hữu khắp nơi từ hệ thống phi thuyền không gian, hệ thống điều khiển tên lửa, máy bay không người lái, người máy, tay máy quy trình sản xuất đại, đời sống hàng ngày: điều khiển nhiệt độ, độ ẩm vậy, việc nghiên cứu lý thuyết điều khiển hệ mô tả vấn đề cần thiết cần quan tâm 336 2 Tính chất ∆U lớp vành Một phần tử r ∈ R gọi ∆-clean r biểu diễn thành r = e + t e phần lũy đẳng R t ∈ ∆(R) Vành R gọi ∆-clean phần tử R ∆-clean Chú ý, phẩn tử ∆-clean clean Mệnh đề Các điều kiện sau tương đương vành R (1) R ∆U -vành; (2) Tất phần tử clean R ∆-clean Chứng minh (1) ⇒ (2) Giả sử R ∆U -vành Lấy r ∈ R clean, r = e + u Vì R ∆U -vành, ta có u = + a với a ∈ ∆(R) Lưu ý − 2e ∈ U (R) = + ∆(R), 2e ∈ ∆(R) Khi 2e + a ∈ ∆(R) r = e + + a = (1 − e) + (2e + a) biểu diễn ∆-clean r (2) ⇒ (1) Lấy u ∈ U (R) Khi u clean nên theo giả thiết u ∆-clean Giả sử u = e + a biểu diễn ∆-clean u với a ∈ ∆(R) e lũy đẳng Ta có = eu−1 + au−1 suy eu−1 = − au−1 khả nghịch R Vì e = Điều nghĩa u = + a ∈ + ∆(R) U (R) = + ∆(R) Định lý Cho R vành, điều kiện sau tương đương (1) R clean ∆U -vành; (2) Nếu a ∈ R thỏa mãn a − a2 ∈ ∆(R), tồn tử phẩn tử lũy đẳng e ∈ R cho a − e ∈ ∆(R); (3) R ∆-clean ∆U -vành; (4) R vành ∆-clean Chứng minh (1) ⇔ (3) ⇔ (4) suy từ Mệnh đề ?? (1) ⇒ (2) Giả sử R clean ∆U -vành Khi đó, a ∈ R a − e ∈ ∆(R), với e lũy linh Tiếp theo ta chứng minh a − a2 ∈ ∆(R) Theo Mệnh đề ??, giả sử a = e + j biểu diễn ∆-clean a Khi a − a2 = (j − j ) − (ej + je) Chú ý j − j ∈ ∆(R) 2e ∈ ∆(R) Bây ta chứng minh ej + je ∈ ∆(R) Thậy vậy, ta có [ej(1 − e)]2 = = [(1 − e)je]2 theo Mệnh đề 34 ta ej − eje = ej(1 − e) ∈ ∆(R) je − eje = (1 − e)je ∈ ∆(R) Suy je − ej ∈ ∆(R) Vì ej + je = 2ej + (je − ej) ∈ ∆(R) (2) ⇒ (3) suy từ định nghĩa Rõ ràng Hệ 28 suy từ Định lý ?? Nghĩa vành đơn vị thỏa mãn tính chất ∆(R) = Cho vành R, phần tử a ∈ R gọi phần tử quy mạnh tồn x ∈ R thỏa mãn a = a2 x Một vành mà phần tử phần tử quy mạnh gọi vành quy mạnh Định lý Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành quy; (2) R ∆U -vành quy mạnh; (3) R ∆U -vành quy đơn vị; (4) R thỏa mãn tính chất x2 = x với x ∈ R (R vành Boolean) Chứng minh (1) ⇒ (2) Từ R quy, iđêan phải khác khơng chứa phần tử lũy đẳng khác không Ta R vành rút gọn R aben (nghĩa là, phần tử lũy đẳng R tâm) Giả sử R khơng phải vành rút gọn, tồn phần tử khác không a ∈ R thỏa mãn a2 = Theo Định lý ??, có phần tử lũy đẳng e ∈ RaR thỏa mãn eRe ∼ = M2 (T ), T vành khơng tầm thường Theo Mệnh đề 35 M2 (T ) ∆U -vành, điều mâu thuẫn Định lý 30 (2) ⇒ (3) Hiển nhiên (3) ⇒ (4) Cho x ∈ R Khi x = ue u ∈ U (R) e = e ∈ R Do R ∆U -vành, nên có u = hay y x = e, x lũy đẳng Chúng ta kết luận R vành Boolean (4) ⇒ (1) Hiển nhiên Một vành R gọi nửa quy R/J(R) quy phần tử lũy đẳng nâng lên modulo J(R) Vành R gọi vành biến đổi phần tử a ∈ R, tồn e2 = e ∈ aR thỏa mãn − e ∈ (1 − a)R Hoàn tồn tương tự, có kết sau: Định lý Cho R vành Khi đó, điều kiện sau tương đương (1) R ∆U -vành nửa quy; (2) R ∆U -vành biến đổi; (3) R/J(R) vành Boolean Hệ Cho R ∆U -vành Khi đó, điều kiện sau tương đương (1) R vành nửa quy; (2) R vành biến đổi; (3) R vành clean 3.1 Một số đặc biệt hóa Jacobson vành Biểu diễn ∆(R) tính chất Trong mục này, khảo sát tập ∆(R) =: {r ∈ R|r+U (R) ⊆ U (R)} vành R Tập vành có quan hệ chặt chẽ với Jacobson R Ta ∆(R) vành Jacobson lớn R đóng với phép tốn nhân phần tử khả nghịch R Các tính chất ∆ cấu trúc vành nghiên cứu, trình bày số họ vành mà ∆(R) = J(R) Các phương pháp cấu trúc vành với ∆(R) ̸= J(R) mô tả Bổ đề Cho R vành bất kỳ, ta có (1) ∆(R) = {r ∈ R | ru + ∈ U (R), ∀u ∈ U (R)} = {r ∈ R | ur + ∈ U (R), ∀u ∈ U (R)}; (2) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R); (3) ∆(R) vành vành R; (4) ∆(R) idêan R ∆(R) = J(R); Y Y (5) Với họ vành Ri , i ∈ I , ∆( Ri ) = ∆(Ri ) i∈I i∈I Chứng minh (1) Cho r ∈ ∆(R) u thuộc U (R), r + u ∈ U (R) tương đương ru−1 + ∈ U (R) tương đương u−1 r + ∈ U (R) (2) Ta có ruu′ + ∈ U (R), ∀u, u′ ∈ U (R) r ∈ ∆(R), suy ru ∈ ∆(R) Tương tự ur ∈ ∆(R) (3) Lấy r, s ∈ ∆(R) Khi −r + s + U (R) ⊆ −r + U (R) = −r − U (R) ⊆ U (R), hay ∆ nhóm với phép cộng R Hơn rs = r(s+1)−r ∈ ∆(R) r(s + 1) ∈ ∆(R) theo (2) (4) Rõ ràng J(R) ⊆ ∆(R) Ta giả sử ∆(R) iđêan R r ∈ R Khi rx + ∈ U (R), với x thuộc ∆(R) ∆(R) ⊆ J(R) hay ∆(R) = J(R) Chiều ngược lại dễ thấy Hệ Cho R vành: (1) ∆(R) đóng với phép nhân phần tử lũy linh; (2) Nếu ∈ U (R), ∆(R) đóng với phép nhân phần tử lũy đẳng Định lý Cho R vành có đơn vị T vành R sinh U (R) Khi đó: (1) ∆(R) = J(R) ∆(S) = ∆(R), với S vành R thỏa T ⊆ S ; (2) ∆(R) vành Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R Chứng minh (1) T vành sinh U (R) nên T vành bao gồm tất tổng hữu hạn đơn vị R Do đó, theo (2) Bổ đề 2, ∆(T ) iđêan T Theo (4) Bổ đề 2, ∆(T ) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai đơn vị Do r ∈ T , suy ∆(R) ⊆ T Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆ vành Jacobson R theo Bổ đề (2) ∆(R) đóng với phép nhân phần tử khả nghịch phía trái phải R Bây giờ, ta giả sử S vành Jacobson chứa R đóng với phép nhân phần tử khả nghịch Nếu s ∈ S u ∈ U (R), su ∈ S = J(S) Do su quasi-regular S + su ∈ U (R) Theo Bổ đề (1) s ∈ ∆(R) hay S ⊆ ∆(R) Hệ Giả sử R vành mà phần tử biểu diễn thành tổng đơn vị Khi ∆(R) = J(R) Hệ Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Mệnh đề Giả sử R vành có đơn vị Khi (1) Cho S vành R thỏa U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S) [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề ∆(R) [ = ∆(R), nghĩa ∆ Hệ Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng Hệ ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Hệ Cho R vành (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ Cho R vành, ∆(R) = J(R) ∆(R/J(R)) = Định lý ∆(R) = J(R) R thỏa mãn điều kiện sau (1) R/J(R) đẳng cấu với phép nhân vành ma trận division rings (2) R vành nửa địa phương (3) R clear ring thỏa ∈ U (R) (4) R U J -vành, nghĩa U (R) = + J(R) (5) R có stable range (6) R = F G nhóm đại số trường F Bổ đề Giả sử G nhóm R Khi G đóng với phép nhân phần tử khả nghịch đóng với phép nhân phần tử quasi-invertible R Định lý Giả sử R vành có đơn vị G nhóm phép cộng R Khi điều kiện sau tương đương (1) G = ∆(R) (2) R vành Jacobson lớn đóng với phép nhân phần tử quasi-invertible R (3) G nhóm lớn R phép cộng bao gồm phần tử quasi-invertible đóng với phép nhân phần tử quasi-invertible R 3.2 Mở rộng toán tử ∆ cho vành khơng có đơn vị Bổ đề Cho R vành không thiết phải có đơn vị, ta có ∆◦ (R) = ∆◦ (R1 ) = ∆(R1 ) Mệnh đề Cho R vành bất kỳ, ta có điều sau (1) Cho e2 = e thỏa mãn e∆(R)e ⊆ ∆(R) Khi e∆(R)e ⊆ ∆(eRe) (2) ∆(R) khơng chứa phần tử lũy đẳng khác không (3) ∆(R) không chứa phần tử unit regular khác không Hệ Cho R vành có unit regular, ∆(R) = Hệ 10 Giả sử ∈ U (R) Khi e∆(R)e ⊆ ∆(eRe) với e phần tử lũy đẳng R Mệnh đề Giả sử R vành 2-primal Khi ∆(R[x]) = ∆(R)+J(R[x]) Các vành nhóm Ánh xạ ε : RG → R cho ε( X g rg g) = X rg ánh xạ mở rộng g Iđêan ∇(RG) = ker(ε) gọi iđêan mở rộng Định lý Cho G nhóm hữu hạn với cấp + 2n R ∆U -vành Khi RG ∆U -vành iđêan mở rộng ∇(RG) ∆U -vành Chứng minh Đặt ∇ = ∇(RG) Giả sử G nhóm hữu hạn có cấp 1+2n R ∆U -vành Theo Mệnh đề 34, ta có ∈ ∆(R), 1+2n ∈ U (R) Khi RG có biểu diễn RG = ∇⊕H với H ∼ = R theo [4] Đặt ∇ = eRG H = (1 − e)RG Rõ ràng e phần tử tâm RG Nếu RG ∆U -vành, ∇ = eRG ∆U -vành theo Mệnh đề 35 Ngược lại, giả sử ∇ = eRG ∆U -vành Vì H ∼ = R nên H ∆U -vành Theo Bổ đề 2, RG ∆U -vành Một nhóm gọi hữu hạn địa phương nhóm sinh hữu hạn phần tử hữu hạn Bổ đề Nếu G 2-nhóm hữu hạn địa phương R ∆U -vành với ∆(R) lũy linh, ∇(RG) ⊆ ∆(RG) 71 Do c(4) = Cho nên Pr(A4 , S4 ) = 2c(4) = 4! (iv) Với n = ta có phân hoạch (5), (3, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1) Do c(5) = Cho nên Pr(A5 , S5 ) = 2c(5) = 5! 15 (v) Với n = ta có phân hoạch (5, 1), (4, 2), (3, 3), (3, 1, 1, 1), (2, 2, 1, 1), (1, 1, 1, 1, 1, 1) Do c(6) = Cho nên Pr(A6 , S6 ) = 2c(6) = 6! 60 (vi) Với n = ta có phân hoạch (7), (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2), (3, 1, 1, 1, 1), (2, 2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) Do c(7) = Cho nên Pr(A7 , S7 ) = 24 2c(7) = 7! 315 Xấp xỉ tích chập Lp Ta thấy rằng, cho f ∈ Lp (Ω) với ≤ p < ∞, tồn (fh )h ⊂ C0c (Ω) cho fh → f Lp (Ω) Ta chứng minh tính xấp xỉ này, tìm kiếm xấp xỉ theo hàm quy Chính xác Câu hỏi: (i) Có tồn (fh )h ⊂ C1c cho fh → f Lp (Ω)? 72 (ii) Có thể xây dựng cách rõ ràng xấp xỉ thứ h hàm fh cho f ∈ Lp (Ω)? Câu trả lời cho câu hỏi thứ hai có ý nghĩa xấp xỉ số Định nghĩa 13 (Friedrichs’ mollifiers) Một dãy mollifiers dãy hàm ϱh : Rn → R, (h = 1, 2, ) cho, với h, ϱ ∈ C∞ (Rn ); (M o1) spt(ϱh ) ⊂ B(0, 1/h); Z ϱh dx = 1; (M o2) (M o3) Rn ϱh (x) ≥ 0, ∀x ∈ Rn (M o4) Ví dụ mollifiers: Khá đơn giản để xây dựng dãy mollifiers, hàm không biến ϱ : Rn → R thỏa mãn n ϱ ∈ C∞ c (R ), spt(ϱ) ⊂ B(0, 1), ϱ ≥ Ví dụ, cho ϱ(x) :=   exp |x|2 −  |x| < |x| ≥  n Khi dễ thấy ϱ ∈ C∞ c (R ) Hơn nữa, ta có dãy mollifiers định nghĩa ϱh (x) := c hn ϱ(hx), x ∈ Rn , h ∈ N −1 Z c := ϱdx Rn Chú ý: Nếu A, B ⊂ Rn , A ± B ký hiệu tập A ± B := {a ± b : a ∈ A, b ∈ B} Bài tập Chứng minh (i) Nếu A compact B đóng, A + B đóng; 73 (ii) A B compact A + B Mệnh đề 36 (Định nghĩa tính chất mollifiers đầu tiên) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Định nghĩa, cho h ∈ N x ∈ Rn , Z fh (x) := (ϱ ∗ f )(x) := ϱh (x − y)f (y)dy, ∀x ∈ Rn Rn Khi (i) Hàm fh : Rn → R is well defined; (ii) fh (x) = (ϱh ∗ f )(x) = (f ∗ ϱh )(x) với x ∈ Rn h ∈ N; (iii) fh (x) ∈ C0 (Rn ) với h Hàm fh gọi mollifiers thứ h f Chứng minh Để đơn giản, ta ký hiệu ϱh ≡ ϱ (i) Theo (Mo2) (Mo4), spt(ϱ) ⊂ B(0, 1/h) Khi Z Z |f (y)ϱ(x − y)|dy = Rn |f (y)ϱ(x − y)|dy B(x,1/h) Z ≤ sup ϱ Rn |f (y)|dy < ∞ B(x,1/h) Do đó, ta thay đổi x ∈ Rn , hàm gx (y) := ϱ(x − y)f (y), y ∈ Rn khả tích Rn , xác định tích phân Z Z R∋ gx (y)dy = ϱ(x − y)f (y)dy = (ϱ ∗ f )f (x), ∀x ∈ Rn Rn Rn (ii) cách thay đổi biến Z (f ∗ ϱ)(x) = f (x − y)ϱ(y)dy Rn (z=x=y) Z f (z)ϱ(x − z)dz = (ϱ ∗ f )(x) = Rn (iii) Cho x ∈ Rn xr → x, ta chứng minh (ϱ ∗ f )(xr ) → (ϱ ∗ f )(x) (45) 74 Chú ý Z (ϱ ∗ f )(xr ) − (ϱ ∗ f )(x) = (ϱ(xr − y) − ϱ(x − y))f (y)dy, ∀r ∈ N (46) Rn Từ dãy (xr )r bị chặn Rn , tồn tập compact K ⊂ Rn thỏa mãn B(xr , 1/h) = xr − B(0, 1/h) ⊂ K, B(x, 1/h) ∈ K, ∀r ∈ N Đặc biệt ϱ(xr − y) − ϱ(x − y) = 0, ∀y ∈ / K, ∀r ∈ N (47) Bởi vì, ϱ ∈ Lip(Rn ), theo (??), tồn L > thỏa |ϱ(xr − y) − ϱ(x − y)| ≤ LχK (y)|xr − x|, ∀y ∈ Rn , ∀r ∈ N Vì ta |ϱ(xr − y)ϱ(x − y)||f (y)| ≤ LχK (y)|f (y)||xr − x|, ∀y ∈ Rn , ∀r ∈ N (48) Từ (??), (??) định lý tính hội tụ bị trội, theo (??) Nhận xét 12 Ký hiệu ∗ tích chập hai hàm không gian Rn Lưu ý, kết mệnh đề 33 giữ f ∈ L1loc (Rn ) ϱ ≡ ϱh ∈ C0 (Rn ) thỏa (Mo2) Trên thực tế, xác định tích chập hai hàm g ∈ Lp (Rn ) với ≤ p ≤ ∞ f ∈ L1 (Rn ) Z (g ∗ f )(x) := g(x − y)f (y)dy Rn giữ (g ∗ f ) ∈ Lp (Rn ) ∥g ∗ f ∥Lp (Rn ) ≤ ∥g∥Lp (Rn ) ∥f ∥L1 (Rn ) Định lý 41 (Friedrichs - Sobolev, Xấp xỉ theo tích chập Lp ) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Khi (i) f ∗ ϱh ∈ C ∞ (Rn ) với h ∈ N (ii) ∥f ∗ϱ∥Lp (Rn ) ≤ ∥f ∥Lp (Rn ) với h ∈ N, f ∈ Lp (Rn ) với p ∈ [1, ∞] (iii) spt(f ∗ ϱ) ⊂ spte (f ) + B(0, 1/h) với h ∈ N 75 (iv) Nếu f ∈ Lp (Rn ) với ≤ p ≤ ∞, f ∗ ϱh ∈ C ∞ (Rn ) ∩ Lp (Rn ) với h ∈ N, f ∗ ϱh → f h → ∞, Lp (Rn ), biết ≤ p < ∞ Kết cho ta hai kết quan trọng Định lý 42 (Bổ đề tính tốn biến) Cho Ω ⊂ Rn tập mở cho f ∈ L1loc (Ω) Giả sử Z f φdx = 0, ∀φ ∈ Cc∞ (Ω) (∗) Ω Khi f = hầu khắp nơi Ω Chứng minh Chứng minh điều kiện đủ Z |f |dx = với tập compact K ∈ Ω (49) K Thật vậy, theo (??), suy f = hầu khắp nơi K, với tập compact K ∈ Ω Ta có kết luận Ta chứng minh (??) Cho tập compact K ∈ Ω, định nghĩa g : Rn → R   f (x) x ∈ K, f (x) ̸= g(x) := |f (x)|  ngược lại Khi g ∈ L1 (Rn ) spte (g) ⊆ K ⊂ Ω Cho gh := g ∗ ϱh Theo định lý ?? (iii), tồn h = h(K) ∈ N cho spt(g ∗ ϱh ) ⊆ spte (g) + B(0, 1/h) ⊆ K + B(0, 1/h) ⊂ Ω với h > h Do đó, theo định lý 20 (i), (ii), gh ∈ C∞ h > h |gh (x)| ≤ ∥g∥L∞ (Rn ) = 1, ∀x ∈ Rn , ∀h ∈ N (50) c Từ (∗) ta Z f gh dx = 0, ∀h ≤ h Ω 76 Mặt khác, từ định lý ?? (iv) (78), ta giả sử, dãy tăng, gh → g hầu khắp nơi Rn Do đó, Z Z Z f gh dx → = 0= Ω |f |dx f g dx = Ω K Định lý 43 (Xấp xỉ theo hàm C∞ Lp ) Cho Ω ⊂ Rn tập p mở Khi C∞ c (Ω) trù mật L (Ω), ∥.∥Lp , biết ≤ p < ∞ Chứng minh Cho f ∈ Lp (Ω), định nghĩa fe : Rn → R ( f (x) x ∈ Ω fe(x) := x ∈ Rn \ Ω Chú ý fe ∈ Lp (Rn ) Cho (Ωh )h dãy tăng tập mở bị chặn cho Ω = ∪∞ h=1 Ωh , Ωh ⊂ Ωh ⊂ Ωh+1 , ∀h, định nghĩa gh (x) := χΩh (x)fe(x) fh,r (x) := (ϱr ∗ gh )(x) x ∈ Rn , h, r ∈ N Theo định lý ?? (iii) suy spt(fh,r ) ⊂ B(0, 1/r) + Ωh ⊂ Ω (51) Hơn nữa, cho h ∈ N, tồn rh = r(h) ∈ N cho rh ≥ h B(0, 1/rh ) + Ωh ⊂ Ω (52) Định nghĩa fh (x) := (ϱrh ∗ gh )(x), x ∈ Rn , h ∈ N, để đơn giản, giả sử rh = h Khi đó, theo định lý ?? (i), (ii) (??), (??), fh ∈ C∞ c (Ω) ∥fh − f ∥Lp (Ω) = ∥fh − fe∥Lp (Rn ) ≤ ∥ϱh ∗ gh − ϱh ∗ fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp Rn = ∥ϱh ∗ (gh − fe)∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) ≤ ∥gh − fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) , ∀h (53) 77 Từ định lý ?? (iv), ϱh ∗ fe → fe Lp (Rn ), theo định lý hội tụ miền gh → fe Lp (Rn ) Khi theo (??), ta có điều phải chứng minh 25 ĐỊNH LÍ FUBINI Định lý 44 (G.Fubini - L.Tonelli) Cho F : R2n → [0, ∞] hàm đo (đối với M2n ) Khi (i) Hàm Rn ∋ y 7→ F (x, y) đo (đối với Mn ) với Ln hầu khắp nơi x ∈ Rn (ii) Hàm Rn ∋ x 7→ Z F (x, y)dy Rn đo (đối với Mn ) (ii) Z F (x, y)dxdy = R2n Z Z dx Rn  F (x, y)dy Rn Z Z = dy Rn  F (x, y)dx Rn Bổ đề 14 Cho f ∈ C0 (Rn ) Khi ϱ ∗ f → f tập compact Rn Chứng minh Cho K ⊂ Rn tập compact cho K ′ := K + B(0, 1) Theo tính liên tục f tập compact K ′ , ∀ϵ > tồn < δ = δ(ϵ, K ′ ) < thỏa mãn |f (x − y) − f (x)| ≤ ϵ, ∀x ∈ K, ∀y ∈ B(0, δ) (54) 78 Mặt khác, h ∈ N thỏa 1/h < δ x ∈ K , theo (87), Z |(f ∗ ϱh )(x) − f (x)| = f (x − y)ϱh (y)dy − f (x)

Ngày đăng: 06/07/2023, 10:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w