Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 76 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
76
Dung lượng
467,58 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: BÀI TỐN BIÊN CHO PHƯƠNG TRÌNH VI PHÂN HÀM VỚI ĐIỀU KIỆN BIÊN DẠNG TÍCH PHÂN LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 MỞ ĐẦU Đưa mối liên hệ số cực điểm hàm phân hình trường số phức số không điểm đa thức vi phân hàm phân hình Đưa quan hệ số khuyết đa thức vi phân hàm phân hình số phức hữu hạn với chặn 341 Xem xét phân bố giá trị số dạng đa thức vi phân hàm phân hình Đưa đặc trưng hàm phân hình chung hàm phân hình nhỏ tính bội khơng tính bội Đưa điều kiện bậc đa thức số nghiệm bội đạo hàm đa thức để từ kết luận tính hàm phân hình trường hợp đa thức vi phân hàm phân hình chung hàm nhỏ 2 Các khái niệm Định nghĩa Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm Abel với phép tốn cộng, R nửa nhóm với phép tốn nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép toán A) Định nghĩa Ideal trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa ideal trái, vừa ideal phải gọi ideal vành R Cho I ideal vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I với x, y ∈ R Định nghĩa Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I 2.0.1 Định lý đồng cấu vành Định nghĩa Cho R, R′ hai vành Ánh xạ f : R → R′ gọi đồng cấu vành f bảo tồn hai phép tốn cộng nhân R, nghĩa f (x + y) = f (x) + f (y), f (xy) = f (x)f (x), với x, y ∈ R 2.0.2 Một số kết liên quan Xấp xỉ tích chập Lp Ta thấy rằng, cho f ∈ Lp (Ω) với ≤ p < ∞, tồn (fh )h ⊂ C0c (Ω) cho fh → f Lp (Ω) Ta chứng minh tính xấp xỉ này, tìm kiếm xấp xỉ theo hàm quy Chính xác Câu hỏi: (i) Có tồn (fh )h ⊂ C1c cho fh → f Lp (Ω)? (ii) Có thể xây dựng cách rõ ràng xấp xỉ thứ h hàm fh cho f ∈ Lp (Ω)? Câu trả lời cho câu hỏi thứ hai có ý nghĩa xấp xỉ số Định nghĩa (Friedrichs’ mollifiers) Một dãy mollifiers dãy hàm ϱh : Rn → R, (h = 1, 2, ) cho, với h, ϱ ∈ C∞ (Rn ); (M o1) spt(ϱh ) ⊂ B(0, 1/h); Z ϱh dx = 1; (M o2) (M o3) Rn ϱh (x) ≥ 0, ∀x ∈ Rn (M o4) Ví dụ mollifiers: Khá đơn giản để xây dựng dãy mollifiers, hàm không biến ϱ : Rn → R thỏa mãn n ϱ ∈ C∞ c (R ), spt(ϱ) ⊂ B(0, 1), ϱ ≥ Ví dụ, cho ϱ(x) := exp |x| − |x| < |x| ≥ n Khi dễ thấy ϱ ∈ C∞ c (R ) Hơn nữa, ta có dãy mollifiers định nghĩa ϱh (x) := c hn ϱ(hx), x ∈ Rn , h ∈ N −1 Z c := ϱdx Rn Chú ý: Nếu A, B ⊂ Rn , A ± B ký hiệu tập A ± B := {a ± b : a ∈ A, b ∈ B} Bài tập Chứng minh (i) Nếu A compact B đóng, A + B đóng; (ii) A B compact A + B Mệnh đề (Định nghĩa tính chất mollifiers đầu tiên) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Định nghĩa, cho h ∈ N x ∈ Rn , Z fh (x) := (ϱ ∗ f )(x) := ϱh (x − y)f (y)dy, ∀x ∈ Rn Rn Khi (i) Hàm fh : Rn → R is well defined; (ii) fh (x) = (ϱh ∗ f )(x) = (f ∗ ϱh )(x) với x ∈ Rn h ∈ N; (iii) fh (x) ∈ C0 (Rn ) với h Hàm fh gọi mollifiers thứ h f Chứng minh Để đơn giản, ta ký hiệu ϱh ≡ ϱ (i) Theo (Mo2) (Mo4), spt(ϱ) ⊂ B(0, 1/h) Khi Z Z |f (y)ϱ(x − y)|dy = Rn |f (y)ϱ(x − y)|dy B(x,1/h) Z ≤ sup ϱ Rn |f (y)|dy < ∞ B(x,1/h) Do đó, ta thay đổi x ∈ Rn , hàm gx (y) := ϱ(x − y)f (y), y ∈ Rn khả tích Rn , xác định tích phân Z Z ϱ(x − y)f (y)dy = (ϱ ∗ f )f (x), ∀x ∈ Rn gx (y)dy = R∋ Rn Rn (ii) cách thay đổi biến Z f (x − y)ϱ(y)dy (f ∗ ϱ)(x) = (z=x=y) Z f (z)ϱ(x − z)dz = (ϱ ∗ f )(x) = Rn Rn (iii) Cho x ∈ Rn xr → x, ta chứng minh (ϱ ∗ f )(xr ) → (ϱ ∗ f )(x) (1) Chú ý Z (ϱ ∗ f )(xr ) − (ϱ ∗ f )(x) = (ϱ(xr − y) − ϱ(x − y))f (y)dy, ∀r ∈ N (2) Rn Từ dãy (xr )r bị chặn Rn , tồn tập compact K ⊂ Rn thỏa mãn B(xr , 1/h) = xr − B(0, 1/h) ⊂ K, B(x, 1/h) ∈ K, ∀r ∈ N Đặc biệt ϱ(xr − y) − ϱ(x − y) = 0, ∀y ∈ / K, ∀r ∈ N (3) Bởi vì, ϱ ∈ Lip(Rn ), theo (??), tồn L > thỏa |ϱ(xr − y) − ϱ(x − y)| ≤ LχK (y)|xr − x|, ∀y ∈ Rn , ∀r ∈ N Vì ta |ϱ(xr − y)ϱ(x − y)||f (y)| ≤ LχK (y)|f (y)||xr − x|, ∀y ∈ Rn , ∀r ∈ N Từ (??), (??) định lý tính hội tụ bị trội, theo (??) (4) Nhận xét Ký hiệu ∗ tích chập hai hàm khơng gian Rn Lưu ý, kết mệnh đề 52 giữ f ∈ L1loc (Rn ) ϱ ≡ ϱh ∈ C0 (Rn ) thỏa (Mo2) Trên thực tế, xác định tích chập hai hàm g ∈ Lp (Rn ) với ≤ p ≤ ∞ f ∈ L1 (Rn ) Z (g ∗ f )(x) := g(x − y)f (y)dy Rn giữ (g ∗ f ) ∈ Lp (Rn ) ∥g ∗ f ∥Lp (Rn ) ≤ ∥g∥Lp (Rn ) ∥f ∥L1 (Rn ) Định lý (Friedrichs - Sobolev, Xấp xỉ theo tích chập Lp ) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Khi (i) f ∗ ϱh ∈ C ∞ (Rn ) với h ∈ N (ii) ∥f ∗ϱ∥Lp (Rn ) ≤ ∥f ∥Lp (Rn ) với h ∈ N, f ∈ Lp (Rn ) với p ∈ [1, ∞] (iii) spt(f ∗ ϱ) ⊂ spte (f ) + B(0, 1/h) với h ∈ N (iv) Nếu f ∈ Lp (Rn ) với ≤ p ≤ ∞, f ∗ ϱh ∈ C ∞ (Rn ) ∩ Lp (Rn ) với h ∈ N, f ∗ ϱh → f h → ∞, Lp (Rn ), biết ≤ p < ∞ Kết cho ta hai kết quan trọng Định lý (Bổ đề tính tốn biến) Cho Ω ⊂ Rn tập mở cho f ∈ L1loc (Ω) Giả sử Z f φdx = 0, ∀φ ∈ Cc∞ (Ω) (∗) Ω Khi f = hầu khắp nơi Ω Chứng minh Chứng minh điều kiện đủ Z |f |dx = với tập compact K ∈ Ω K Thật vậy, theo (??), suy f = hầu khắp nơi K, với tập compact K ∈ Ω Ta có kết luận Ta chứng minh (??) (5) Cho tập compact K ∈ Ω, định nghĩa g : Rn → R f (x) x ∈ K, f (x) ̸= g(x) := |f (x)| ngược lại Khi g ∈ L1 (Rn ) spte (g) ⊆ K ⊂ Ω Cho gh := g ∗ ϱh Theo định lý ?? (iii), tồn h = h(K) ∈ N cho spt(g ∗ ϱh ) ⊆ spte (g) + B(0, 1/h) ⊆ K + B(0, 1/h) ⊂ Ω với h > h Do đó, theo định lý 25 (i), (ii), gh ∈ C∞ h > h |gh (x)| ≤ ∥g∥L∞ (Rn ) = 1, ∀x ∈ Rn , ∀h ∈ N (6) c Từ (∗) ta Z f gh dx = 0, ∀h ≤ h Ω Mặt khác, từ định lý ?? (iv) (67), ta giả sử, dãy tăng, gh → g hầu khắp nơi Rn Do đó, Z Z Z f gh dx → = 0= Ω |f |dx f g dx = Ω K Định lý (Xấp xỉ theo hàm C∞ Lp ) Cho Ω ⊂ Rn tập mở p Khi C∞ c (Ω) trù mật L (Ω), ∥.∥Lp , biết ≤ p < ∞ Chứng minh Cho f ∈ Lp (Ω), định nghĩa fe : Rn → R ( f (x) x ∈ Ω fe(x) := x ∈ Rn \ Ω Chú ý fe ∈ Lp (Rn ) Cho (Ωh )h dãy tăng tập mở bị chặn cho Ω = ∪∞ h=1 Ωh , Ωh ⊂ Ωh ⊂ Ωh+1 , ∀h, định nghĩa gh (x) := χΩh (x)fe(x) fh,r (x) := (ϱr ∗ gh )(x) x ∈ Rn , h, r ∈ N Theo định lý ?? (iii) suy spt(fh,r ) ⊂ B(0, 1/r) + Ωh ⊂ Ω (7) Hơn nữa, cho h ∈ N, tồn rh = r(h) ∈ N cho rh ≥ h B(0, 1/rh ) + Ωh ⊂ Ω (8) Định nghĩa fh (x) := (ϱrh ∗ gh )(x), x ∈ Rn , h ∈ N, để đơn giản, giả sử rh = h Khi đó, theo định lý ?? (i), (ii) (??), (??), fh ∈ C∞ c (Ω) ∥fh − f ∥Lp (Ω) = ∥fh − fe∥Lp (Rn ) ≤ ∥ϱh ∗ gh − ϱh ∗ fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp Rn = ∥ϱh ∗ (gh − fe)∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) (9) ≤ ∥gh − fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) , ∀h Từ định lý ?? (iv), ϱh ∗ fe → fe Lp (Rn ), theo định lý hội tụ miền gh → fe Lp (Rn ) Khi theo (??), ta có điều phải chứng minh Các cận cho độ giao hoán tương đối nhóm Mệnh đề sau cho ta cận cận cho độ giao hoán tương đối nhóm nhóm Mệnh đề Cho H nhóm G, p ước nguyên tố nhỏ |G| Khi |Z(G) ∩ H| p(|H| − |Z(G) ∩ H|) |Z(G) ∩ H| + |H| + ⩽ Pr(H, G) ⩽ |H| |H||G| 2|H| f (x − y)ϱh (y)dy − f (x) n ZR Z = f (x − y)ϱh (y)dy − f (x)ϱ(y)dy n Rn ZR (f (x − y) − f (x))ϱh (y)dy