1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiệm hầu tuần hoàn của phương trình vi phân

107 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: NGHIỆM HẦU TUẦN HỒN CỦA PHƯƠNG TRÌNH VI PHÂN - HÀM TRONG KHÔNG GIAN BANACH LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Các toán ngược đặt từ lâu, nhu cầu cần giải toán cần thiết có ý nghĩa nhiều vấn đề khoa học, công nghệ, kinh tế, sinh thái, v.v dẫn đến việc giải toán mà nghiệm chúng không ổn định theo kiện ban đầu, tức thay đổi nhỏ liệu dẫn đến sai khác lớn nghiệm, chí làm cho tốn trở nên vơ nghiệm vơ định [1,7] Người ta nói tốn tốn đặt khơng chỉnh 677 2 Độ giao hốn tương đối mở rộng nhóm Trong mục ta nghiên cứu độ giao hoán tương đối mở rộng nhóm Mệnh đề Cho H1 H2 hai nhóm G cho H1 ⩽ H2 Khi Pr(H1 , H2 ) ⩾ Pr(H1 , G) ⩾ Pr(H2 , G) Chứng minh Theo Bổ đề 3, với x ∈ G ta có |H1 : CH1 (x)| ⩽ |H2 : CH2 (x)| ⩽ |G : CG (x)| Từ suy |C (x)| |C (x)| |CH1 (x)| ⩾ H2 ⩾ G với x ∈ G |H1 | |H2 | |G| Theo Mệnh đề 16 ta có Pr(H1 , H2 ) = X X |CH2 (x)| |CH2 (x)| = |H1 ||H2 | |H1 | |H2 | x∈H1 ⩾ x∈H1 X X |CG (x)| = |CG (x)| = Pr(H1 , G) |H1 | |G| |H1 ||G| x∈H1 x∈H1 Theo Mệnh đề 16 ta có X Pr(H1 , G) = ⩾ |H1 ||G| |CH1 (y)| = y∈G X |CH2 (y)| |G| y∈G |H2 | X |CH1 (y)| |G| |H1 | y∈G = X |CH2 (y)| = Pr(H2 , G) |H2 ||G| y∈H2 Vậy ta có điều phải chứng minh Mệnh đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) Hơn nữa, dấu đẳng thức xảy N ∩ [H, G] = Để chứng minh Mệnh đề ?? ta cần bổ đề sau Bổ đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi CH (x)N ⩽ CH/N (xN ) N với x ∈ G Hơn nữa, đẳng thức xảy N ∩ [H, G] = Chứng minh Lấy x ∈ G Giả sử y ∈ CH (x) Khi yN ∈ CH (x)N , N ta có xN yN = (xy)N = (yx)N = yN xN Do yN ∈ CH/N (xN ) Từ suy CH (x)N ⩽ CH/N (xN ) N Giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Thật vậy, lấy x ∈ G Giả sử yN ∈ CH/N (xN ) với y ∈ H Khi xN yN = yN xN , (xy)N = (yx)N Từ suy y −1 x−1 yx = (xy)−1 (yx) ∈ N Điều chứng tỏ y −1 x−1 yx ∈ N ∩[H, G] Do theo giả thiết, ta có y −1 x−1 yx = hay xy = yx Từ suy y ∈ CH (x) Do yN ∈ CH (x)N N Điều chứng tỏ CH/N (xN ) ⩽ CH (x)N N Vậy ta có điều phải chứng minh Bây ta chứng minh Mệnh đề ?? Chứng minh Từ Mệnh đề 16 ta có X X X |CH (y)| |H||G| Pr(H, G) = |CH (y)| = y∈G = X X S∈G/N y∈S = S∈G/N y∈S |CN (y)| X X |CH (y)N | |CH (y)| |CN (y)| = |CN (y)| |N ∩ CH (y)| |N | X X CH (y)N (10) n n n R R R 19 Nhớ lại Bài tập Cho h : Rn → Z R ϱ : Ω → [0, +∞) hàm đo Lebesgue giả sử ϱdx = Chứng minh với p ∈ Rn [1, +∞) p Z |h|ϱdx Z ≤ Rn |h|p ϱdx Rn Theo (??), tập ?? định lý Fubini-Tonelli, suy Z  Z ∥f ∗ ϱ∥pLp (Rn ) ≤ |f (x − y)|p ϱ(y)dy dx ZR n Rn Z p |f (x − y)| dx ϱ(y)dy = Rn  Rn Z =  Z |f (x)| dx ϱ(y)dy Rn Rn = ∥f ∥pLp (Rn ) Bây cho p = ∞ Theo định nghĩa tích chập Z Z |(f ∗ ϱ)(x)| = |(ϱ ∗ f )(x)| = ϱ(x − y)f (y)dy ≤ ∥f ∥L∞ (Rn ) n R = ∥f ∥L∞ (Rn ) , ϱ(x − y)dy Rn ∀x ∈ Rn Do đó, ta có điều phải chứng minh (iii) Đặt ϱh ≡ ϱ cố định x ∈ R Khi đó, từ  ϱ(x − y)f (y) = hầu khắp nơi, y ∈ / x − B(0, 1/h) ∩ spte (f ), Z Z (ϱ ∗ f )(x) := ϱ(x − y)f (y)dy = Rn ϱ(x − y)f (y)dy (x−B(0,1/h))∩spte (f ) Chú ý  x − B(0, 1/h) ∩ spte (f ) ̸= ⇔ x ∈ B(0, 1/h) + spte (f ), (ϱ ∗ f )(x) = với x ∈ / B(0, 1/h) + spte (f ), từ ϱ ∗ f liên tục, spt(ϱ ∗ f ) ⊂ B(0, 1/h) + spte (f ) p  20 (iv) Từ (i) (ii), ϱh ∗ f ∈ C∞ (Rn ) ∩ Lp (Rn ) với p ∈ [1, ∞] Ta lim ∥ϱh ∗ f − f ∥Lp (Rn ) = ≤ p < ∞ (11) h→∞ C0c (Rn ) Từ trù mật (Lp (Rn ), ∥.∥Lp ), với ≤ p < ∞, với ϵ > tồn f1 ∈ C0c (Rn ) cho ∥f − f1 ∥Lp ()Rn 0, 21 ĐỊNH LÝ CAUCHY Định lý (Định lý Cauchy) Giả sử hàm số f g liên tục [a, b], khả vi khoảng (a, b) g ′ (x) ̸= với x ∈ (a, b) Khi tồn c ∈ (a, b) cho: f ′ (c) f (b) − f (a) = ′ g(b) − g(a) g (c) Chứng minh Trước hết ta nhận xét g(a) ̸= g(b) Nghĩa công thức kết luận định lý ln ln có nghĩa Thật vậy, giả sử g(a) = g(b) Khi theo định lý Rolle, tồn ξ ∈ (a, b) cho g ′ (ξ) = Điều mâu thuẫn với giả thiết g ′ (x) ̸= với x ∈ (a, b) Xét hàm số F (x) = [f (a) − f (b)]g(x) − [g(a) − g(b)]f (x) Do hàm f (x), g(x) liên tục đoạn [a, b] khả vi khoảng (a, b) nên hàm số F (x) có tính chất Mặt khác, F (a) = F (b) Theo định lý Rolle, tồn c ∈ (a, b) cho F ′ (c) = Nhưng ta có F ′ (x) = [f (a) − f (b)]g ′ (x) − [g(a) − g(b)]f ′ (x) Suy F ′ (c) = [f (a) − f (b)]g ′ (c) − [g(a) − g(b)]f ′ (c) = Từ ta nhận điều phải chứng minh Nhận xét Định lý Lagrange trường hợp riêng định lý Cauchy g(x)=x Chú ý: Các định lý Rolle, Lagrange, Cauchy khơng cịn điều kiện giả thiết không thỏa mãn Nghĩa hàm f g không khả vi khoảng (a, b) hay không liên tục đoạn [a, b] định lý khơng 22 ĐỊNH LÝ ROLLE Cơ sở định lý Rolle dựa hai định lý Weierstrass Fermat Định lý Weierstrass khẳng định hàm số f liên tục đoạn [a, b] bị chặn tồn giá trị lớn nhất, giá trị nhỏ đoạn Định lý Fermat điểm cực trị hàm khẳng định hàm f khả vi khoảng (a, b) đạt cực trị địa phương (cực đại địa phương cực tiểu địa phương) thuộc khoảng giá trị đạo hàm điểm cực trị địa phương không Định lý (Định lý Rolle) Giả sử cho hàm số f liên tục [a, b], khả vi khoảng (a, b) f (a) = f (b) Khi tồn c ∈ (a, b) cho f ′ (c) = Chứng minh Vì f liên tục đoạn [a, b] Theo định lý Weierstrass hàm f phải tồn giá trị lớn giá trị nhỏ đoạn [a, b], nghĩa tồn x1 , x2 ∈ (a, b) cho f (x1 ) = f (x) = m, f (x2 ) = max f (x) = M [a,b] [a,b] Có hai khả xảy ra: 1) Nếu m = M Khi f (x) = const đoạn [a, b] Nên f ′ (c) = với c ∈ (a, b) 2) Nếu m < M Theo giả thiết ta có f (a) = f (b) nên hai điểm x1 , x2 phải thuộc khoảng (a, b) Khơng tính tổng qt ta giả sử x1 ∈ (a, b) Theo định lý Fermat đạo hàm điểm không Định lý chứng minh xong Ý nghĩa hình học định lý Rolle Cho C đường cong trơn với hai đầu mút A, B có "độ cao" (trong hệ trục tọa độ Descartes) C tồn điểm mà tiếp tuyến C điểm song song với AB(hay song song với trục hồnh f (a) = f (b)) 23 Hệ Nếu hàm số f (x) có đạo hàm khoảng (a, b) phương trình f (x) = có n nghiệm phân biệt thuộc khoảng (a, b) phương trình f ′ (x) = có n − nghiệm phân biệt thuộc khoảng (a, b) (Phương trình f (k) (x) = có n − k nghiệm phân biệt thuộc khoảng (a, b) với (k = 1, 2, , n)) Chứng minh Giả sử phương trình f (x) = có n nghiệm phân biệt thuộc khoảng (a, b) thứ tự x1 < x2 < < xn Khi ta áp dụng định lý Rolle cho n − đoạn [x1 , x2 ], [x2 , x3 ], , [xn−1 , xn ] phương trình f ′ (x) = có n − nghiệm thuộc n − khoảng (x1 , x2 ), (x2 , x3 ), , (xn−1 , xn ) Gọi n − nghiệm ξ1 , ξ2 , , ξn−1 ta có: f (ξ1 ) = f (ξ2 ) = = f (ξn−1 ) = Tiếp tục áp dụng định lý Rolle cho n−2 khoảng (ξ1 , ξ2 ), (ξ2 , ξ3 ), , (ξn−2 , ξn−1 ) phương trình f ′′ (x) = có n−2 nghiệm phân biệt khoảng (a, b) Tiếp tục trình sau k bước phương trình f (k) (x) = có n − k nghiệm phân biệt thuộc khoảng (a, b) Hệ Giả sử hàm số f (x) liên tục đoạn [a, b] có đạo hàm khoảng (a, b) Khi phương trình f ′ (x) = có khơng q n − nghiệm phân biệt khoảng (a, b) phương trình f (x) = có khơng q n nghiệm phân biệt khoảng Chứng minh Giả sử phương trình f (x) = có nhiều n nghiệm phân biệt khoảng (a, b), chẳng hạn n + nghiệm Khi theo hệ phương trình f ′ (x) = có n nghiệm thuộc khoảng (a, b) Điều trái với giả thiết phương trình f ′ (x) = có khơng q n − nghiệm Ta có điều phải chứng minh Khơng gian hàm p-khả tích Lp (Ω) Ta nhớ lại khơng gian hàm p-khả tích độ đo Lebesgue n chiều

Ngày đăng: 03/07/2023, 08:49

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w