Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 85 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
85
Dung lượng
505,9 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: NGHIỆM BỊ CHẶN CỦA PHƯƠNG TRÌNH TIẾN HĨA NỬA CƯỠNG BỨC BẬC HAI TRONG KHÔNG GIAN HILBERT LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 MỞ ĐẦU Nhiều hệ thống thực tế điện, nước, mạng lưới truyền thơng, thường mơ hình hóa hệ phương trình vi phân Việc nghiên cứu lý thuyết định tính hệ động lực đem lại nhiều ứng dụng Trong lý thuyết điều khiển, quan sát trạng thái hệ động lực phản ánh dáng điệu hệ thống vật lý, thiết kế dựa thông tin đo đầu vào đầu hệ thống để cung cấp ước lượng cho trạng thái bên hệ động lực Yêu cầu việc thiết kế quan sát ước lượng trạng thái quan sát phải hội tụ tới giá trị thực tế trạng thái hệ thống Tiếp theo đưa điều kiện để tồn quan sát trạng thái 650 2 Nhóm giả nhị diện Mệnh đề Cho nhóm giả nhị diện n SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 n−1 −1 ⟩ với n ⩾ 3, H nhóm SD2n Khi (i) Nếu H = Rk với k | 2n , ⩽ k ⩽ 2n ( Pr(H, SD2n ) = k = 2n , k + n k ̸= 2n 2 (ii) Nếu H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Pr(Tl , SD2n ) = 1 + n 2 (iii) Nếu H = Ui,j với i|2n , ⩽ i ⩽ 2n − 1, ⩽ j ⩽ i − 1 + n i = 2n−1 , 2 Pr(H, SD2n ) = + i + i ̸= 2n−1 2n+1 Chứng minh (i) Giả sử H = Rk với k|2n , ⩽ k ⩽ 2n Ta xét hai trường hợp k sau Trường hợp 1: k = 2n Khi Rk = {1} Rõ ràng Pr(Rk , SD2n ) = Trường hợp 2: k ̸= 2n Theo Mệnh đề 15 ta có |Rk | = 2n 2n = (2n , k) k Khi đó, theo Mệnh đề 16 ta có X n−1 |CSD2n (x)| = |CSD2n (1)| + |CSD2n (r2 X )| + |CSD2n (rik )| n x∈Rk 1⩽i⩽ 2k −1 i̸= = |SD2n | + |SD2n | + = n+1 +2 n+1 + 2n n−1 k − |R1 | k 2n 2n+1 (2n−1 + k) − 2n = k k Từ suy Pr(Rk , SD2n ) = X |CSD2n (x)| |Rk ||SD2n | x∈Rk = 2n+1 (2n−1 + k) 2n−1 + k k k · = = + n n n+1 n ·2 k 2 (ii) Giả sử H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Khi l chẵn với ⩽ l ⩽ 2n − Theo Mệnh đề 15, ta có |Tl | = Do Tl = {1, rl s} Khi đó, theo Mệnh đề ?? ta có X 1 Pr(Tl , SD2n ) = = |Tl ||SD2n | |CSD2n (x)| = · 2n+1 x∈Tl |CSD2n (1)| + |CSD2n (rl s)| 1 1 n+1 n | + |U n−1 | = |SD (2 + 4) = + 2 ,l · 2n+1 · 2n+1 2n Khi l lẻ với ⩽ l ⩽ 2n−1 − Theo Mệnh đề 15 ta có |Tl | = Do n−1 Tl = {1, rl s, r2 n−1 , rl+2 s} Khi đó, theo Mệnh đề ?? ta có Pr(Tl , SD2n ) = X |CSD2n (x)| |Tl ||SD2n | x∈Tl l 2n−1 l+2n−1 |C )| + |C s)| n (1)| + |CSD2n (r s)| + |CSD2n (r n (r SD SD 2 · 2n+1 n n n−1 n−1 n−1 |SD | + |U | + |SD | + |U | = 2 ,l ,l+2 · 2n+1 1 n+1 n+1 = + + + = + n n+1 4·2 2 = Như hai trường hợp l ta có Pr(Tl , SD2n ) = 1 + n 2 (iii) Giả sử H = Ui,j với ⩽ i ⩽ 2n − 1, i|2n , ⩽ j ⩽ i − Ta xét hai trường hợp i sau Trường hợp 1: i = 2n−1 Theo Mệnh đề 15, ta có 2n+1 2n+1 = n−1 = |Ui,j | = i Do Ui,j = {1, r2 n−1 , rj s, r2 n−1 +j s} Khi đó, theo Mệnh đề ?? ta có Pr(Ui,j , SD2n ) = X |CSD2n (x)| |Ui,j ||SD2n | x∈Ui,j 2n−1 j 2n−1 +j |C )| + |C s)| n (1)| + |CSD2n (r n (r s)| + |CSD2n (r SD SD 2 · 2n+1 n | + |SD2n | + |U n−1 | + |U n−1 n−1 = |SD | 2 ,j ,2 +j · 2n+1 1 (2n+1 + 2n+1 + + 4) = + n = n+1 4·2 2 = Trường hợp 2: i ̸= 2n−1 Theo Mệnh đề 15 ta có |Ui,j | = Do Ui,j = li r ,r li+j 2n+1 i n s ⩽ l ⩽ −1 i rli , rli+j s ⩽ l ⩽ −1 i Ui,j = Khi đó, theo Mệnh đề ??, ta có X X |CSD2n (rli )| + |CSD2n (x)| = n x∈Ui,j n−1 n )| + X |CSD2n (rli )| + n 1⩽l⩽ 2i −1 l̸= = |SD2n | + |SD2n | + = n+1 +2 n+1 + 2n i |CSD2n (rli+j s)| 0⩽l⩽ 2i −1 0⩽l⩽ 2i −1 = |CSD2n (1)| + |CSD2n (r2 X X n−1 i − |R1 | + 2n |U n−1 | i ,li+j 2n 2n 2n+1 (2n−1 + i + 2) − 2n + = i i i n 0⩽l⩽ 2i −1 |CSD2n (rli+j s)| 60 Do đó, theo Mệnh đề ?? ta có Pr(Ui,j , SD2n ) = = X 2n+1 (2n−1 + i + 2) |CSD2n (x)| = n+1 |Ui,j ||SD2n | i x∈Ui,j 2n+1 i 2n−1 + i + i+2 2n+1 (2n−1 + i + 2) = + = i 2n+1 2n+1 22(n+1) i Vậy ta có điều phải chứng minh Trong ví dụ sau ta tính độ giao hốn tương đối nhóm nhóm giả nhị diện SD8 SD16 cách áp dụng Mệnh đề ?? Ví dụ (i) Với n = 3, xét nhóm giả nhị diện SD8 = ⟨r, s | r8 = s2 = 1, s−1 rs = r3 ⟩ Các nhóm SD8 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩ T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T6 = ⟨r6 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩; SD8 Khi Pr(R1 , SD8 ) = 1 + = , Pr(R2 , SD8 ) = + = , 8 Pr(R4 , SD8 ) = + = 1, Pr(R8 , SD8 ) = 1; Pr(T0 , SD8 ) = Pr(T1 , SD8 ) = Pr(T2 , SD8 ) = Pr(T3 , SD8 ) 1 = Pr(T4 , SD8 ) = Pr(T6 , SD8 ) = + = ; 8 2+2 + = , 16 1 Pr(U4,0 , SD8 ) = Pr(U4,2 , SD8 ) = + = ; 8 Pr(SD8 , SD8 ) = 16 Pr(U2,0 , SD8 ) = Pr(U2,1 , SD8 ) = 61 (ii) Với n = 4, xét nhóm giả nhị diện SD16 = ⟨r, s | r1 = s2 = 1, s−1 rs = r7 ⟩ Các nhóm SD16 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = ⟨r8 ⟩, R16 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩, T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T5 = ⟨r5 s⟩, T6 = ⟨r6 s⟩, T7 = ⟨r7 s⟩, T8 = ⟨r8 s⟩, T10 = ⟨r10 s⟩, T12 = ⟨r12 s⟩, T14 = ⟨r14 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩, U4,3 = ⟨r4 , r3 s⟩, U8,0 = ⟨r8 , s⟩, U8,2 = ⟨r8 , r2 s⟩, U8,4 = ⟨r8 , r4 s⟩; SD16 Khi Pr(R1 , SD16 ) = + = , Pr(R2 , SD16 ) = + = , 16 16 16 1 P r(R4 , SD16 ) = + = = Pr(R8 , SD16 ) = + = 1, Pr(R16 , SD16 ) = 16 2 16 Pr(T0 , SD16 ) = Pr(T1 , SD16 ) = Pr(T2 , SD16 ) = Pr(T3 , SD16 ) = Pr(T4 , SD16 ) = Pr(T5 , SD16 ) = Pr(T6 , SD16 ) = Pr(T7 , SD16 ) = Pr(T8 , SD16 ) = ; = Pr(T10 , SD16 ) = Pr(T12 , SD16 ) = Pr(T14 , SD16 ) = + 16 16 Pr(U2,0 , SD16 ) = Pr(U2,1 , SD16 ) = 2+1 11 + = , 32 32 4+2 Pr(U4,0 , SD16 ) = Pr(U4,1 , SD16 ) = Pr(U4,2 , SD16 ) = Pr(U4,3 , SD16 ) = + = , 32 16 1 Pr(U8,0 , SD16 ) = Pr(U8,2 , SD16 ) = Pr(U8,4 , SD16 ) = Pr(U8,6 , SD16 ) = + = ; 16 16 11 Pr(SD16 , SD16 ) = Pr(SD16 ) = 32 22 Nhóm giả nhị diện Mệnh đề 21 Cho nhóm giả nhị diện n SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 H nhóm SD2n Khi n−1 −1 ⟩ với n ⩾ 3, 62 (i) Nếu H = Rk với k | 2n , ⩽ k ⩽ 2n ( Pr(H, SD2n ) = k = 2n , k + n k ̸= 2n 2 (ii) Nếu H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Pr(Tl , SD2n ) = 1 + n 2 (iii) Nếu H = Ui,j với i|2n , ⩽ i ⩽ 2n − 1, ⩽ j ⩽ i − Pr(H, SD2n ) = 1 + n i = 2n−1 , + i + i ̸= 2n−1 n+1 Chứng minh (i) Giả sử H = Rk với k|2n , ⩽ k ⩽ 2n Ta xét hai trường hợp k sau Trường hợp 1: k = 2n Khi Rk = {1} Rõ ràng Pr(Rk , SD2n ) = Trường hợp 2: k ̸= 2n Theo Mệnh đề 15 ta có |Rk | = 2n 2n = (2n , k) k Khi đó, theo Mệnh đề 16 ta có X n−1 |CSD2n (x)| = |CSD2n (1)| + |CSD2n (r2 )| + X |CSD2n (rik )| n x∈Rk 1⩽i⩽ 2k −1 i̸= = |SD2n | + |SD2n | + = 2n+1 + 2n+1 + 2n k n−1 k − |R1 | 2n 2n+1 (2n−1 + k) − 2n = k k 63 Từ suy Pr(Rk , SD2n ) = X |CSD2n (x)| |Rk ||SD2n | x∈Rk = 2n−1 + k k k 2n+1 (2n−1 + k) = + · = 2n · 2n+1 k 2n 2n (ii) Giả sử H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Khi l chẵn với ⩽ l ⩽ 2n − Theo Mệnh đề 15, ta có |Tl | = Do Tl = {1, rl s} Khi đó, theo Mệnh đề ?? ta có X 1 Pr(Tl , SD2n ) = = |Tl ||SD2n | |CSD2n (x)| = · 2n+1 x∈Tl |CSD2n (1)| + |CSD2n (rl s)| 1 1 n+1 n | + |U n−1 | (2 + 4) = + |SD = 2 ,l · 2n+1 · 2n+1 2n Khi l lẻ với ⩽ l ⩽ 2n−1 − Theo Mệnh đề 15 ta có |Tl | = Do n−1 Tl = {1, rl s, r2 n−1 , rl+2 s} Khi đó, theo Mệnh đề ?? ta có Pr(Tl , SD2n ) = X |CSD2n (x)| |Tl ||SD2n | x∈Tl l 2n−1 l+2n−1 = |C )| + |C s)| n (1)| + |CSD2n (r s)| + |CSD2n (r n (r SD SD 2 · 2n+1 = |SD2n | + |U2n−1 ,l | + |SD2n | + |U2n−1 ,l+2n−1 | n+1 4·2 1 n+1 n+1 = + + + = + n n+1 4·2 2 Như hai trường hợp l ta có Pr(Tl , SD2n ) = 1 + n 2 (iii) Giả sử H = Ui,j với ⩽ i ⩽ 2n − 1, i|2n , ⩽ j ⩽ i − Ta xét hai trường hợp i sau 64 Trường hợp 1: i = 2n−1 Theo Mệnh đề 15, ta có 2n+1 2n+1 = n−1 = i |Ui,j | = Do Ui,j = {1, r2 n−1 , rj s, r2 n−1 +j s} Khi đó, theo Mệnh đề ?? ta có Pr(Ui,j , SD2n ) = X |CSD2n (x)| |Ui,j ||SD2n | x∈Ui,j n−1 n−1 = |CSD2n (1)| + |CSD2n (r2 )| + |CSD2n (rj s)| + |CSD2n (r2 +j s)| n+1 4·2 n | + |SD2n | + |U n−1 | + |U n−1 n−1 = |SD | 2 ,j ,2 +j · 2n+1 1 = (2n+1 + 2n+1 + + 4) = + n n+1 4·2 2 Trường hợp 2: i ̸= 2n−1 Theo Mệnh đề 15 ta có |Ui,j | = Do 2n+1 i n rli , rli+j s ⩽ l ⩽ −1 i Ui,j = Khi đó, theo Mệnh đề ??, ta có X X |CSD2n (rli )| + |CSD2n (x)| = n x∈Ui,j n−1 n )| + X |CSD2n (rli )| + n 1⩽l⩽ 2i −1 l̸= = |SD2n | + |SD2n | + = n+1 +2 n+1 + 2n i |CSD2n (rli+j s)| 0⩽l⩽ 2i −1 0⩽l⩽ 2i −1 = |CSD2n (1)| + |CSD2n (r2 X X n−1 i − |R1 | + 2n |U n−1 | i ,li+j 2n 2n 2n+1 (2n−1 + i + 2) − 2n + = i i i n 0⩽l⩽ 2i −1 |CSD2n (rli+j s)| 65 Do đó, theo Mệnh đề ?? ta có Pr(Ui,j , SD2n ) = = X 2n+1 (2n−1 + i + 2) |CSD2n (x)| = n+1 |Ui,j ||SD2n | i x∈Ui,j 2n+1 i 2n−1 + i + i+2 2n+1 (2n−1 + i + 2) = + = i 2n+1 2n+1 22(n+1) i Vậy ta có điều phải chứng minh Trong ví dụ sau ta tính độ giao hốn tương đối nhóm nhóm giả nhị diện SD8 SD16 cách áp dụng Mệnh đề ?? Ví dụ (i) Với n = 3, xét nhóm giả nhị diện SD8 = ⟨r, s | r8 = s2 = 1, s−1 rs = r3 ⟩ Các nhóm SD8 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩ T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T6 = ⟨r6 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩; SD8 Khi Pr(R1 , SD8 ) = 1 + = , Pr(R2 , SD8 ) = + = , 8 Pr(R4 , SD8 ) = + = 1, Pr(R8 , SD8 ) = 1; Pr(T0 , SD8 ) = Pr(T1 , SD8 ) = Pr(T2 , SD8 ) = Pr(T3 , SD8 ) 1 = Pr(T4 , SD8 ) = Pr(T6 , SD8 ) = + = ; 8 2+2 + = , 16 1 Pr(U4,0 , SD8 ) = Pr(U4,2 , SD8 ) = + = ; 8 Pr(SD8 , SD8 ) = 16 Pr(U2,0 , SD8 ) = Pr(U2,1 , SD8 ) = 66 (ii) Với n = 4, xét nhóm giả nhị diện SD16 = ⟨r, s | r1 = s2 = 1, s−1 rs = r7 ⟩ Các nhóm SD16 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = ⟨r8 ⟩, R16 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩, T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T5 = ⟨r5 s⟩, T6 = ⟨r6 s⟩, T7 = ⟨r7 s⟩, T8 = ⟨r8 s⟩, T10 = ⟨r10 s⟩, T12 = ⟨r12 s⟩, T14 = ⟨r14 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩, U4,3 = ⟨r4 , r3 s⟩, U8,0 = ⟨r8 , s⟩, U8,2 = ⟨r8 , r2 s⟩, U8,4 = ⟨r8 , r4 s⟩; SD16 Khi Pr(R1 , SD16 ) = + = , Pr(R2 , SD16 ) = + = , 16 16 16 1 P r(R4 , SD16 ) = + = = Pr(R8 , SD16 ) = + = 1, Pr(R16 , SD16 ) = 16 2 16 Pr(T0 , SD16 ) = Pr(T1 , SD16 ) = Pr(T2 , SD16 ) = Pr(T3 , SD16 ) = Pr(T4 , SD16 ) = Pr(T5 , SD16 ) = Pr(T6 , SD16 ) = Pr(T7 , SD16 ) = Pr(T8 , SD16 ) = ; = Pr(T10 , SD16 ) = Pr(T12 , SD16 ) = Pr(T14 , SD16 ) = + 16 16 Pr(U2,0 , SD16 ) = Pr(U2,1 , SD16 ) = 2+1 11 + = , 32 32 4+2 Pr(U4,0 , SD16 ) = Pr(U4,1 , SD16 ) = Pr(U4,2 , SD16 ) = Pr(U4,3 , SD16 ) = + = , 32 16 1 Pr(U8,0 , SD16 ) = Pr(U8,2 , SD16 ) = Pr(U8,4 , SD16 ) = Pr(U8,6 , SD16 ) = + = ; 16 16 11 Pr(SD16 , SD16 ) = Pr(SD16 ) = 32 23 Không gian hàm khả vi liên tục C1 (Ω) Định nghĩa 26 Cho Ω ⊂ Rn tập mở 67 (i) Cho f : Ω → R i = 1, , n, ta nói f liên tục khả vi cấp ∂f = Di f ∈ C0 (Ω)) có tồn g ∈ C0 (Ω) thỏa mãn ∂xi ∂f ∂f g= = Di f Ω, = Di f hiểu lớp đạo hàm ∂xi ∂xi riêng thứ i f i Ω (∃ (i) C (Ω) := ∂f ∈ C0 (Ω), ∀i = 1, , n f ∈ C (Ω) : ∃ ∂xi (iii) Cho f C1 (Ω) Ta biểu thị ∥f ∥C1 = ∥f ∥C1 ,Ω = X ∥Dα f ∥∞,Ω |α|≤1 ∥.∥C1 gọi chuẩn C1 Định lý 32 Cho Ω ⊂ Rn tập mở, bị chặn Khi (C1 (Ω), ∥.∥C1 ) không gian Banach vô hạn chiều, không không gian Hilbert Chứng minh Ta xét trường hợp n = Ω = (a, b) Đầu tiên ta phải đầy đủ khơng khơng gian Hilbert Xét ánh xạ tuyến tính T : (C1 (Ω), ∥.∥C1 ) → (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), T (f ) := (f, f ′ ) (19) ∥f, g∥C0 (Ω)×C0 (Ω) := ∥f ∥∞ + ∥g∥∞ (f, g) ∈ C0 (Ω) × C0 (Ω) Chú ý T đẳng cự, nghĩa ∥T (f )∥C0 (Ω)×C0 (Ω) = ∥f ∥C1 ∀f ∈ C1 (Ω) Đặc biệt, ta định nghĩa M := T (C1 (Ω)), ánh xạ T : (C1 (Ω), ∥.∥C1 ) → (M, ∥.∥C0 (Ω)×C0 (Ω) ) đẳng cự